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Abstract. In this paper we study ω-limit sets of non-autonomous discrete dynamical systems. Some basic concepts

are introduced for non-autonomous discrete systems, including ω-limit set, Lyapunov stable set, asymptotically

stable set. We give some sufficient conditions for non-autonomous discrete dynamical systems to have asymptoti-

cally stable sets.
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1. Introduction

Throughout this paper, N denotes natural number set and let Z+ = N∪ {0}. Let X be a

topological space, fn : X→ X for each n∈N be a continuous map and f1,∞ denotes the sequence

( f1, f2, · · · , fn, · · ·). The pair (X , f1,∞) is referred to as a non-autonomous discrete dynamical

system [7]. If X is compact, then (X , f1,∞) is called a compact non-autonomous system. Define

f n
1 := fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1 for all n ∈ N,
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and f 0
1 := idX , the identity on X . In particular, when f1,∞ is a constant sequence ( f , · · · , f , · · ·),

the pair (X , f1,∞) is just classical discrete dynamical system (autonomous discrete dynamical

system) (X , f ). The orbit initiated from x ∈ X under f1,∞ is defined by the set

γ(x, f1,∞) = {x, f1(x), f 2
1 (x), · · · , f n

1 (x), · · ·}.

Its long-term behaviors are determined by its limit sets.

In past ten years, a large number of papers have been devoted to dynamical properties for non-

autonomous discrete systems. Kolyada and Snoha [7] gave definition of topological entropy in

non-autonomous discrete systems, Kolyada, Snoha and Trofimchuk [8] discussed minimality of

non-autonomous dynamical systems, Kempf [6] and Canovas [2] studied ω-limit sets in non-

autonomous discrete systems respectively. Krabs [9] discussed stability in non-autonomous

discrete systems, Huang, Wen and Zeng ([4, 5]) studied topological pressure and pre-image

entropy of non-autonomous discrete systems, Shi and Chen [13] and Oprocha and Wilczynski

[12] discussed chaos in non-autonomous discrete systems respectively.

The concept of asymptotically stable set for classical discrete dynamical system (autonomous

discrete dynamical system) was introduced by Block and Coppel [1]. Mimna and Steele [10]

discussed ω-limit sets and asymptotically stable sets for semi-homeomorphisms, Oprocha [11]

studied asymptotically stable sets in continuous dynamical systems. In this paper we give

the notions of ω-limit set and asymptotically stable set for a non-autonomous discrete sys-

tem. Our purpose is to study the properties of asymptotically stable sets for non-autonomous

discrete dynamical systems. In particularly, we give necessary and sufficient conditions for

non-autonomous discrete systems to have asymptotically stable sets.

2. Preliminaries

Definition 2.1. Let (X , f1,∞) be a non-autonomous discrete system. For every x∈X and m∈Z+,

the set γm(x, f1,∞) = { f n
1 (x) : n ≥ m} is called positive orbit through x starting at time m. If

m = 0, we will omit time index.
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Definition 2.2. Let (X , f1,∞) be a non-autonomous discrete system and let x ∈ X. Define

ω(x, f1,∞) as the set of limit points of the orbit γ(x, f1,∞), i.e., ω(x, f1,∞) =
⋂

m∈Z+

γm(x, f1,∞),

where γm(x, f1,∞) denotes the closure of γm(x, f1,∞).

Definition 2.3. [8] Let (X , f1,∞) be a non-autonomous discrete system. Set A⊆ X is said to be

invariant if f n
1 (A)⊆ A for every n ∈ N.

For an autonomous system (X , f ), by Block and Coppel [1], if X is a compact space, then

ω(x, f ) is invariant for every x ∈ X . However, for a non-autonomous system (X , f1,∞), we have

ω(x, f1,∞) can not be invariant for some x ∈ X . We give the following example which is from

[6] to show ω(x, f1,∞) is not invariant.

Example 2.1. Let X = [0,1], fn : [0,1]→ [0,1] be a sequence of continuous maps and

fn(x) =

 1− 1
n+1 , for x ∈ X and n even,

1
n+1 , for x ∈ X and n odd,

for every n ∈ N. Then ω(0, f1,∞) is not invariant.

From the definition of fn(x), we have

f n
1 (0) =

 1
n+1 , for n odd,

n
n+1 , for n even.

Hence, ω(0, f1,∞) = {0,1}. Since f 1
1 (ω(0, f1,∞)) = {0, 1

2}, ω(0, f1,∞) is not invariant.

Definition 2.4. [13] Let (X , f1,∞) be a non-autonomous discrete system. f1,∞ is said to be k-

periodic discrete system if there exists k ∈ N such that fn+k(x) = fn(x) for every x ∈ X and

n ∈ N.

Let (X , f1,∞) be a k-periodic discrete system for a k∈N. Define g=: fk ◦ fk−1◦· · ·◦ f1, we say

that (X ,g) is induced an autonomous discrete system by k-periodic discrete system (X , f1,∞).

Definition 2.5. [3] Let X be a topological space and {Yi}i∈I be a family of subsets of X. The

family {Yi}i∈I has the finite intersection property if, for every finite subset J of I, the intersection⋂
j∈J

Yj is a nonempty set.
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Theorem 2.1. [3] Let X be a metric space and let K be a compact set in X and C be a closed

set in X with K ∩C = /0. Then there exist two open sets U and V in X, with K ⊆U,C ⊆ V and

U ∩V = /0.

3. Asymptotically stable sets of non-autonomous discrete dynamical sys-

tems

In this section, we assume that X is a compact metric space, and we will discuss asymp-

totically stable sets of non-autonomous discrete system (X , f1,∞).

Definition 3.1. Let X be a compact metric space and (X , f1,∞) be a non-autonomous discrete

system. A is a nonempty closed set in X.

(1): A is said to be Lyapunov stable if for each open set U containing A there exists an

open set V containing A such that γ(x, f1,∞)⊆U for every x ∈V .

(2): A is said to be asymptotically stable if A is Lyapunov stable and there exists an open

set U0 containing A such that ω(x, f1,∞)⊆ A for every x ∈U0.

Proposition 3.1. Let (X , f1,∞) be a non-autonomous discrete system, where X is a compact

metric space. Let A⊆ X be a Lyapunov stable set of (X , f1,∞). Then A is invariant, i.e., f n
1 (A)⊆

A for every n ∈ N.

Proof. Suppose that set A is not invariant. Then there exists n0 ∈ N such that f n0
1 (A) * A.

Furthermore, there exists a point x0 ∈ A such that f n0
1 (x0) /∈ A. Since X is a compact metric

space and A is closed, it follows that X is a Hausdorff space and A is a compact subset in X . By

Theorem 2.1, there exist an open neighborhood U1 of f n0
1 (x0) and an open neighborhood U2 of

A such that U1∩U2 = /0, which implies f n0
1 (x0) /∈U2. Hence, for every open set V containing A,

we have x0 ∈ A⊆V and f n0
1 (x0) /∈U2, which implies γ(x0, f1,∞)*U2. This is a contradiction.

Theorem 3.1. Let (X , f1,∞) be a non-autonomous discrete system, where X is a compact metric

space, and let subset A in X is an asymptotically stable set in (X , f1,∞). Then there exists

an open set U0 containing A such that for each open set U containing A there exists a finite
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set P = {n1(U),n2(U), · · · ,np(U)}, where n1(U),n2(U), · · · , np(U) ∈ N, such that for every

x ∈U0, there exists a positive integer m ∈ P satisfying f n
1 ( f m

1 (x)) ∈U for every n ∈ N.

Proof. Let A be an asymptotically stable set. Then there exists an open neighborhood W of A

such that ω(x, f1,∞)⊆ A for every x ∈W . Since A and X \W are two closed subsets of X and X

is a compact metric space, then A and X \W are two compact subsets. Furthermore, there exists

an open set U0 of X satisfying A⊆U0 ⊆U0 ⊆W .

Notice that ω(x, f1,∞) ⊆ A for every point x ∈U0. Take any open neighborhood U of A, we

may also assume that U ⊆U0. There exists an open neighborhood V of A such that γ(x, f1,∞) =

{ f n
1 (x) : n = 0,1, · · ·} ⊆ U for every x ∈ V . Moreover, for every x ∈ U0, there exists a n =

n(x) ∈ N such that f n
1 (x) ∈ V because ω(x, f1,∞) ⊆ A. As f n

1 (x) is continuous, there exists an

open neighborhood Wx of x such that f n
1 (Wx) ⊆ V . Set U0 is compact because X is compact,

and family {Wx} is its open cover. Hence, we may choose finite subcover {Wx1,Wx2, · · · ,Wxp}

of U0. Furthermore, for each Wxi , there exists a ni = n(xi) ∈ N such that f ni
1 (Wxi) ⊆ V for

i = 1,2, · · · , p. Take P = {n(x1),n(x2), · · · ,n(xp)}. Hence, for every x ∈U0, there exists m ∈ P

such that f m
1 (x) ∈V . Therefore, we have f n

1 ( f m
1 (x)) ∈U for every n ∈ N.

Theorem 3.2. Let (X , f1,∞) be a non-autonomous discrete system, where (X ,d) is a compact

metric space. Let A be a closed invariant set and U0 be an open neighborhood of A, if for every

open neighborhood U of A, there exists a N = N(U) ∈ N such that f n
1 (U0) ⊆U for all n ≥ N.

Then A is an asymptotically stable set.

Proof. Firstly, we show that A is Lyapunov stable. Suppose that A is not Lyapunov stable.

Then there exists an open neighborhood U of A satisfying for every open set V containing A,

there exists a point x ∈V such that γ(x, f1,∞)*U .

Since U0 be an open neighborhood of A, we can take points xk ∈U0 such that xk → x ∈ A

when k→ ∞ and integers nk ∈ N such that f nk
1 (xk) /∈U for all k ∈ N. As f n

1 (U0) ⊆U for all

n ≥ N, then nk ≤ N for all k, where N = N(U). Therefore, by drawer principle, there exists

some m < N such that nk = m for infinitely many k. Since A is invariant. Hence f m
1 (x) ∈ A.

Furthermore, f m
1 (xk) ∈U for sufficiently large k. This is a contradiction.
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Secondly, we prove ω(x, f1,∞)⊆ A for every x ∈U0. Let U = Bε(A) where Bε(A) = {x ∈ X :

d(x,A)< ε}. Since U = Bε(A) is an open neighborhood of A, then there exists a N = N(U)∈N

such that f n
1 (U0) ⊆ Bε(A) for every n ≥ N. Furthermore, we have f n

1 (x) ∈ Bε(A) for every

x ∈U0 and n≥ N. Moreover, for every y ∈ ω(x, f1,∞), there exists an increasing sequence {ni}

such that y = lim
i→∞

f ni
1 (x). Take

(1): ε1 = 1. Then there exists a N1 = N(B1(A)) ∈ N such that f
ni1
1 (x) ∈ B1(A) when

ni1 ≥ N1;

(2): ε2 =
1
2 . Then there exists a N2 =N(B 1

2
(A))∈N such that f

ni2
1 (x)∈B 1

2
(A) and ni2 > ni1

when ni2 ≥ N2;

(3): ε3 =
1
3 . Then there exists a N3 =N(B 1

3
(A))∈N such that f

ni3
1 (x)∈B 1

3
(A) and ni3 > ni2

when ni3 ≥ N3, and so on.

Since {ni j : j = 1,2, · · ·} is a subsequence of {ni : i= 1,2, · · ·}, it follows that lim
j→∞

f
ni j
1 (x) = y.

Moreover, f
ni j
1 (x) ∈ N(B 1

j
(A)), i.e., d( f

ni j
1 (x),A)< 1

j . Furthermore,

d(y,A)≤ d(y, f
ni j
1 (x))+d( f

ni j
1 (x),A).

Since A is a closed set of X , thus, when j→ ∞, we have y ∈ A. Hence, ω(x, f1,∞)⊆ A for every

x ∈U0.

Theorem 3.3. Let (X , f1,∞) be a non-autonomous discrete system, where X is a compact metric

space . Let A be a closed invariant set and there exists an open set V containing A such that

(1): f n
1 (V )⊆ f n−1

1 (V )⊆V for every n ∈ N;

(2):
⋂

n∈Z+

f n
1 (V )⊆ A.

Then A is an asymptotically stable set.

Proof. Since X is a compact space, thus V is a compact subset of X . Moreover, f n
1 is a

continuous map for every n ∈ N. Hence, f n
1 (V ) is a compact subset of X for every n ∈ Z+.

By condition (1), the compact sets f n
1 (V ) form a decreasing sequence. By Definition 2.5, the

family { f n
1 (V )}n∈Z+ has the finite intersection property. Furthermore, we have

⋂
n∈Z+

f n
1 (V ) 6= /0.

Let U0 =V . Then for every open neighborhood U of A, there exists a positive integer N = N(U)
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such that f n
1 (U0) ⊆U for all n ≥ N. Therefore, by Theorem 3.2, A is an asymptotically stable

set of (X , f1,∞).

Theorem 3.4. Let (X , f1,∞) be a k-periodic discrete system, g = fk ◦ fk−1 ◦ · · · ◦ f1, (X ,g) is its

induce autonomous discrete system. If A is an asymptotically stable set of (X , f1,∞), then A is

an asymptotically stable set of (X ,g).

Proof. Firstly, we show A is Lyapunov stable in (X ,g). Let U be any open set which contain-

ing A. Since A is an asymptotically stable set of (X , f1,∞), it follows that there exists an open set

V containing A such that γ(x, f1,∞) ⊆U for every x ∈ V . As (X , f1,∞) be a k-periodic discrete

system and g = fk ◦ fk−1 ◦ · · · ◦ f1 = f k
1 , we have fn+k(x) = fn(x) for every x ∈ X . Further-

more, gm(x) = ( f k
1 )

m(x) = f mk
1 (x). Moreover, for every x ∈ V , γ(x,g) = {x,g(x),g2(x), · · ·} =

{x, f k
1 (x), f 2k

1 (x), · · ·}, thus, γ(x,g) ⊆ γ(x, f1,∞). Hence, we have γ(x,g) ⊆U for every x ∈ V .

This shows A is Lyapunov stable in (X ,g).

Secondly, we prove that there exists an open set U0 containing A such that ω(x,g) ⊆ A for

every x ∈U0. Since A is an asymptotically stable set of (X , f1,∞), then there exists an open set

U0 containing A such that ω(x, f1,∞)⊆ A for every x ∈U0. Moreover, for every m ∈N, we have

γm(x,g) ⊆ γm(x, f1,∞). Furthermore, we have
⋂

m∈Z+

γm(x,g) ⊆
⋂

m∈Z+

γm(x, f1,∞), which implies

ω(x,g) ⊆ ω(x, f1,∞). Hence, ω(x,g) ⊆ A for every x ∈U0. This shows A is an asymptotically

stable set of (X ,g).
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