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Abstract. The concept of complex valued metric spaces was introduced and studied by Azam et al. (cf. [1]).

Afterward, by mathematicians many fixed point theorems for mappings that satisfying in a rational inequality with

real coefficients were founded in complex valued metric spaces. In this paper, we first, introduce implicit function

with complex coefficient. Second, we establish common fixed point theorems involving two pairs of weakly

compatible mapping satisfying certain rational expressions with complex coefficients are proved in complex valued

metric space. Some related results are also derived besides furnishing illustrative examples to highlight the realized

improvements. The presented theorems generalize, extend and improve many existing results in the literature.
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1. Introduction and Preliminaries

The axiomatic development of a metric space was essentially carried out by French math-

ematician M.Frechet in the year 1906. The utility of metric spaces in the natural growth of
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Functional Analysis is enormous. Inspired from the impact of this natural idea to mathemat-

ics in general and to Functional Analysis in particular, several researchers attempted various

generalizations of this notion in the recent past such as: rectangular metric spaces, semi metric

spaces, quasi metric spaces, quasi semi metric spaces, pseudo metric spaces, probabilistic met-

ric spaces, 2-metric spaces, D-metric spaces, G-metric spaces, K-metric spaces, Cone metric

spaces etc and by now there exists considerable literature on all these generalizations of metric

spaces.

Most recently, Azam et al. (cf. [1]) and latter Fayyaz et al. (cf. [3]) studied complex valued

metric spaces wherein some fixed point theorems for mappings satisfying a rational inequality

were established. Naturally, this new idea can be utilized to define complex valued normed

spaces and complex valued inner product spaces which ,in turn, offer a lot of scope for further

investigation. Though complex valued metric spaces form a special class of cone metric space,

yet this idea is intended to define rational expressions which are not meaningful in cone metric

spaces and thus many results of analysis cannot be generalized to cone metric spaces. Indeed

the definition of a cone metric space banks on the underlying Banach space which is not a

division Ring. However, in complex valued metric spaces, we can study improvements of a

host of results of analysis involving divisions.

In this paper we prove common fixed point theorems involving two pairs of weakly com-

patible mappings satisfying certain rational expressions with complex coefficients in complex

valued metric space.

In what follows, we recall some notations and definitions that will be utilized in our subse-

quent discussion.

Let C be the set of complex numbers and z1,z2 ∈C. Define a partial order - on C as follows:

z1 - z2 if and only if Re(z1)≤ Re(z2), Im(z1)≤ Im(z2).

Consequently, one can infer that z1 - z2 if one of the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1)< Im(z2),

(ii) Re(z1)< Re(z2), Im(z1) = Im(z2),

(iii) Re(z1)< Re(z2), Im(z1)< Im(z2),

(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).
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In particular, we write z1 � z2 if z1 6= z2 and one of (i), (ii), and (iii) is satisfied and we write

z1 ≺ z2 if only (iii) is satisfied. Notice that 0 - z1 � z2⇒ |z1|< |z2|, and z1 - z2,z2 ≺ z3⇒ z1 ≺

z3.

We denote C+ and R+ by

C+ = {z ∈ C : 0 - z} and R+ = {r ∈ R : r ≥ 0}

Definition 1.1. (cf. [3]) Let X be a nonempty set whereas C be the set of complex numbers.

Suppose that the mapping d : X×X → C, satisfies the following conditions:

(d1). 0 - d(x,y), for all x,y ∈ X and d(x,y) = 0 if and only if x = y;

(d2). d(x,y) = d(y,x) for all x,y ∈ X ;

(d3). d(x,y)- d(x,z)+d(z,y), for all x,y,z ∈ X .

Then d is called a complex valued metric on X , and (X ,d) is called a complex valued metric

space.

Example 1.1. (cf. [3]) Let X = C be a set of complex numbers. Define d : C×C→ C by

d(z1,z2) = |x1− x2|+ i|y1− y2|

where z1 = x1 + iy1 and z2 = x2 + iy2. Then (X ,d) is a complex valued metric space.

Definition 1.2. Let (X ,d) be a complex valued metric space and B⊆ X .

(i) b ∈ B is called an interior point of a set B whenever there is 0≺ r ∈ C such that

N(b,r)⊆ B

where N(b,r) = {y ∈ X : d(b,y)≺ r}.

(ii) A point x ∈ X is called a limit point of B whenever for every 0≺ r ∈ C,

N(x,r)∩ (B\X) 6= /0.

(iii) A subset A ⊆ X is called open whenever each element of A is an interior point of A. A

subset B⊆ X is called closed whenever each limit point of B belongs to B. The family

F = {N(x,r) : x ∈ X ,0≺ r}
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is a sub-basis for a topology on X . We denote this complex topology by τc. Indeed, the topology

τc is Hausdorff.

Definition 1.3. Let (X ,d) be a complex valued metric space and {xn}n≥1 be a sequence in

X and x ∈ X . We say that

(i) the sequence {xn}n≥1 converges to x if for every c ∈ C, with 0 ≺ c there is n0 ∈ N such

that for all n > n0, d(xn,x)≺ c. We denote this by limn xn = x, or xn→ x, as n→ ∞,

(ii) the sequence {xn}n≥1 is Cauchy sequence if for every c ∈ C with 0 ≺ c there is n0 ∈ N

such that for all n > n0, d(xn,xn+m)≺ c,

(iii) the complex valued metric space (X ,d) is a complete complex valued metric space if

every Cauchy sequence is convergent.

Definition 1.4. (cf. [5]) Two families of self-mappings {Ti}m
i=1 and {Si}n

i=1 are said to be

pairwise commuting if:

(i)TiTj = TjTi, i, j ∈ {1,2, ...m},

(ii)SiS j = S jSi, i, j ∈ {1,2, ...n}.

(iii)TiS j = S jTi, i ∈ {1,2, ...m}, j ∈ {1,2, ...n}.

Definition 1.5. Let S : C→ C be a given mapping. We say that S is a non-decreasing

mapping with respect - if for every x,y ∈ C,x - y implies Sx - Sy.

Definition 1.6. Let S :C→C be a given mapping. We say that S is a non-increasing mapping

with respect - if for every x,y ∈ C,x - y implies Sy - Sx.

Definition 1.7.(cf. [6]) Let S and I be self-maps of a set X (i.e., S, I : X→ X). If w = Sx = Ix

for some x ∈ X , then x is called a coincidence point of S and I, and w is called a point of

coincidence of S and I.

Definition 1.8. (cf. [4, 2]) Let S and T be two self-maps defined on set X . Then S and T are

said to be weakly compatible if they commute at every coincidence point.

In [1], Azam et al. established the following two lemmas:
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Lemma 1.1. (cf. [1]) Let (X ,d) be a complex valued metric space and let {xn} be a sequence

in X . Then {xn} converges to x if and only if |d(xn,x)| → 0 as n→ ∞.

Lemma 1.2. (cf. [1]) Let (X ,d) be a complex valued metric space and let {xn} be a sequence

in X . Then {xn} is a Cauchy sequence if and only if |d(xn,xn+m)| → 0 as n,m→ ∞.

2. Implicit Relation with Complex Coefficient

We consider set Φ of functions φ(u1,u2,u3,u4,u5,u6) : C6
+ → C satisfying the following

properties:

Φ1: φ is continuous;

Φ2: φ is non-increasing with respect to the 5th and 6th variables;

Φ3: there is h1 ∈ C and h2 ∈ C such that h = |h1h2|< 1 and if u,v ∈ C+ satisfy φ(u,v,v,u,u+

v,0)- 0 then |u| ≤ |h1v| and if u,v ∈ C+ satisfy φ(u,v,u,v,0,u+ v)- 0 then |u| ≤ |h2v|;

Φ4: if u ∈ C+ is such that φ(u,u,0,0,u,u)- 0 or φ(u,0,u,0,0,u)- 0 or φ(u,0,0,u,u,0)- 0,

then u = 0.

Example 2.1. Define φ(u1,u2,u3,u4,u5,u6) : C6
+→ C as

φ(u1,u2,u3,u4,u5,u6) = λu1− (Au2 +Bu3 +Cu4 +Du5 +Eu6)

where D = E = 1
10 , λ = 1+ i and A = B =C = 1

5 +
1
6 i.

Example 2.2. Define φ(u1,u2,u3,u4,u5,u6) : C6
+→ C as

φ(u1,u2,u3,u4,u5,u6) = λu1−Au2−B(u3 +u4)−C(u5 +u6),

where C = 1
10 , λ = 2+ i and A = B = 1

5 +
1
3 i.

Example 2.3. Define φ(u1,u2,u3,u4,u5,u6) : C6
+→ C as

φ(u1,u2,u3,u4,u5,u6) = λu1−A
u2u3

1+u3 +u4
−B(u5 +u6−u2)

where B ∈ R+,A,λ ∈ C+ and A+2B≺ λ .

Φ1 and Φ2 :Obviously;
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Φ3 :Denote

h1 = h2 =
A

λ −B
.

Since 0≺ A+2B≺ λ , then

0≺ A≺ λ −B⇒ |A|< |λ −B| ⇒ | A
λ −B

|< 1,

therefore, we have h = |h1h2|< 1.

If φ(u,v,v,u,u+ v,0)- 0, we have

λu−A
vv

1+ v+u
−B(u+ v− v)- 0,

(λ −B)u - A
vv

1+ v+u
,

|λ −B||u| ≤ |A| |v||v|
|1+ v+u|

≤ |A| |v||v|
|v|

,

which implies that |u| ≤ |h1v|.

Now, if φ(u,v,u,v,0,u+ v)- 0, we have

λu−A
vu

1+ v+u
−B(u+ v− v)- 0,

(λ −B)u - A
vu

1+ v+u
,

|λ −B||u| ≤ |A| |v||u|
|1+ v+u|

≤ |A| |v||u|
|u|

,

which implies that |u| ≤ |h2v|.

Φ4 :Suppose that φ(u,u,0,0,u,u)- 0. We get

λu - Bu⇒ |λ ||u| ≤ |B||u|,

on the other hand, since |B| < |λ | and |B||u| ≤ |λ ||u| then |u| = 0 and u = 0. The same result

holds if φ(u,0,u,0,0,u)- 0 or φ(u,0,0,u,u,0)- 0. Therefore, φ ∈Φ.

Example 2.4. Define φ(u1,u2,u3,u4,u5,u6) : C6
+→ C as

φ(u1,u2,u3,u4,u5,u6) = λu1−A
u2u3

1+u2 +u3 +u4
−B(u5 +u6−u2)

where B ∈ R+,A,λ ∈ C+ and A+2B - λ .
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Example 2.5. Define φ(u1,u2,u3,u4,u5,u6) : C6
+→ C as

φ(u1,u2,u3,u4,u5,u6) = λu1−A
u3u4

1+u3 +u4
−B(u5 +u6−u2)

where B ∈ R+,A,λ ∈ C+ and A+2B - λ .

Example 2.6. Define φ(u1,u2,u3,u4,u5,u6) : C6
+→ C as

φ(u1,u2,u3,u4,u5,u6) = λu1−A
u3u4

1+u2 +u3 +u4
−B(u5 +u6−u2)

where B ∈ R+,A,λ ∈ C+ and A+2B - λ .

Equating B to zero in Examples 2.3, 2.4, 2.5 and 2.6, in the particular case, we deduce the

following example.

Example 2.7. Define φ(u1,u2,u3,u4,u5,u6) : C6
+→ C as

φ(u1,u2,u3,u4,u5,u6) = λu1−A
u2u3

1+u3 +u4

where A,λ ∈ C+ and A - λ .

Example 2.8. Define φ(u1,u2,u3,u4,u5,u6) : C6
+→ C as

φ(u1,u2,u3,u4,u5,u6) = λu1−A
u2u3

1+u2 +u3 +u4

where A,λ ∈ C+ and A - λ .

Example 2.9. Define φ(u1,u2,u3,u4,u5,u6) : C6
+→ C as

φ(u1,u2,u3,u4,u5,u6) = λu1−A
u3u4

1+u3 +u4

where A,λ ∈ C+ and A - λ .

Example 2.10. Define φ(u1,u2,u3,u4,u5,u6) : C6
+→ C as

φ(u1,u2,u3,u4,u5,u6) = λu1−A
u3u4

1+u2 +u3 +u4

where A,λ ∈ C+ and A - λ .

3. Main Results
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We prove our main result as follows:

Theorem 3.1. If S,T, I and J are self-mappings defined on a complex valued metric space

(X ,d) satisfying T X ⊆ IX ,SX ⊆ JX and

φ(d(Sx,Ty),d(Ix,Jy),d(Ix,Sx),d(Jy,Ty),d(Ix,Ty),d(Sx,Jy))- 0(1)

for all x,y ∈ X where φ ∈Φ. If one of SX ,T X , IX or JX is a complete subspace of X , then:

(a) {S, I} and {T,J} have a unique point of coincidence in X ,

(b) if {S, I} and {T,J} are weakly compatible, then S,T, I and J have a unique common fixed

point in X .

Proof. Let x0 be an arbitrary point in X. Since SX ⊆ JX , we find a point x1 in X such that

Sx0 = Jx1. Also, since T X ⊆ IX , we choose a point x2 with T x1 = Ix2. Thus in general for

the point x2n−2 one find a point x2n−1 such that Sx2n−2 = Jx2n−1 and then a point x2n with

T x2n−1 = Ix2n for n = 1,2, · · · . Repeating such arguments one can construct sequences {xn}

and {yn} in X such that,

y2n−1 = Sx2n−2 = Jx2n−1, y2n = T x2n−1 = Ix2n, n = 1,2, · · · .

Using inequality (1), we have

φ(d(Sx2n,T x2n+1),d(Ix2n,Jx2n+1),d(Ix2n,Sx2n),d(Jx2n+1,T x2n+1),

d(Ix2n,T x2n+1),d(Sx2n,Jx2n+1))- 0,

and

φ
(
d(y2n+1,y2n+2),d(y2n,y2n+1),d(y2n,y2n+1),d(y2n+1,y2n+2),

d(y2n,y2n+2),d(y2n+1,y2n+1)
)
- 0

or

φ
(
d(y2n+1,y2n+2),d(y2n,y2n+1),d(y2n,y2n+1),d(y2n+1,y2n+2),

d(y2n,y2n+2),0
)
- 0.
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In view of (Φ2), we have,

φ
(
d(y2n+1,y2n+2),d(y2n,y2n+1),d(y2n,y2n+1),d(y2n+1,y2n+2),

d(y2n,y2n+1)+d(y2n+1,y2n+2),0
)
- 0.

By (Φ3), there exist h1 ∈ C+ such that

|d(y2n+1,y2n+2)| ≤ |h1||d(y2n,y2n+1)|.(2)

Again, using inequality (1),

φ(d(Sx2n,T x2n−1),d(Ix2n,Jx2n−1),d(Ix2n,Sx2n),d(Jx2n−1,T x2n−1),

d(Ix2n,T x2n−1),d(Sx2n,Jx2n−1))- 0,

and

φ
(
d(y2n+1,y2n),d(y2n,y2n−1),d(y2n,y2n+1),d(y2n−1,y2n),d(y2n,y2n),

d(y2n+1,y2n−1)
)
- 0,

or

φ
(
d(y2n+1,y2n),d(y2n,y2n−1),d(y2n,y2n+1),d(y2n−1,y2n),0,

d(y2n+1,y2n−1)
)
- 0.

In view of (Φ2), we have,

φ
(
d(y2n+1,y2n),d(y2n,y2n−1),d(y2n,y2n+1),d(y2n−1,y2n),0,

d(y2n+1,y2n)+d(y2n,y2n−1)
)
- 0.

By Φ3, there exist h2 ∈ C+ such that,

|d(y2n+1,y2n)| ≤ |h2||d(y2n,y2n−1)|.(3)

Combining (2) and (3), we have,

|d(y2n+1,y2n+2)| ≤ h|d(y2n,y2n−1)|.



UNIFYING A MULTITUDE OF COMMON FIXED POINT THEOREMS 477

Continuing this process, we get,

|d(y2n+1,y2n+2)| ≤ hn|d(y1,y2)|.(4)

By using inequality (1), we have,

φ(d(Sx2n+2,T x2n+1),d(Ix2n+2,Jx2n+1),d(Ix2n+2,Sx2n+2),d(Jx2n+1,T x2n+1),

d(Ix2n+2,T x2n+1),d(Sx2n+2,Jx2n+1))- 0,

and

φ
(
d(y2n+3,y2n+2),d(y2n+2,y2n+1),d(y2n+2,y2n+3),d(y2n+1,y2n+2),

d(y2n+2,y2n+2),d(y2n+1,y2n+3)
)
- 0,

φ
(
d(y2n+3,y2n+2),d(y2n+2,y2n+1),d(y2n+2,y2n+3),d(y2n+1,y2n+2),0,

d(y2n+1,y2n+3)
)
- 0,

in view of (Φ2), we have,

φ
(
d(y2n+3,y2n+2),d(y2n+2,y2n+1),d(y2n+2,y2n+3),d(y2n+1,y2n+2),0,

d(y2n+1,y2n+2)+d(y2n+2,y2n+3)
)
- 0.

From Φ3, there exist h2 ∈ C+, such that,

|d(y2n+2,y2n+3)| ≤ |h2||d(y2n+2,y2n+1)|.

Using (4), we obtain,

|d(y2n+2,y2n+3)| ≤ hn|h2||d(y1,y2)|.(5)

From (4) and (5), we get,

|d(yn,yn+1)| ≤
max{1, |h2|}

h
(
√

h)n|d(y1,y2)|, for n = 2,3, · · · .
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Therefore, for any m > n, we have,

|d(yn,ym)| ≤ |d(yn,yn+1)|+ |d(yn+1,yn+2)|+ |d(yn+2,yn+3)|+ · · ·+ |d(ym−1,ym)|

≤ max{1, |h2|}
h

[
√

h
n
+
√

h
n+1

+
√

h
n+2

+ · · ·+
√

h
m−1

]|d(y1,y2)|

≤ [

√
h

n

h(1−
√

h)
]max{1, |h2|}|d(y1,y2)|

since 0 < h < 1, so that

|d(yn,ym)| ≤ [

√
h

n

h(1−
√

h)
]max{1, |h2|}|d(y1,y2)| → 0 as n→ ∞.

In view of Lemma 1.2, the sequence {yn} is Cauchy sequence in (X ,d). Now suppose that IX

is complete subspace of X . Then the subsequence y2n = T x2n−1 = Ix2n converges to some u in

IX , that is,

y2n = Ix2n = T x2n−1→ u as n→ ∞.(6)

As {yn} is a Cauchy sequence which contains a convergent subsequence {y2n}, therefore the

sequence {yn} also converges implying thereby the convergence of the subsequence {y2n−1}

being a subsequence of convergent sequence {yn}. Consequently, we can find v ∈ X such that

Iv = u.(7)

We claim that Sv = u. Using inequality (1) and (7),we have,

φ(d(Sv,T x2n−1),d(Iv,Jx2n−1),d(Iv,Sv),d(Jx2n−1,T x2n−1),

d(Iv,T x2n−1),d(Sv,Jx2n−1))- 0,

and

φ
(
d(Sv,y2n),d(u,y2n−1),d(u,Sv),d(y2n−1,y2n),d(u,y2n),d(Sv,y2n−1)

)
- 0.

Letting n→ ∞ in the above inequality, using (6) and the continuity φ , we have,

φ
(
d(Sv,u),0,d(u,Sv),0,0,d(Sv,u)

)
- 0.

From Φ4, this implies that d(Sv,u) = 0, that is,

Sv = u.(8)
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Now, combining (7) and (8), we have,

Iv = Sv = u,

that is, u is a point of coincidence of I and S.

Since u = Sv ∈ SX ⊆ JX , there exists w ∈ X such that,

u = Jw.(9)

We claim that Tw = u.

Using inequality (1), we have,

φ
(
d(Sv,Tw),d(Iv,Jw),d(Iv,Sv),d(Jw,Tw),d(Iv,Tw),d(Sv,Jw)

)
- 0,

or,

φ
(
d(u,Tw),0,0,d(u,Tw),d(u,Tw),0

)
- 0,

which by using Φ4: we have d(u,Tw) = 0, that is,

u = Tw.(10)

Combining (9) and (10), we have,

u = Jw = Tw,

that is, u is a point of coincidence of J,T.

Now, suppose that u′ is another point of coincidence of I and S, that is,

u′ = Iv′ = Sv′,

for some v′ ∈ X . Using inequality (1), we have,

φ
(
d(Sv′,Tw),d(Iv′,Jw),d(Iv′,Sv′),d(Jw,Tw),d(Iv′,Tw),d(Sv′,Jw)

)
- 0,

or,

φ
(
d(u′,u),d(u′,u),d(u′,u′),d(u,u),d(u′,u),d(u′,u)

)
- 0

⇒ φ
(
d(u′,u),d(u′,u),0,0,d(u′,u),d(u′,u)

)
- 0,
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which implies (by using Φ4) d(u′,u) = 0, that is, u′ = u.

Now, suppose that u is another point of coincidence of J and T, that is ,

u = Jw′ = Tw′,

for some w′ ∈ X . Using inequality (1), we get

φ
(
d(u,u),d(u,u),0,0,d(u,u),d(u,u)

)
- 0,

which implies (by using Φ4) d(u,u) = 0, that is, u = u.

Therefore, we proved that u is the unique point of coincidence of {I,S} and {J,T}.

Since {I,S} and {J,T} are weakly compatible, and u = Iv = Sv = Jw = Tw, we can write

Su = S(Iv) = I(Sv) = Iu = w1 (say)

and,

Tu = T (Jw) = J(Tw) = Ju = w2 (say).

By using inequality (1), we get

φ
(
d(w1,w2),d(w1,w2),0,0,d(w1,w2),d(w1,w2)

)
- 0,

which implies that w1 = w2, that is,

Su = Iu = Tu = Ju,

which by using inequality (1) we have

φ
(
d(Sv,Tu),d(Iv,Ju),d(Iv,Sv),d(Ju,Tu),d(Iv,Tu),d(Sv,Ju)

)
- 0

⇒ φ
(
d(Sv,Tu),d(Sv,Tu),0,0,d(Sv,Tu),d(Sv,Tu)

)
- 0,

we deduce (by using Φ4) that Sv = Tu, that is, u = Tu. This implies that

u = Su = Iu = Tu = Ju.

Then, u is the unique common fixed point of S, I,J and T.

The proof for the cases in which SX ,JX , or T X is complete are similar, and are omitted.
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Corollary 3.1. If S,T, I and J are self-mappings defined on complex valued metric space

(X ,d) satisfying T X ⊆ IX ,SX ⊆ JX and

(11) λd(Sx,Ty)- Ad(Ix,Jy)+Bd(Ix,Sx)+Cd(Jy,Ty)+Dd(Ix,Ty)+Ed(Sx,Jy),

for all x,y ∈ X , where D,E ∈ R+, λ ,A,B,C ∈ C+ and 0 ≺ A+B+C+D+E ≺ λ . If one of

SX ,T X , IX or JX is a complete subspace of X , then:

(a) {S, I} and {T,J} have a unique point of coincidence in X ,

(b) if {S, I} and {T,J} are weakly compatible, then S,T, I and J have a unique common fixed

point in X .

Corollary 3.2. If S,T, I and J are self-mappings defined on complex valued metric space

(X ,d) satisfying T X ⊆ IX ,SX ⊆ JX and

(12) λd(Sx,Ty)- Ad(Ix,Jy)+B(d(Ix,Sx)+d(Jy,Ty))+C(d(Ix,Ty)+d(Sx,Jy)),

for all x,y ∈ X , where C ∈ R+, λ ,A,B ∈ C+ and 0≺ A+2B+2C ≺ λ . If one of SX ,T X , IX or

JX is a complete subspace of X , then:

(a) {S, I} and {T,J} have a unique point of coincidence in X ,

(b) if {S, I} and {T,J} are weakly compatible, then S,T, I and J have a unique common fixed

point in X .

Proof. Define φ(u1,u2,u3,u4,u5,u6) : C6
+→ C+ as

φ(u1,u2,u3,u4,u5,u6) = λu1−Au2−B(u3 +u4)−C(u5 +u6),

where C ∈ R+, λ ,A,B ∈ C+ and 0≺ A+2B+2C ≺ λ .

We show φ ∈Φ.

Φ1 and Φ2 :Obviously;

Φ3 :Denote

h1 = h2 =
A+B+C

λ − (B+C)
.

Since 0≺ A+2B+2C ≺ λ , then

0≺ A+B+C ≺ λ − (B+C)⇒ |A+B+C|< |λ − (B+C)|
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and,

| A+B+C
λ − (B+C)

|< 1,

therefore, we have h = |h1h2|< 1.

If φ(u,v,v,u,u+ v,0)- 0, we have

λu−Av−Bu−Bv−Cu−Cv - 0,

which implies that |u| ≤ |h1v|. Now, if φ(u,v,u,v,0,u+ v)- 0, we have

λu−Av−Bu−Bv−Cu−Cv - 0,

which implies that |u| ≤ |h2v|.

Φ4 :Suppose that φ(u,u,0,0,u,u)- 0. We get

λu - Au+2Cu⇒ |λ ||u| ≤ |A+2C||u|,

on the other hand, since |A+ 2C| < |λ | and |A+ 2C||u| ≤ |λ ||u| then |u| = 0 and u = 0. The

same result holds if φ(u,0,u,0,0,u)- 0 or φ(u,0,0,u,u,0)- 0. Therefore, φ ∈Φ.

Moreover,inequality (12) is equivalent to inequality (1). Then to obtain the desired result, we

have only to apply Theorem 3.1 for the considered function φ .

Remark 3.1. If S = T and I and J are identity mapping, λ = 1,A = B = 0 and C 6= 0, in the

particular case, when (X ,d) is a metric space, we obtain Kannan fixed point theorem (cf. [7]).

Remark 3.2. If S = T and I and J are identity mapping, A = C = 0,B ∈ C+ and B 6= 0, in

the particular case, when (X ,d) is a metric space, we obtain Chatterjia theorem (cf. [8]).

Remark 3.3. If S = T and I and J are identity mapping, A,B,C ∈ R+ and λ = 1 in the

particular case, when (X ,d) is a metric space, we obtain Hardy and Rogers theorem (cf. [9]).

Corollary 3.3. The conclusions of Theorem 3.1 remain true if implicit relation (1) is replaced

by any one of the following conditions.

(13) λd(Sx,Ty)- A
d(x,Sx)d(y,Ty)

1+d(x,Sx)+d(y,Ty)
,

where A,λ ∈ C+ and A - λ .

(14) λd(Sx,Ty)- A
d(x,Sx)d(y,Ty)

1+d(x,y)+d(x,Sx)+d(y,Ty)
,
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where A,λ ∈ C+ and A - λ .

(15) λd(Sx,Ty)- A
d(x,y)d(x,Sx)

1+d(x,y)+d(x,Sx)+d(y,Ty)
,

where A,λ ∈ C+ and A - λ .

(16) λd(Sx,Ty)- A
d(x,y)d(x,Sx)

1+d(x,Sx)+d(y,Ty)
,

where A,λ ∈ C+ and A - λ .

4. Applications

As an application of Theorem 3.1, we prove the following theorem for two finite families of

mappings.

Theorem 4.1. If {Ti}m
1 ,{Ji}p

1 and {Si}l
1,{Ii}n

1 are two finite pairwise commuting finite fam-

ilies of self-mapping defined on a complex valued metric space (X ,d) such that the mappings

S,T ,I and J (with T = T1T2...Tm, J = J1J2...Jp, I = I1I2...In and S = S1S2...Sl) satisfy T X ⊂ IX

and SX ⊂ JX and the inequality (1).If one of T X ,SX , IX or JX are complete subspace of X ,

then the component maps of the two families {Ti}m
1 ,{Ji}p

1 and {Si}l
1,{Ii}n

1 have a unique com-

mon fixed point.

Proof. Appealing to componentwise commutativity of various pairs, one immediately con-

cludes that SI = IS and T J = JT and hence, obviously both the pairs (S, I) and (T,J) are weak

compatible. Note that all the conditions of Theorem 3.1 (for mappings S,T, I and J) are satisfied

ensuring the existence of unique common fixed point u in X , i.e. Su = Tu = Iu = Ju = u. We

are required to show that u is common fixed point of all the components maps of the families.

For this consider

S(Sku) = ((S1S2...Sl)Sk)u = (S1S2...Sl−1)((SlSk)u)

= (S1...Sl−2)(Sl−1Sk(Slu)) = (S1...Sl−2)(SkSl−1(Slu)) = ...

= S1Sk(S2S3S4...Slu) = SkS1(S2S3S4...Slu) = Sk(Su) = Sku
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Similarly, one can show that,

Tku = TkJu = JTku,Tku = TkTu = T Tku

Jku = T Jku = JJku,Sku = ISku = SSku

Iku = IIku = SIku,Tku = T Tku = JTku,

which show that (for every k)Sku,Tku, Iku and Jku are other fixed points of S,T, I and J.

By using the uniqueness of common fixed point for S,T, I and J, we can write Sku = Tku =

Iku = Jku = u (for every k) which shows that u is a common fixed point of the family {Ti}m
1 ,

{Si}l
1,{Ii}p

1 and {Ji}n
1 (for every k). This completes the proof of the theorem.

By setting S1 = S2 = ...= Sl = G,T1 = T2 = ...= Tm = F, I1 = I2 = ...= In = Q and J1 = J2 =

... = Jp = R in Theorem 4.1, we derive the following common fixed point theorem involving

iterates of mappings.

Corollary 4.1. If F,R and G,Q are two commuting self-mappings defined on a complex

valued metric space (X ,d) satisfying FmX ⊆ QnX ,GlX ⊆ RpX and

φ(d(Glx,Fmy),d(Qnx,Rpy),d(Qnx,Glx),d(Rpy,Fmy),d(Qnx,Fmy),d(Glx,Rpy))- 0

for all x,y∈ X where φ ∈Φ. If one of GlX ,FmX ,QnX or RpX is a complete subspace of X , then

G,F,Q and R have a unique common fixed point in X .

By setting m = n = l = p and F = R = G = Q = H in Corollary 4.1, we deduce the following

corollary.

Corollary 4.2. If H : X → X is a mapping defined on a complex valued metric space (X ,d)

satisfying the condition (for some fixed n):

φ(d(Hnx,Hny),d(Hnx,Hny),0,0,d(Hnx,Hny),d(Hnx,Hny))- 0

for all x,y ∈ X where φ ∈Φ. If (for some fixed n) HnX is complete subspace of X , then H have

unique fixed point in X .

As an application of Corollary 3.1, we prove the following theorem for two finite families of

mappings.
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Theorem 4.2. If {Ti}m
1 ,{Ji}p

1 and {Si}l
1,{Ii}n

1 are two finite pairwise commuting finite fam-

ilies of self-mapping defined on a complex valued metric space (X ,d) such that the mappings

S,T ,I and J (with T = T1T2...Tm, J = J1J2...Jp, I = I1I2...In and S = S1S2...Sl) satisfy T X ⊂ IX

and SX ⊂ JX and the inequality (12). If one of T X , SX , IX or JX are complete subspace of

X , then the component maps of the two families {Ti}m
1 ,{Ji}p

1 and {Si}l
1,{Ii}n

1 have a unique

common fixed point.

Proof. The proof of this theorem is identical to that of Theorem 4.1.

By setting S1 = S2 = ...= Sl = G,T1 = T2 = ...= Tm = F, I1 = I2 = ...= In = Q and J1 = J2 =

... = Jp = R in Theorem 4.2, we derive the following common fixed point theorem involving

iterates of mappings.

Corollary 4.3. If F,R and G,Q are two commuting self-mappings defined on a complex

valued metric space (X ,d) satisfying FmX ⊆ QnX ,GlX ⊆ RpX and

λd(Glx,Fmy)- Ad(Qnx,Rpy)+B(d(Qnx,Glx)+d(Rpy,Fmy))+C(d(Qnx,Fmy)+d(Glx,Rpy))

for all x,y∈ X , where C ∈R+, λ ,A,B∈C+ and 0≺ A+2B+2C≺ λ . If one of GlX ,FmX ,QnX

or RpX is a complete subspace of X , then G,F,Q and R have a unique common fixed point in

X .

By setting m = n = l = p and F = R = G = Q = H in Corollary 4.3, we deduce the following

corollary.

Corollary 4.4. If H : X → X is a mapping defined on a complex valued metric space (X ,d)

satisfying (for some fixed n).

(λ −A−2C)d(Hnx,Hny)- 0

for all x,y ∈ X , where C ∈ R+, λ ,A,B ∈ C+ and 0 ≺ A+ 2B+ 2C ≺ λ .If HnX is complete

subspace of X , then H have unique fixed point in X .

Remark 4.1. Equating λ and A,B,C to zero suitably in Theorem 4.2 and corollaries 3.1, 4.3

and 4.4 one can derive a multitude of common fixed point theorems which are often new results

in the setting of complex valued nature space.
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5. Illustrative Examples

Now we furnish examples to demonstrate the validity of the hypotheses and degree of gener-

ality of Theorem 3.1 .

Example 5.1. Let X = [0,1] and define d : X×X → C by d(x,y) = i|x− y|, for allx,y ∈ X .

Define self-mappings S,T, IandJonX as

S(x) = T (x) =
x
3

and I(x) = J(x) =
x
2

One may note that the pairs (S, I) and (T,J) commute at 0 which is their common coincidence

point. Also S(X) = [0, 1
3 ] ⊆ J(X) = [0, 1

2 ] and T (X) = [0, 1
3 ] ⊆ I(X) = [0, 1

2 ]. All the needed

pairwise commutativity at coincidence point 0 are immediate.

Define φ(u1,u2,u3,u4,u5,u6) : C6
+→ C+ as

φ(u1,u2,u3,u4,u5,u6) = λu1−Au2−B(u3 +u4)−C(u5 +u6),

where C ∈ R+, λ ,A,B ∈ C+ and 0≺ A+2B+2C ≺ λ . By a routine calculation one can verify

that contraction conditions (1) is satisfied for λ = 3+3i,A = 2+2i and B =C = 1
4 . If x,y ∈ X ,

then

λd(Sx,Ty) = (3+3i)(i|x
3
− y

3
|)- (2+2i)(i|x

2
− y

2
|)

+
1
4
(i|x

2
− x

3
|+ i|y

2
− y

3
|+ i|x

2
− y

3
|+ i|x

3
− y

2
|)

= Ad(Ix,Jy)+B(d(Ix,Sx)+d(Jy,Ty))

+C(d(Ix,Ty)+d(Sx,Jy))

Thus all the conditions of Theorem 3.1, are satisfied and 0 is the unique common fixed point of

S,T, I and J.

Example 5.2. Let X = {0,1, 1
2 ,

1
22 ,

1
23 , ...} and define d : X ×X → C+ by d(x,y) = i|x− y|,

for allx,y ∈ X .

Define self-mappings S,T, I,J : X → X as

S(0) = T (0) = 1
22 ,S( 1

2n ) = T ( 1
2n ) =

1
2n+2 and I(0) = J(0) = 1

2 ,S(
1
2n ) = T ( 1

2n ) =
1

2n+1 , for n =
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0,1,2, ... respectively. Clearly,

S(X) = T (X) = { 1
22 ,

1
23 ,

1
24 , ..} ⊆ I(X) = J(X) = {1

2
,

1
22 ,

1
23 ,

1
24 , ..}

Considering the same implicit function as in Example 5.1, one can verify that the contraction

condition (1) is satisfied for λ = 1
4 + i,A = 1

8(1+ i),B = 1
32 and C = 1

34 .

(i) : If x = y = 0, we get

λd(Sx,Ty) = (
1
4
+ i)(

1
22 −

1
22 |)-

1
8
(1+ i)(0)+

1
32

(i|1
2
− 1

22 |+ i|1
2
− 1

22 |)

+
1

34
(i|1

2
− 1

22 |+ i| 1
22 −

1
2
)

= Ad(Ix,Jy)+B(d(Ix,Sx)+d(Jy,Ty))

+C(d(Ix,Ty)+d(Sx,Jy))

(ii) : If x 6= 0,y 6= 0,

λd(Sx,Ty) = (
1
4
+ i)(i|1

4
− 1

2n+2 |)-
1
8
(1+ i)(i| 1

2n+1 −
1

2n′+1 |)

+
1

32
(i| 1

2n+1 −
1

2n+2 |+ i| 1
2n′+1 −

1
2n′+2 |)

+
1
34

(i| 1
2n+1 −

1
2n′+2 |+ i| 1

2n+2 −
1

2n′+1 )

= Ad(Ix,Jy)+B(d(Ix,Sx)+d(Jy,Ty))

+C(d(Ix,Ty)+d(Sx,Jy))

(iii) : If x = 0 and y 6= 0,

λd(Sx,Ty) = (
1
4
+ i)(i| 1

2n+2 −
1

2n′+2 |)-
1
8
(1+ i)(i|1

2
− 1

2n+1 |)

+
1
32

(i|1
2
− 1

4
|+ i| 1

2n+1 −
1

2n+2 |)

+
1

34
(i|1

2
− 1

2n+2 |+ i|1
4
− 1

2n+1 )

= Ad(Ix,Jy)+B(d(Ix,Sx)+d(Jy,Ty))

+C(d(Ix,Ty)+d(Sx,Jy))

Thus all the conditions of Theorem 3.1 are satisfied except the completeness of the subspaces

S(X), I(X),T (X) and J(X). Note that S, I and T,J have no point of coincidence. Here it is
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fascinating to note that in the set up of Theorem 3.1 even the completeness of the space cannot

ensure the existence of coincidence point as the space X is complete in the present example.

Also note that mappings S and I are not continuous at 0.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] A. Azam, B. Fisher and M. Khan. Common Fixed Point Theorems in Complex Valued Metric Spaces, Numer.

Funct. Anal. Optim. 32 (3) (2011), 243-253.

[2] J. Ali and M. Imdad. Unifying a multitude of common fixed ppoint theorems employing an implicit relation,

Commun. Korean Math. Soc. 24 (1) (2009), 41-55.

[3] F. Rouzkard and M.Imdad. Some common fixed point theorems on complex valued metric spaces. Comput.

Math. Appl. 64 (2012), 1866-1874.

[4] G. Jungck and B. E. Rhoades. Fixed point for set valued functions without continuity. Indian J. Pure Appl.

Math. 29 (1998), 227-238.

[5] M. Imdad ,J. Ali, M . Tanveer, Coincidence and common fixed point theorems for nonlinear contractions in

Menger PM spaces. Chaos Solitons Fractals 42 (2009), no. 5, 3121–3129.

[6] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986) 771-779.

[7] R. Kannan, Some results on fixed points. Bull. Calcutta Math. Soc. 60 (1968), 71-76.

[8] S.K. Chatterjea (1972). Fixed point theorems, C.R. Bulgar Sci. 25:727-730.

[9] G.E.Hardy and T.D. Rogers. A generalization of a fixed point theorems of Reich. Can. Math. Bull. 16 (1973),

201-206.


