
Available online at http://scik.org

Adv. Fixed Point Theory, 7 (2017), No. 3, 391-412

ISSN: 1927-6303

UNIQUE COMMON FIXED POINTS FOR PAIRS OF MULTI-VALUED MAPPINGS
IN PARTIAL METRIC SPACES

TERENTIUS RUGUMISA1, SANTOSH KUMAR2,∗

1Faculty of Science, Technology and Environmental Studies, The Open University of Tanzania, Tanzania

2Department of Mathematics, College of Natural and Applied Sciences, University of Dar es Salaam, Tanzania

Copyright c© 2017 Rugumisa and Kumar. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we obtain a unique common fixed point theorems for pairs of multi-valued non-self

mappings on a partial Hausdorff metric space without using any continuity or commutativity of the mappings. In

doing so, we generalize a theorem by Rao and Rao.
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1. Introduction

In 1969, Nadler [9] introduced the study of fixed points using the Hausdorff metric for multi-

valued mappings. Aydi et al. [3] came up with the concept of the partial Hausdorff metric and

used it to prove Nadler’s theorem on partial metric spaces. Rao and Rao [10] proved a fixed

point theorem for a multi-valued self mapping from a partial Hausdorff space into the family of

closed and bounded subsets of its partial metric space.
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Using the procedure described by Assad and Kirk [2], we extend the theorem by Rao and

Rao [10] to apply to a pair of non-self multi-valued mappings.

2. Preliminaries

We now introduce preliminaries which will be of use in this paper.

Definition 2.1 [8] A partial metric on a non-empty set X is a mapping p : X ×X → [0,+∞),

such that for all x,y,z ∈ X.

P0: 0≤ p(x,x)≤ p(x,y),

P1: x = y if and only if p(x,x) = p(x,y) = p(y,y),

P2: p(x,y) = p(y,x) and

P3: p(x,y)≤ p(x,z)+ p(z,y)− p(z,z).

The pair (X , p) is said to be a partial metric space.

From Definition 2.1, we deduce the following:

p(x,y) = 0⇒ x = y. (2.1)

Proof. If p(x,y) = 0, then p(x,x) = 0 because 0≤ p(x,x)≤ p(x,y) from P0. Similarly,

p(x,y) = 0 implies p(y,y) = 0 because 0≤ p(y,y)≤ p(x,y). Hence p(x,y) = 0 implies

p(x,x) = p(x,y) = p(y,y) = 0. From P1 this means that x = y.

From P3, we infer that

p(x,y)≤ p(x,z)+ p(z,y). (2.2)

Example 2.1 Let X = R+ and let p : R+×R+ → R+, p(x,y) = max{x,y}. Then (X , p) is a

partial metric space.

Each partial metric p on X generates a T0 topology τp on X with a base being the family

of open balls {Bp(x,ε) : x ∈ X ,ε > 0}, where Bp(x,ε) = {y ∈ X : p(x,y) < p(x,x)+ ε} for all

x ∈ X and ε > 0.

Definition 2.2 [8] Let (X , p) be a partial metric space and {xn} be a sequence in X. Then

(i) {xn} converges to a point x ∈ X if and only if p(x,x) = limn→+∞ p(x,xn).

(ii) {xn} is called a Cauchy sequence if only if there exists (and is finite) limn,m→+∞ p(xn,xm).
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(iii) A partial metric space (X , p) is said to be complete if every Cauchy sequence {xn} in X

converges, with respect to τp, to a point x ∈ X such that

p(x,x) = lim
n,m→+∞

p(xn,xm).

Lemma 2.1 [8] If p is a partial metric on X, then the mapping ps : X×X → [0,+∞) given by

ps(x,y) = 2p(x,y)− p(x,x)− p(y,y) (2.3)

defines a metric on X.

In this paper, we denote ps as the metric derived from the partial metric p.

Lemma 2.2 [8]

(a){xn} is a Cauchy sequence in (X , p) if and only if it is a Cauchy sequence in the metric space

(X , ps).

(b) (X , p) is complete if and only if (X , ps) is complete. Furthermore limn→+∞ p(xn,x) = 0 if

and only if

p(x,x) = lim
n→+∞

p(xn,x) = lim
n,m→+∞

p(xn,xm) = 0.

It is easy to see that every closed subset of a complete partial metric space is complete [6].

We define a metrically convex metric space.

Definition 2.3 [2] A complete metric space (X ,d) is said to be (metrically) convex if X has the

property that for each x,y ∈ X with x 6= y there exists z ∈ X ,x 6= z 6= y, such that

d(x,z)+d(z,y) = d(x,y).

If (X ,d) is a metrically convex metric space, and x,y ∈ X , we term

seg[x,y] := {z ∈ X : d(x,y) = d(x,z)+d(z,y)}. (2.4)

We get the following lemma from Assad and Kirk [2].

Lemma 2.3 [2] Let C be a closed subset of the complete and convex metric space X. If x ∈C

and y /∈C, then there exists a point z ∈ ∂C (the boundary of C) such that

d(x,z)+d(z,y) = d(x,y).

Using (2.4), we can rephrase Lemma 2.3 as follows:
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Lemma 2.4 Let C be a closed subset of the complete and convex metric space X. If x ∈C and

y /∈C, then there exists a point z ∈ ∂C (the boundary of C) such that z ∈ seg[x,y].

Now, we introduce the metrically convex partial metric space.

Definition 2.4 A partial metric space (X , p) is said to be metrically convex if the corresponding

metric space (X , ps) is metrically convex in the sense of Lemma 2.1, where

ps(x,y) = 2p(x,y)− p(x,x)− p(y,y) for all x,y ∈ X.

As an example, the partial metric space (R+, p) where p(x,y) = max{x,y} for all x,y∈R+ is

metrically convex because (X , ps) where ps(x,y) = |x−y| is the metric derived from the partial

metric p, is metrically convex.

Lemma 2.5 Let (X , p) be a metrically convex partial metric space. Let x,y ∈ X. If z ∈ seg[x,y]

then:

(i) p(x,y) = p(x,z)− p(z,z)+ p(z,y),

(ii) p(x,y)≥ p(x,z).

Proof. Applying (2.3) to Definition 2.3, if z ∈ seg[x,y], then we have

ps(x,y) = ps(x,z)+ ps(z,y)

⇒ 2p(x,y)− p(x,x)− p(y,y) = 2p(x,z)− p(x,x)− p(z,z)

+2p(z,y)− p(z,z)− p(y,y)

⇒ p(x,y) = p(x,z)− p(z,z)+ p(z,y).

As
(
− p(z,z)+ p(z,y)

)
≥ 0, from P2 of Definition 2.1, we have p(x,y)≥ p(x,z).

This completes the proof.

Lemma 2.6 Let C be a non-empty subset of a metrically convex partial metric space (X , p)

which is closed in (X , ps). If x ∈C and y ∈ X\C, then there exists a point z ∈ ∂C (the boundary

of C with respect to (X , ps)) such that

p(x,y)+ p(z,z) = p(x,z)+ p(z,y).

Proof. From Definition 2.4, if the partial metric space (X , p) is metrically convex, then (X , ps)

is metrically convex. From Lemma 2.3, this means that if x ∈C and y ∈ X\C then there exists z
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in ∂C, (the boundary of C), such that s(x,y) = ps(x,z)+ ps(z,y). Using (2.3), this means

ps(x,y) = ps(x,z)+ ps(z,y)

⇒ 2p(x,y)− p(x,x)− p(y,y) = 2p(x,z)− p(x,x)− p(z,z)

+2p(z,y)− p(z,z)− p(y,y)

⇒ 2p(x,y) = 2p(x,z)+2p(z,y)−2p(z,z)

⇒ p(x,y)+ p(z,z) = p(x,z)+ p(z,y)

⇒ p(x,z)+ p(z,y) = p(x,y)+ p(z,z).

This completes the proof.

3. The Partial Hausdorff Metric

Now, we describe the partial Hausdorff metric.

Let CBp be a family of all non-empty, closed and bounded subsets of a partial metric space

(X , p), induced by the partial metric p. The set A is said to be a bounded subset in (X , p) if

there exists x0 ∈ X and M ≥ 0 such that for all a ∈ A, we have a ∈ Bp(x0,M).

Definition 3.1 [3] For all A,B ∈CBp(X) and x ∈ X, we define

(i) p(x,A) = inf
{

p(x,a),a ∈ A
}

,

(ii) δp(A,B) = sup
{

p(a,B) : a ∈ A
}

,

(iii) δp(B,A) = sup
{

p(b,A) : b ∈ B
}

,

(iv) Hp(A,B) = max
{

δp(A,B),δp(B,A)
}

.

The mapping Hp : CBp×CBp→ [0,+∞) is called the partial Hausdorff metric.

Remark 3.1 [3] Let (X , p) be a partial metric space and A any non-empty set in (X , p), then

a∈ Ā if and only if p(a,A) = p(a,a), where Ā denotes the closure of A with respect to the partial

metric p.

We now state some properties of mappings δp and Hp.

Lemma 3.1 [3] Let (X , p) be a partial metric space. For any

A,B ∈CBp(X) we have
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(i) δp(A,A) = sup{p(a,a) : a ∈ A};

(ii) δp(A,A)≤ δ (A,B);

(iii) δp(A,B) = 0 implies that A⊆ B;

(h1) Hp(A,A)≤ Hp(A,B);

(h2) Hp(A,B) = Hp(B,A);

(h3) Hp(A,B) = 0 implies A = B.

We will utilize the following lemma in our proofs.

Lemma 3.2 [3] Let (X , p) be a partial metric space, A,B ∈CBp(X) and K > 1. For any a ∈ A,

there exists b = b(a) ∈ B such that

p(a,b)≤ KHp(A,B).

The following definitions will be used in the course of our proofs.

Let T : C→ X be a multi-valued mapping, where C ⊆ X . We say that T is a self mapping if

C = X , otherwise T is called a non-self mapping. If there is an element x ∈C such that x ∈ T x,

we say that x is a fixed point of T in X .

Suppose we have two multi-valued mappings S,T : C→ X , with C⊆ X . If there is an element

x ∈C such that x ∈ (Sx∩T x) then we call x a common fixed point of S and T in X .

We now prove the following lemma, which is modified from Theorem 1 of Assad and Kirk

[2], as it is necessary for our work.

Lemma 3.3 Consider a sequence {wn}n∈N ∈ R+ such that, for all n≥ 2 we have

wn ≤ k max{wn−2,wn−1},k ∈ (0,1), (3.1)

then

wn ≤ kn/2k−1/2 max{w0,w1}. (3.2)

Proof. We prove the lemma by the induction. First we show that Lemma 3.3 holds for n = 2.

We note that k ∈ (0,1) implies k < k1/2. Hence if n = 2, then (3.1) leads to

w2 ≤ k max{w0,w1} ≤ k1/2 max{w0,w1}= k2/2k−1/2 max{w0,w1}. (3.3)
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We then show that the lemma holds for n = 3. If n = 3, then (3.1) leads to w3 ≤ k max{w1,w2}.

If w1 ≥ w2, then we get

w3 ≤ k max{w1,w2}

⇒ w3 ≤ kw1

≤ k max{w0,w1}

= k3/2 · k−1/2 max{w0,w1}.

If however w1 < w2, we get

w3 ≤ k max{w1,w2}

⇒ w3 ≤ kw2

⇒ w3 ≤ k× k2/2k−1/2 max{w0,w1}, from (3.3)

≤ k3/2 max{w0,w1}

≤ k3/2 · k−1/2 max{w0,w1}, because k−1/2 ≥ 1.

We now show that, if Lemma 3.3 holds for 1≤ n≤ j where j≥ 2, then it must be hold for j+1.

Hence we have from (3.1)

w j+1 ≤ k max{w j−1,w j}. (3.4)

We consider two cases.

Case (i): Suppose w j−1 ≤ w j. Then (3.4) becomes

w j+1 ≤ kw j

≤ k · k j/2k−1/2 max{w0,w1} from (3.2)

= k( j+2)/2k−1/2 max{w0,w1}.

(3.5)

Case (ii): Suppose w j−1 > w j. Then (3.4) becomes

w j+2 ≤ kw j−1

≤ k · k( j−1)/2k−1/2 max{w0,w1} from (3.2)

= k( j+1)/2k−1/2 max{w0,w1}.

(3.6)
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We note that for j≥ 2 and k ∈ (0,1) we have k( j+1)/2 > k( j+2)/2. Hence (3.5) and (3.6) imply

that

w j+1 ≤ k( j+1)/2k−1/2 max{w0,w1}.

This completes the proof.

Aydi et al. proved the following theorem.

Theorem 3.1. [3] Let (X , p) be a complete partial metric space. If T : X →CBp(X) is a multi-

valued mapping such that for all x,y ∈ X we have

Hp(T x,Ty)≤ kp(x,y), (3.7)

where k ∈ (0,1), then T has a fixed point.

4. Main Results

We start by proving an extension of Theorem 3.1 which will then be used to establish Theo-

rem 4.3.

Theorem 4.1 Let (X , p) be a complete metrically convex partial metric space and C a non-

empty closed subset of X, the closure being with respect to (X , ps). Let ∂C, the boundary of C

with respect to (X , ps), be non-empty. Let S,T : C→ CBp(X) be multi-valued mappings such

that for all x,y ∈C we have

Hp(T x,Sy)≤ kp(x,y), (4.1)

where k∈ (0, 1
4). Furthermore, let x∈ ∂C imply T x⊂C and Sx⊂C. Then there exists a common

fixed point x? of S and T in C and p(x?,x?) = 0.

Proof. We commence with an arbitrary x0 ∈ ∂C. This implies from the assumption that we can

choose x1 ∈ T x0 ⊂C. By Lemma 3.2 with K =
1√
k

, there exists y2 ∈ Sx1 such that

p(x1,y2)≤
1√
k

Hp(T x0,Sx1). (4.2)

If y2 ∈C, we set x2 = y2. Thus (4.2) becomes

p(x1,x2)≤
1√
k

Hp(T x0,Sx1). (4.3)
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By (4.1), we have Hp(T x0,Sx1)≤ kp(x0,x1). This means

p(x1,x2)≤
√

kp(x0,x1).

If y2 /∈C, then by Lemma 2.4, there is x2 ∈ ∂C such that x2 ∈ seg[x1,y2]. Using Lemma 2.5

(ii), we get

p(x1,x2)≤ p(x1,y2)

= p(y1,y2), because x1 = y1

≤ 1√
k

Hp(T x0,Sx1)

≤
√

kp(x0,x1).

Continuing in this way, we construct two sequences {xn} and {yn} in the following way, using

K =
1√
k
> 1:

(4.i) x0 ∈ ∂C,y1 ∈ T x0 ⊂C.

(4.ii) For all n≥ 1,y2n ∈ Sx2n−1,y2n+1 ∈ T x2n.

(4.iii) Here we apply Lemma 3.2. For all n≥ 1, we choose y2n+1 such that

p(y2n+1,y2n)≤
1√
k

Hp(T x2n,Sx2n−1). Similarly we choose y2n+2 such that

p(y2n+1,y2n+2)≤
1√
k

Hp(T x2n,Sx2n+1).

(4.iv) For all n ≥ 1, if yn ∈C, then xn = yn. However if yn /∈C, then applying Lemma 2.4, we

choose xn ∈ ∂C such that xn ∈ seg[xn−1,yn].

Let us partition the elements in the sequence {xn} into two sets P and Q, where

P =
{

xi ∈ {xn} : xi = yi
}

and Q =
{

xi ∈ {xn} : xi 6= yi
}

.

We consider the following cases

Case 4.1 Consider the case where (xn,xn+1) ∈ P×P, n ≥ 1. Suppose n is even, that is n = 2m

for some m ∈ N. Then, from (4.iv) we have x2m = y2m and x2m+1 = y2m+1. Applying (4.iii) we
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have

p(x2m,x2m+1) = p(y2m,y2m+1)

= p(y2m+1,y2m)

≤ 1√
k

Hp(T x2m,Sx2m−1), by (4.iii)

≤ 1√
k
× kp(x2m,x2m−1) by (4.1)

=
√

kp(x2m−1,x2m).

Using a similar argument, when n is odd, that is, when n = 2m+1 for some m ∈ N, we get

p(x2m+1,x2m+2)≤
√

kp(x2m,x2m+1).

Thus in general, when (xn,xn+1) ∈ P×P,n≥ 1, we have

p(xn,xn+1)≤
√

kp(xn−1,xn). (4.4)

Case 4.2 Let us now consider the situation where (xn,xn+1) ∈ P×Q, n≥ 1. Suppose n is even,

that is n = 2m for some m ∈ N. Then, from (4.iv) we have x2m = y2m.

We also have x2m+1 ∈ ∂C and x2m+1 ∈ seg[y2m,y2m+1]. From Lemma 2.5 (ii), we note that

p(x2m,x2m+1) = p(y2m,x2m+1)≤ p(y2m,y2m+1). Applying (4.iii) we have

p(x2m,x2m+1)≤ p(y2m,y2m+1)

≤
√

kp(x2m−1,x2m),

using the argument in Case 4.1.

Using a similar procedure, we can show that

p(x2m+1,x2m+2)≤
√

kp(x2m,x2m+1).

In general, when (xn,xn+1) ∈ P×Q,n≥ 1, we have

p(xn,xn+1)≤
√

kp(xn−1,xn). (4.5)

Case 4.3 We consider the situation where (xn,xn+1) ∈ Q×P, n ≥ 1. In this case, we can show

by contradiction that xn−1 ∈ P.
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We assume xn−1 ∈ Q. This implies xn−1 ∈ ∂C. This in turn implies that

xn = yn ∈ T xn−1 ⊂ C, implying xn ∈ P, which is a contradiction. Hence xn−1 ∈ P, implying

xn−1 = yn−1.

Let us consider when n is even, that is n = 2m for some m ∈ N. Then, from (4.iv), we have

x2m+1 = y2m+1. We also have x2m ∈ ∂C and x2m ∈ seg[y2m−1,y2m]. Hence

p(x2m,x2m+1) = p(x2m,y2m+1)

≤ p(x2m,y2m)+ p(y2m,y2m+1), according to (2.2),

≤ p(y2m−1,y2m)+ p(y2m,y2m+1), using Lemma 2.5 (ii),

≤ 1√
k

Hp(T x2m−2,Sx2m−1)+
1√
k

Hp(Sx2m−1,T x2m), by (4.iii)

=
1√
k

Hp(T x2m−2,Sx2m−1)+
1√
k

Hp(T x2m,Sx2m−1)

≤ 1√
k
× k
(

p(x2m−2,x2m−1)+ p(x2m,x2m−1)
)
, by (4.1)

=
√

k
(

p(x2m−2,x2m−1)+ p(x2m−1,x2m)
)

≤ 2
√

k max{p(x2m−2,x2m−1), p(x2m−1,x2m)}.

We get a similar result when n is odd.

In general, when (xn,xn+1) ∈ Q×P, and n≥ 2, then we have

p(xn,xn+1)≤ 2
√

k max
{

p(xn−2,xn−1), p(xn−1,xn)
}
. (4.6)

The case where (xn,xn+1) ∈ Q×Q is not possible.

Thus in all cases, according to (4.4), (4.5) and (4.6), we have

p(xn,xn+1)≤ t max
{

p(xn−2,xn−1), p(xn−1,xn)
}
, (4.7)

where t = 2
√

k < 1, implying k <
1
4

.

According to Lemma 3.3, (4.7) implies

p(xn,xn+1)≤ tn/2
δ , (4.8)

where δ = t−1/2 max{p(x0,x1), p(x1,x2)}.
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Consider n,m ∈ N with n > m. Then, we have inductively from (2.2)

p(xm,xn)≤
n−1

∑
i=m

p(xi,xi+1)

≤
n−1

∑
i=m

t i/2t−1/2
δ

≤ t−1/2
δ

+∞

∑
i=m

t i/2

= δ
tm/2

1− t1/2 t−1/2.

As m,n→+∞ we get

lim
m,n→+∞

p(xm,xn) = 0 <+∞.

From Definition 2.2 (ii), this shows that the sequence {xn} ∈C is a Cauchy sequence. Because

C is closed in (X , ps), it is complete in (X , ps) and hence is complete in (X , p).

This means, according to Lemma 2.2, there is x? ∈C such that

lim
m,n→+∞

p(xm,xn) = lim
n→+∞

p(x?,xn) = p(x?,x?) = 0.

We now show that x? is a fixed point of S and T .

Consider a subsequence {xn j} of {xn} for which each xn j ∈ P. If n j is odd, that is

n j = 2m j + 1, then we have from the assumption, Hp(T x?,Sx2m j+1) ≤ kp(x?,x2m j+1). This

implies

lim
j→+∞

Hp(T x?,Sx2m j+1) = p(x?,x?) = 0. (4.9)

Now consider n j being an even number, that is n j = 2m j for some m j. Because x2m j ∈ Sx2m j−1,

we have

p(T x?,x2m j)≤ δp(T x?,Sx2m j−1)≤ Hp(T x?,Sx2m j−1). (4.10)

Taking j→+∞ in (4.10) and applying (4.9), we get

lim
j→+∞

p(T x?,x2m j)≤ lim
j→+∞

Hp(T x?,Sx2m j−1) = 0

⇒ p(T x?,x?) = 0 = p(x?,x?)

⇒ x? ∈ T x?. (4.11)
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This shows that x? is a fixed point of T . Using a similar argument we conclude that x? is also a

fixed point of S.

Rao and Rao [10] proved the following fixed point theorem (Theorem 2.8) involving the

Hausdorff partial metric for a pair of multi-valued self mappings.

Theorem 4.2. [10] Let (X , p) be a complete partial metric space and let S,T : X →CBp(X) be

mappings satisfying

Hp(Sx,Ty)≤ α max
{

p(x,y), p(x,Sx), p(y,Ty),
1
2
[p(x,Ty)+ p(y,Sx)]

}
for all x,y ∈ X and 0 < α < 1. Then S and T have a common fixed point in X. Further, if we

assume that p(x,y)≤ p(y,Sx) or p(x,y)≤ p(y,T x) for all x,y ∈ X, then S and T have a unique

common fixed point in X.

In this research, we modify the Theorem 4.2 so that it applies to a pair of non-self multi-

valued mappings in a metrically convex partial metric space.

We provide a proof for the following assumption.

Theorem 4.3. Let (X , p) be a complete metrically convex partial metric space and C a non-

empty closed subset of X, the closure being with respect to (X , ps). Let ∂C, the boundary of C

with respect to (X , ps), be non-empty. Let S,T : C→CBp(X) be mappings satisfying

Hp(Sx,Ty)≤ α max
{

p(x,y), p(x,Sx), p(y,Ty),
1
2
[p(x,Ty)+ p(y,Sx)]

}

for all x,y ∈ X and 0 < α <
1
4

. Let the following conditions apply:

(i) x ∈ ∂C implies T x⊂C,

(ii) x ∈ ∂C implies Sx⊂C.

Then S and T have a common fixed point in X. Further, if we assume that p(x,y)≤ p(y,Sx) or

p(x,y) ≤ p(y,T x) for all x,y ∈ X, then S and T have a unique common fixed point z in C with

p(z,z) = 0.

Proof. We construct sequences {xn} ∈C and {yn} ∈ X in the following way.

We commence by choosing an arbitrary x0 ∈ ∂C. According to (i), we choose x1 ∈ C such

that x1 ∈ T x0. We set y1 = x1. Because α ∈
(
0,

1
4
)

implies
1√
α

> 1, by Lemma 3.2, there exists
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y2 ∈ Sx1 such that

p(y1,y2)≤
1√
α

Hp(T x0,Sx1).

If y2 ∈C, then we set x2 = y2.

If however y2 /∈C, then, according to Lemma 2.4, there is x2 ∈ ∂C such that x2 ∈ seg[x1,y2].

Using Lemma 3.2, and recalling that y2 ∈ Sx1, we choose y3 ∈ T x2 such that

p(y3,y2)≤
1√
α

Hp(T x2,Sx1).

From (i) in the assumption, we have y3 ∈C.

In general, the sequences {xn} ∈C and {yn}n≥1 ∈ X are constructed in the same way as we

did when proving Theorem 4.1.

We partition the elements of {xn} into sets P and Q such that P =
{

xi ∈ {xn} : xi = yi
}

and

Q =
{

xi ∈ {xn} : xi 6= yi
}

.

Now for n≥ 2, we consider the following cases.

Case 4.4 Consider xn ∈ P×P. This means xn = yn.

If n is even, that is, if n = 2m for some m ∈ N, we have xn = x2m = y2m. As

x2m = y2m ∈ Sx2m−1, from (4.ii), we can choose y2m+1 ∈ T x2m such that

p(x2m,y2m+1)≤
1√
α

Hp(Sx2m−1,T x2m). (4.12)

We consider two scenarios.

(4.4.1) If y2m+1 ∈ P, then x2m+1 = y2m+1. Hence, (4.12) becomes

p(x2m,x2m+1) = p(y2m,y2m+1)

≤ 1√
α

Hp(Sx2m−1,T x2m)

≤ 1√
α
×α max

{
p(x2m−1,x2m), p(x2m−1,Sx2m−1),

p(x2m,T x2m),
1
2
[p(x2m−1,T x2m)+ p(x2m,Sx2m−1)]

}
≤
√

α max
{

p(x2m−1,x2m), p(x2m−1,y2m), p(x2m,y2m+1),

1
2
[p(x2m−1,y2m+1)+ p(x2m,y2m)]

}
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=
√

α max
{

p(x2m−1,x2m), p(x2m−1,x2m),

p(x2m,x2m+1),
1
2
[p(x2m−1,x2m+1)+ p(x2m,x2m)]

}
⇒ p(x2m,x2m+1)≤

√
α max

{
p(x2m−1,x2m),

1
2
[p(x2m−1,x2m)+ p(x2m,x2m+1)]

}
. (4.13)

If p(x2m−1,x2m)<
1
2 [p(x2m−1,x2m)+ p(x2m,x2m+1)] implying p(x2m−1,x2m)< p(x2m,x2m+1),

then we have

p(x2m,x2m+1)≤
√

α

2
[p(x2m−1,x2m)+ p(x2m,x2m+1)]

≤
√

α

2−
√

α
p(x2m−1,x2m)

< p(x2m−1,x2m), as
√

α

2−
√

α
< 1.

This is a contradiction.

Hence p(x2m−1,x2m)≥ 1
2 [p(x2m−1,x2m)+ p(x2m,x2m+1)] implying

p(x2m,x2m+1) =≤
√

α p(x2m−1,x2m).

(4.4.2) If y2m+1 ∈ Q, then x2m+1 6= y2m+1. From the construction of proof, we have

x2m+1 ∈ seg[x2m,y2m+1]. Using Lemma 2.5 (ii), we get

p(x2m,x2m+1)≤ p(x2m,y2m+1)

= p(y2m,y2m+1)

≤
√

α p(x2m−1,x2m),

using the argument in (4.4.1).

We get the following similar result when n is odd, that is, when n = 2m+1 for some m ∈ N,

p(xn,xn+1) = p(x2m+1,x2m+2)≤
√

α p(x2m,x2m+1).

Thus, for xn ∈ P, we have

p(xn,xn+1)≤
√

α p(xn−1,xn). (4.14)

Case 4.5 Consider the case where (xn,xn+1) ∈ Q×P. We claim that for n ≥ 1, xn ∈ Q implies

xn−1 ∈ P.

Let xn−1 ∈Q, then xn−1 ∈ ∂C. This means, according to (ii), xn = yn ∈C. This implies xn ∈P,

which is a contradiction.
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Hence we have

xn−1,xn+1 ∈ P and xn ∈ seg[xn−1,yn].

Consider when n is even, that is, when n = 2m for some m ∈ N. According to (4.iii),

y2m+1 ∈ T x2m ⊂C was chosen in such a way that

p(y2m,y2m+1)≤
1√
α

Hp(Sx2m−1,T x2m). (4.15)

We apply (2.2) and get

p(x2m,x2m+1) = p(x2m,y2m+1)

≤ p(x2m,y2m)+ p(y2m,y2m+1)

⇒ p(x2m,x2m+1)≤ 2max{p(x2m,y2m), p(y2m,y2m+1)}. (4.16)

If p(x2m,y2m)≥ p(y2m,y2m+1), (4.16) becomes

p(x2m,x2m+1)≤ 2p(x2m,y2m)

≤ 2p(x2m−1,y2m), as per Lemma 2.5 (ii)

= 2p(y2m−1,y2m), as x2m−1 = y2m−1

≤ 2
√

α p(x2m−2,x2m−1),

(4.17)

using the argument in (4.4.2).

If p(x2m,y2m)< p(y2m,y2m+1), (4.16) becomes

p(x2m,x2m+1)≤ 2p(y2m,y2m+1). (4.18)

Let us consider the term p(y2m,y2m+1). From (4.15) and Theorem 3.1 we have

p(y2m,y2m+1)≤
1√
α

Hp(Sx2m−1,T x2m)

≤
√

α max
{

p(x2m−1,x2m), p(x2m−1,Sx2m−1), p(x2m,T x2m),

1
2
[p(x2m−1,T x2m)+ p(x2m,Sx2m−1)]

}
⇒ p(y2m,y2m+1)≤

√
α max{p(x2m−1,x2m), p(x2m−1,y2m), p(x2m,y2m+1),

1
2
[p(x2m−1,y2m+1)+ p(x2m,y2m)]}.

(4.19)
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As x2m ∈ seg[x2m−1,y2m], from Lemma 2.5 (ii), we have

p(x2m−1,y2m)≥ p(x2m−1,x2m).

From P3 of Definition 2.1, we also have

≤ [p(x2m−1,x2m)+ p(x2m,y2m+1)

− p(x2m,x2m)+ p(x2m,y2m)]

= [p(x2m−1,y2m)+ p(x2n,y2m+1)].

(4.20)

The expression (4.20) is because x2m ∈ seg[x2m−1,y2m] and Lemma 2.5 (i).

Hence (4.19) becomes

p(y2m,y2m+1)≤
√

α max{p(x2m−1,y2m), p(x2m,y2m+1),

1
2
[p(x2m−1,y2m)+ p(x2m,y2m+1)]}.

(4.21)

Suppose p(x2m−1,y2m)< p(x2m,y2m+1), implying

p(x2m,y2m+1)>
1
2 [p(x2m−1,y2m)+ p(x2m,y2m+1)]. Then (4.21) becomes

p(y2m,y2m+1)≤
√

α p(x2m,y2m+1). (4.22)

We continue from (4.18) and get

p(x2m,x2m+1)≤ 2p(y2m,y2m+1)

≤ 2
√

α p(x2m,y2m+1)

= 2
√

α p(x2m,x2m+1), as x2m+1 = y2m+1

< p(x2m,x2m+1), because 2
√

α < 1.

This is a contradiction.

Hence p(x2m−1,y2m)≥ p(x2m,y2m+1), implying

p(x2m−1,y2m)≥
1
2
[p(x2m−1,y2m)+ p(x2m,y2m+1)].

Then (4.21) becomes

p(y2m,y2m+1)≤
√

α p(x2m−1,y2m). (4.23)
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We continue from (4.18) and get

p(x2m,x2m+1)≤ 2p(y2m,y2m+1)

≤ 2
√

α p(x2m−1,y2m)

= 2
√

α p(y2m−1,y2m), because x2m−1 = y2m−1

≤ 2
√

α×
√

α p(x2m−2,x2m−1), as per (4.4.2)

⇒ p(x2m,x2m+1)≤
√

α p(x2m−2,x2m−1), because 2
√

α < 1. (4.24)

Hence, in observing (4.17) and (4.24), when x2m ∈ Q, we have

p(x2m,x2m+1)≤ 2
√

α p(x2m−2,x2m−1). (4.25)

Using a similar argument, we can show that, when n is odd, that is, when n = 2m+ 1 for

some m ∈ N, we have

p(x2m+1,x2m+2)≤ 2
√

α p(x2m−1,x2m).

Hence in general, when (xn,xn+1) ∈ P×Q we have

p(xn,xn+1)≤ 2
√

α p(xn−2,xn−1).

The case of (xn,xn+1) ∈ Q×Q is not possible.

For all cases 4.4 and 4.5 we have

p(xn,xn+1)≤ t max{p(xn−2,xn−1), p(xn−1,xn)} , (4.26)

where

t = 2
√

α < 1.

According to Lemma 3.3, (4.27) implies

p(xn,xn+1)≤ tn/2 t−1/2 max{p(x0,x1), p(x1,x2)}. (4.27)

Using the same argument used during the proof of Theorem 4.1, (4.27) shows that there is

z ∈C such that

lim
m,n→+∞

p(xm,xn) = lim
n→+∞

p(z,xn) = p(z,z) = 0.

We now prove that z is a fixed point of both S and T .
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Consider the subsequence {xn j} of {xn} each of whose terms is in P. This means xn j = yn j

for j = 1,2, . . . . Consider the case where n j is odd, that is n j = 2m j +1 for some m j ∈ N.

As x2m j+1 ∈ T x2m j , we have

p(z,T x2m j)≤ p(z,x2m j+1).

This implies lim j→+∞ p(z,T x2m j) = 0.

Using a similar argument, we can show that lim j→+∞ p(z,Sx2m j+1) = 0.

Now consider

p(z,Sz)≤ p(z,T x2m j)+ p(T x2m j ,Sz)

≤ p(z,T x2m j)+α max{p(x2m j ,z), p(x2m j ,T x2m j),

p(z,Sz),
1
2
[p(x2m j ,Sz)+ p(z,T x2m j)]}.

Taking j→+∞, we have

p(z,Sz)≤ 0+α max{0,0, p(z,Sz),
1
2
[p(z,Sz)]}

= α p(z,Sz)

≤ p(z,Sz), because α < 1

⇒ p(z,Sz) = 0.

This implies z ∈ Sz meaning z is a fixed point in S. Using a similar argument, we have z is a

fixed point in T .

We show the uniqueness of the fixed point. Let z and y be fixed points of both S and T . As

z ∈ Sz we have

p(y,Sz) = inf
a∈Sz

p(y,a)≤ p(y,z) = p(z,y). (4.28)

Suppose, as per assumption, we have p(z,y)≤ p(y,Sz). Then, (4.28) leads us to conclude that

p(z,y) = p(y,Sz). (4.29)

Because y ∈ Ty, we have

p(z,y) = p(y,Sz)≤ Hp(Ty,Sz)

≤ α max{p(z,y), p(y,Ty), p(z,Sz),
1
2
[p(y,Sz)+ p(z,Ty)]}
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⇒ p(z,y) =
α

2
[p(y,Sz)+ p(z,Ty)] (4.30)

⇒ p(z,y)≤ α

2−α
p(z,Ty)

≤ p(z,Ty), as
α

2−α
< 1.

(4.31)

Let us consider (4.30). We also consider (4.29) which states that p(z,y) = p(y,Sz). We then

have

p(z,y)≤ α

2
[p(y,Sz)+ p(z,Ty)]

=
α

2
[p(z,y)+ p(z,Ty)]

≤ α

2
[p(z,y)+ p(z,y)], because y ∈ Ty

= α p(z,y)

⇒ p(z,y) = 0, as α < 1

⇒ z = y, by (2.1).

We will reach the same conclusion if we assume p(z,y)≤ p(z,Ty). This shows that the common

fixed point z is unique. The proof has been completed.

Remark 4.1 Theorem 4.3 is valid when we have S = T .

Remark 4.2 If we set S = T , and assume C = X, only (4.4.1) applies, and we get Theorem 4.2

by Rao and Rao [10].

When we set T = f where f is a single valued mapping we get the following corollary:

Corollary 4.1 Let (X , p) be a complete metrically convex partial metric space and C a non-

empty closed subset of X, the closure being with respect to (X , ps). Let ∂C, the boundary of C

with respect to (X , ps), be non-empty. Let S, f : C→CBp(X) be mappings satisfying

p(Sx, f y)≤ α max
{

p(x,y), p(x,Sx), p(y, f y),
1
2
[p(x, f y)+ p(y,Sx)]

}

for all x,y ∈ X and 0 < α <
1
4

. Let the following conditions apply:

(i) x ∈ ∂C implies f x ∈C,

(ii) x ∈ ∂C implies Sx⊂C.

Then S and f have a common fixed point in X. Further, if we assume that p(x,y)≤ p(y,Sx) or
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p(x,y) ≤ p(y, f x) for all x,y ∈ X, then S and f have a unique common fixed point z in C with

p(z,z) = 0.

If we set T = f , S = g, where both f and g are single valued mappings we get the following

corollary:

Corollary 4.2 Let (X , p) be a complete metrically convex partial metric space and C a non-

empty closed subset of X, the closure being with respect to (X , ps). Let ∂C, the boundary of C

with respect to (X , ps), be non-empty. Let g, f : C→ X be mappings satisfying

p(gx, f y)≤ α max
{

p(x,y), p(x,gx), p(y, f y), 1
2 [p(x, f y)+ p(y,gx)]

}
for all x,y ∈ X and

0 < α <
1
4

. Let the following condition apply: x ∈ ∂C implies f x ∈C and gx⊂C,

Then g and f have a common fixed point in X. Further, if we assume that p(x,y) ≤ p(y,gx)

or p(x,y)≤ p(y, f x) for all x,y ∈ X, then g and f have a unique common fixed point z in C with

p(z,z) = 0.
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