

Available online at http://scik.org

Advances in Fixed Point Theory, 2 (2012), No. 3, 340-356

ISSN: 1927-6303

SOME COMMON FIXED POINT THEOREMS USING (CLRG)

PROPERTY IN CONE METRIC SPACES

MANOJ KUMAR^{1,2*}, PANKAJ KUMAR², AND SANJAY KUMAR³

¹Department of Mathematics, Delhi Institute of Technology and Management, Gannaur-131101

(Sonipat), India

²Department of Mathematics, Guru Jambheshwar University of Science and Technology, Hisar-125001,

India

³Department of Mathematics, Deenbandhu Chhotu Ram University of Science and Technology,

Murthal-131027, India

Abstract: In this paper, first we prove some common fixed point theorems for different types of

contractive conditions. Secondly, we prove a common fixed point theorem for expansive mappings

using (CLRg) property along with weakly compatible maps. In fact, our results generalize the results of

Jha [3], Olaleru [8], Kadelburg et. al. [5], Khojasteh et. al. [7] and Kadelburg et. al. [6].

Keywords: Contractive, strict contractive conditions, integral mappings, expansive mappings, (CLRg)

property, weakly compatible maps.

2000 AMS Subject Classification: 47H10; 54H25

1. Introduction

In 2007, Huang and Zhang [2] generalized the concept of metric space to cone metric

space by replacing the real numbers with ordered Banach space as follows:

* Corresponding author

Received April 13, 2012

340

2. Preliminaries

Definition 2.1. Let E be a real Banach space. A subset P of E is called a cone if

- (i) P is closed, non-empty and $P \neq \{0\}$;
- (ii) $a, b \in \mathbb{R}$, $a, b \ge 0$ and $x, y \in P$ imply $ax + by \in P$;
- (iii) $P \cap (-P) = \{0\}.$

Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if

y-x \in P. A cone P is called normal if there is a number m > 0 such that for all x, y \in E, $0 \le x \le y$ implies $||x|| \le m||y||$

The least positive number satisfying the above inequality is called the normal constant of P, while $x \ll y$ stands for $y-x \in \text{int P}$ (interior of P).

Definition 2.2. Let X be a non-empty set. Suppose that the mapping $d: X \times X \to E$ satisfies

- (i) $d(x, y) \ge 0$ for all $x, y \in X$ and d(x, y) = 0 if and only if x = y;
- (ii) d(x, y) = d(y, x) for all $x, y \in X$;
- (iii) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$.

Then d is called a cone metric on X and (X, d) is called a cone metric space. The concept of a cone metric space is more general than that of a metric space, since each metric space is a cone metric space with $E = \mathbb{R}$ and $P = [0, \infty)$ (see [2, Example 1]).

In 1998, Jungck and Rhoades [4] introduced the notion of weakly compatible maps as follows:

Let X be a non-empty set. Two mappings f, $g: X \to X$ are said to be weakly compatible if fx = gx imply fgx = gfx for $x \in X$.

Recently, Sintunavarat et. al. [9] introduced the notion of (CLRg) property in Fuzzy metric spaces as follows:

Suppose that (X, d) is a metric space and f, g: $X \to X$. Two mappings f and g are said to satisfy the common limit in the range of g (CLRg) property if $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = gx$ for some $x \in X$.

Now, we state the Lemma which is useful for proving our main results.

Lemma 2.1. Let f and g be weakly compatible self-mappings of a set X. If f and g have a unique point of coincidence, that is, t = fx = gx, then t is the common fixed point of f and g.

3. Fixed point results for contractive condition

In 2008, Jha [3] proved the following fixed point theorem.

Theorem 3.1. Let (X, d) be a cone metric space and P be a normal cone with normal constant K. Suppose that the mappings f, $g: X \to X$ satisfy the contractive condition $d(fx, fy) \le r [d(fx, gy) + d(fy, gx) + d(fx, gx) + d(fy, gy)]$, where $r \in [0, 1/4)$ is a constant.

If the range of g contains the range of f and g(X) is a complete subspace of X, then f and g have a unique coincidence point in X.

Moreover, if f and g are weakly compatible maps, then f and g have a unique common fixed point.

Now, we generalize this result using (CLRg) property as follows:

Theorem 3.2. Let (X, d) be a cone metric space. Suppose that the mappings f, g be weakly compatible self-mappings of X satisfying the contractive condition

$$(3.1) \ d(fx, fy) \le r \ [d(fx, gy) + d(fy, gx) + d(fx, gx) + d(fy, gy)], \text{ where } r \in [0, \frac{1}{4}) \text{ is a constant.}$$

If f and g satisfy (CLRg) property, then f and g have a unique common fixed point.

Proof. Since f and g satisfy the (CLRg) property, there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = gx$ for some $x \in X$.

From (3.1), we have

$$d(fx_n, fx) \le r \left[d(fx_n, gx) + d(fx, gx_n) + d(fx_n, gx_n) + d(fx, gx) \right] \text{ for all } n \in \mathbb{N}.$$

By making $n \rightarrow \infty$, we have gx = fx.

Let w = fx = gx. Since f and g are weakly compatible mappings, therefore fgx = gfx implies that fw = fgx = gfx = gw.

Now, we claim that fw = w.

From (3.1), we have

$$\begin{split} &d(fw,w) = d(fw,\,fx) \leq r \; [d(fw,\,gx) + d(fx,\,gw) + d(fw,\,gw) + d(fx,\,gx)] \\ &= r \; [d(fw,\,gx) + d(fx,\,gw)] \\ &= r \; [d(gw,\,fx) + d(fx,\,gw)] = 0 \;, \; i.e., \; fw = w = gw. \end{split}$$

Hence w is a common fixed point of f and g.

For the uniqueness of a common fixed point, we suppose that z is another common fixed point in X such that fz = gz.

From (3.1), we have

 $d(gz,\,gw)=d(fz,\,fw)\leq r\,\left[d(fz,\,gw)+d(fw,\,gz)+d(fw,\,gw)+d(fz,\,gz)\right] \, implies\,\,gz=gw.$

By Lemma 2.1, we have f and g have a unique common fixed point.

Example 3.1. Let $E = I^2$ for I = [0, 1], $P = \{(x, y) \in E, x, y \ge 0\} \subset I^2$, $d : I \times I \to E$ such that

 $d(x, y) = (|x-y|, \alpha |x-y|)$, where $\alpha > 0$ is a constant.

Define
$$fx = \frac{\alpha x}{(1+\alpha x)}$$
 and $gx = \alpha x$ for all $x \in I$. Consider the sequence $\{x_n\} = \{\frac{1}{n}\}$, n

 $\in \mathbb{N}$, since $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = 0 = g0$, therefore f and g satisfy the (CLRg) property.

Also x = 0 is the unique common fixed point.

In 2009, Olaleru [8] proved the following theorem.

Let (X, d) be a cone metric space and let $f, g: X \to X$ be mappings such that $d(fx, fy) \le a_1 d(fx, gx) + a_2 d(fy, gy) + a_3 d(fy, gx) + a_4 d(fx, gy) + a_5 d(gy, gx)$ for all $x, y \in X$,

where
$$a_1, a_2, a_3, a_4, a_5 \in [0,1)$$
 and $\sum_{i=1}^{5} a_i < 1$.

Suppose f and g are weakly compatible maps and $f(X) \subset g(X)$ such that f(X) or g(X) is a complete subspace of X, then the mappings f and g have a unique common fixed point.

Now, we generalize this result using (CLRg) property along with weakly compatible maps as follows:

Theorem 3.3. Let (X, d) be a cone metric space and let $f, g: X \to X$ be mappings such

that

$$(3.2) d(fx, fy) \le a_1 d(fx, gx) + a_2 d(fy, gy) + a_3 d(fy, gx) + a_4 d(fx, gy) + a_5 d(gy, gx)$$

for all x,
$$y \in X$$
 where $a_1, a_2, a_3, a_4, a_5 \in [0,1)$ and $\sum_{i=1}^{5} a_i < 1$.

Suppose f and g are weakly compatible maps and satisfy (CLRg) property. Then the mappings f and g have a unique common fixed point.

Proof. Since f and g satisfy the (CLRg) property, there exists a sequence $\{x_n\}$ in X such that

$$\lim_{n\to\infty}fx_n=\lim_{n\to\infty}gx_n=gx \text{ for some } x\ \in X.$$

From (3.2), we have

$$\begin{split} d(fx_n, \ fx) & \leq a_1 \ d(fx_n, \ gx_n) + a_2 \ d(fx, \ gx) + a_3 \ d(fx, \ gx_n) + a_4 \ d(fx_n, \ gx) + a_5 \ d(gx, \ gx_n) \end{split}$$
 for all $n \in \mathbb{N}$.

Taking limit as $n \rightarrow \infty$, we have

$$d(gx, fx) \le a_1 d(gx, gx) + a_2 d(fx, gx) + a_3 d(fx, gx) + a_4 d(gx, gx) + a_5 d(gx, gx)$$

= $(a_2 + a_3) d(fx, gx)$

i.e.,
$$[1-(a_2+a_3)] d(fx, gx) \le 0$$
, i.e., $fx = gx$.

Now let z = fx = gx. Since f and g are weakly compatible mappings, therefore fgx = gfx which implies that fz = fgx = gfx = gz.

We claim that gz = z.

From (3.2), we have

$$d(gz, z) = d(fz, fx) \le a_1 d(fz, gz) + a_2 d(fx, gx) + a_3 d(fx, gz) + a_4 d(fz, gx) + a_5 d(gx, gz) = (a_3 + a_4 + a_5) d(fz, fx) = (a_3 + a_4 + a_5) d(gz, z), i.e., gz = z = fz.$$

Hence z is a common fixed point of f and g.

For the uniqueness of a common fixed point, we suppose that $w \neq z$ is another common fixed of f and g.

From (3.2), we have

$$d(w, z) = d(gw, gz) = d(fw, fz)$$

 $\leq a_1 d(fw, gw) + a_2 d(fz, gz) + a_3 d(fz, gw) + a_4 d(fw, gz) + a_5 d(gz, gw)$
 $= (a_3 + a_4 + a_5) d(gw, gz)$, implies $w = z$.

Hence f and g have a unique common fixed point.

4. Fixed point results for strict contractive condition

Definition 4.1. Let (X, d) be a cone metric space and (f, g) be a pair of self- mappings on X.

For $x, y \in X$, consider the following sets:

$$\mathbf{M}_{0}^{f,g}(x,y) = \{d(gx,gy), d(gx,fx), d(gy,fy), d(gx,fy), d(gy,fx)\}
\mathbf{M}_{1}^{f,g}(x,y) = \{d(gx,gy), d(gx,fx), d(gy,fy), \frac{d(gx,fy) + d(gy,fx)}{2}\}
\mathbf{M}_{2}^{f,g}(x,y) = \{d(gx,gy), \frac{d(gx,fx) + d(gy,fy)}{2}, \frac{d(gx,fy) + d(gy,fx)}{2}\}$$

and define the following conditions:

- (4.1) for arbitrary $x, y \in X$ there exists $u_0(x, y) \in M_0^{f,g}(x, y)$ such that $d(fx, fy) < u_0(x, y)$;
- (4.2) for arbitrary $x, y \in X$ there exists $u_1(x, y) \in M_1^{f,g}(x, y)$ such that $d(fx, fy) < u_1(x, y)$;
- (4.3) for arbitrary $x, y \in X$ there exists $u_2(x, y) \in M_2^{f,g}(x, y)$ such that $d(fx, fy) < u_2(x, y)$.

These conditions are called strict contractive conditions.

Definition 4.2. Let (X, d) be a cone metric space. Let f, g be self-maps on X. Then f is called a g-quasi-contraction if for some constant $\alpha \in (0, 1)$ and for every x, $y \in X$, there exists $u(x, y) \in M_0^{f,g}(x, y)$ such that $d(fx, fy) \le \alpha u(x, y)$.

In 2009, Kadelburg et. al. [5] proved the following fixed point theorems.

Theorem 4.1. Let f and g be two weakly compatible self-mappings of a cone metric space (X,d) satisfying (4.3) and the following

$$(4.4) f(X) \subset g(X);$$

(4.5) (f, g) satisfies property (E.A.).

If g(X) or f(X) is a complete subspace of X, then f and g have a unique common fixed point.

Theorem 4.2. Let f and g be two weakly compatible self-mappings of a cone metric space (X, d) such that conditions (4.4) and (4.5) of Theorem 4.3 are satisfied and also f is a g-quasi-contraction. If g(X) or f(X) is a complete subspace of X, then f and g have a unique common fixed point.

Now, we generalize these results using (CLRg) property as follows:

Theorem 4.3. Let f and g be two weakly compatible self-mappings of a cone metric space (X, d) satisfying (4.3) and the following:

Then f and g have a unique common fixed point.

Proof. Since f and g satisfy the (CLRg) property, there exists a sequence $\{x_n\}$ in X such that

$$\lim_{n\to\infty}fx_n=\lim_{n\to\infty}gx_n=gx \text{ for some }x\ \in X.$$

From (4.3), we have

$$d(fx_n, fx) < u(x_n, x)$$

where
$$u(x_n,x) \in M_2^{f,g}(x_n,x)$$

$$\left\{ d(gx_n, gx), \frac{d(gx_n, fx_n) + d(gx, fx)}{2}, \frac{d(gx_n, fx) + d(gx, fx_n)}{2} \right\}$$

We will show that fx = gx.

Suppose that $fx \neq gx$.

From (4.3), we have three cases.

Case1.
$$d(fx_n, fx) < d(gx_n, gx)$$

Taking limit as $n \rightarrow \infty$, we have

d(gx, fx) < d(gx, gx) = 0, a contradiction.

Case2.
$$d(fx_n, fx) < \frac{1}{2} [d(gx_n, fx_n) + d(gx, fx)]$$

Making limit as $n \rightarrow \infty$, we have

$$d(gx, fx) < \frac{1}{2} [d(gx, gx) + d(gx, fx)] = \frac{1}{2} d(gx, fx)$$
, a contradiction.

Case3.
$$d(fx_n, fx) < \frac{1}{2} [d(gx_n, fx) + d(gx, fx_n)]$$

Making limit as $n \rightarrow \infty$, we have

 $d(gx,\,fx)<\ \frac{1}{2}\left[d(gx,\,fx)+d(gx,\,gx)=\frac{{\scriptscriptstyle 1}}{{\scriptscriptstyle 2}}\ d(gx,\,fx),\,a\,\,contradiction.$

Hence gx = fx in all cases.

Let z = fx = gx. Since f and g are weakly compatible mappings, therefore fgx = gfx which implies that

$$fz = fgx = gfx = gz$$
.

We claim that fz = z. Let, if possible, $fz \neq z$.

From (4.3), we have

$$d(fz, z) = d(fz, fx) < u(z, x)$$

where
$$u(z, x) \in \left\{ d(gz, gx), \frac{d(gz, fz) + d(gx, fx)}{2}, \frac{d(gz, fx) + d(gx, fz)}{2} \right\}$$

= $\left\{ d(fz, z), 0, d(fz, z) \right\}$

So, we have only two possible cases:

Case1. d(fz, z) < d(fz, z), a contradiction.

Case2. d(fz, z) < 0, a contradiction.

Hence fz = z = gz.

Hence z is a common fixed point of f and g.

Uniqueness: We suppose that w is another common fixed point in X such that fw = gw.

We shall prove that z = w. Let, if possible, $z \neq w$.

From (4.3), we have

$$d(z, w) = d(gz, gw) = d(fz, fw) < u(z, w)$$
, where

$$u(z, w) \in \left\{ d(gz, gw), \frac{d(gz, fz) + d(gw, fw)}{2}, \frac{d(gz, fw) + d(gw, fz)}{2} \right\}$$

So, we have only two possible cases:

Case1. d(gz, gw) < d(gz, gw), a contradiction.

Case2. d(gz, gw) < 0, a contradiction.

Hence gz = gw implies z = w.

So, we can say that f and g have a unique common fixed point.

Example 4.1. Let
$$X = \mathbb{R}$$
, $E = C_{\mathbb{R}}^{1}[0,1]$ and $P = \{ \phi(t) : \phi(t) \ge 0, t \in [0, 1] \}$. $d(x, y)(t)$

= $|x-y|\phi$, where $\phi(t) > 0$ is an arbitrary fixed function. Consider the functions f, g:

$$X \to X$$
 defined by $fx = \frac{x}{3}$ and $gx = \frac{x}{2}$. Consider the sequence $\{x_n\} = \{\frac{1}{n}\}, n \in \mathbb{N}$,

since $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = 0 = g0$, therefore f and g satisfy the (CLRg) property. Also

x=0 is the unique common fixed point. Also

$$d(fx,fy) = |fx - fy| \not v t) = \frac{x}{3} - \frac{y}{3} || \not v(t) = \frac{1}{3} |x - y| \not v t)$$

$$|| \not v(t)| = \frac{1}{3} |x - y| \not v t = \frac{1}{3} || v(t)| = \frac{1$$

Hence all the conditions of theorem are fulfilled.

Theorem 4.4. Let f and g be two weakly compatible self-mappings of a cone metric space (X,d) such that

(4.7) f is a g-quasi-contraction;

(4.8) f and g satisfy (CLRg) property.

Then f and g have a unique common fixed point.

Proof. Since f and g satisfy the (CLRg) property, there exists a sequence $\{x_n\}$ in X such that

$$\lim_{n\to\infty}fx_n=\lim_{n\to\infty}gx_n=gx \text{ for some } x\ \in X.$$

From (4.7), we have

 $d(fx_n,\,fx)\leq \lambda\,u(x_n,\,x) \text{ for some } u(x_n,\,x) \ \in \{d(gx_n,\,gx),\,d(gx_n,\,fx_n),\,d(gx_n,\,fx),\,d(gx,\,fx_n),\\ d(gx,\,fx)\}$

Now the following cases arise:

Case1. $d(fx_n, fx) \le \lambda d(gx_n, gx)$

Making limit as $n \rightarrow \infty$, we have gx = fx.

Case2. $d(fx_n, fx) \le \lambda d(gx_n, fx_n)$

Making limit as $n \rightarrow \infty$, we have gx = fx.

Case3. $d(fx_n, fx) \le \lambda d(gx_n, fx)$

Making limit as $n \rightarrow \infty$, we have gx = fx.

Case4. $d(fx_n, fx) \le \lambda d(gx, fx_n)$

Making limit as $n \rightarrow \infty$, we have gx = fx.

Case5. $d(fx_n, fx) \le \lambda d(gx, fx)$

Making limit as $n \rightarrow \infty$, we have gx = fx.

Thus, in all possible cases, gx = fx.

Now, let z = fx = gx. Since f and g are weakly compatible mappings fgx = gfx which implies that fz = fgx = gfx = gz.

We claim that fz = z.

From (4.7), we have

$$d(fz, z) = d(fz, fx) \le \lambda u(z, x)$$

where
$$u(z, x) \in \{d(gz, gx), d(gz, fz), d(gx, fx), d(gz, fx), d(gx, fz)\}$$

$$= \{d(fz, z), 0, 0, d(fz, z), d(z, fz)\}.$$

Now, we have only two possible cases.

Case1. $d(fz, z) \le \lambda d(fz, z)$ implies fz = z.

Case2. $d(fz, z) \le \lambda 0$ implies fz = z.

Hence fz = z = gz.

Hence z is a common fixed point of f and g.

For the uniqueness, we suppose that w is another common fixed point of f and g in X such that fw = gw.

From (4.7), we have

$$d(gz, gw) = \lambda d(fz, fw) \le \lambda u(z, w),$$

where
$$u(z, w) \in \{d(gz, gw), d(gz, fz), d(gw, fw), d(gz, fw), d(gw, fz)\}$$

$$= \{d(fz, fw), 0, 0, d(fz, fw), d(fw, fz)\}.$$

Now, we have two cases.

Case1. $d(fz, fw) \le \lambda d(fz, fw)$ implies fz = fw.

Case2. $d(fz, fw) \le \lambda 0$ implies fz = fw.

So, we can say that f and g have a unique common fixed point.

5. Fixed point results for integral type mappings

In 2002, Branciari in [1] introduced a general contractive condition of integral type as follows:

Theorem 5.1. Let (X, d) be a complete metric space, $\alpha \in (0, 1)$, and $f: X \to X$ be a mapping such that for all $x, y \in X$,

$$\int_{0}^{d(fx,fy)} \phi(t)dt \leq \alpha \int_{0}^{d(x,y)} \phi(t)dt,$$

where $\phi: [0, \infty) \to [0, \infty)$ is non-negative and Lebesgue-integrable mapping which is summable (i.e. with finite integral) on each compact subset of $[0,\infty)$ such that for each $\varepsilon > 0$, $\int_0^\varepsilon \phi(t)dt > 0$, then f has a unique fixed point $a \in X$, such that for each $x \in X$, $\lim_{n \to \infty} f^n = a$.

In 2010, Khojasteh et. al. [7] proved the following fixed point theorem:

Theorem 5.2. Let(X, d) be a complete cone metric space and P a normal cone. Suppose that

 $\phi: P \to P$ is a non-vanishing map and a subadditive cone integrable on each [a, b]

 \subset P such that for each $\in >> 0$; $\int_0^{\epsilon} \phi dp >> 0$. If $f: X \to X$ is a map such that, for all

$$x, y \in X$$

$$\int_{0}^{d(fx,fy)} \phi dp \leq \alpha \int_{0}^{d(x,y)} \phi dp$$

for some $\alpha \in (0,1)$ then f has a unique fixed point in X.

We generalize this result using (CLRg) property for a pair of mappings as follows:

Theorem 5.3. Let(X, d) be a cone metric space with cone P. Suppose that $\phi: P \to P$ is a non-vanishing map integrable on each $[a, b] \subset P$ such that for each $\in >> 0$; $\int_{0}^{\epsilon} \phi dp >> 0$.

If f and g are weakly compatible self-mappings on X satisfying (CLRg) property such that for all $x, y \in X$

(5.1)
$$\int_{0}^{d(fx,fy)} \phi dp \leq \alpha \int_{0}^{d(gx,gy)} \phi dp$$

for some $\alpha \in (0,1)$ then f and g have a unique common fixed point in X.

Proof. Since f and g satisfy the (CLRg) property, there exists a sequence $\{x_n\}$ in X

such that

$$\lim_{n\to\infty}fx_n=\lim_{n\to\infty}gx_n=gx$$

From (5.1), we have

$$\int_{0}^{d(fx_{n},fx)}\phi dp \leq \alpha \int_{0}^{d(gx_{n},gx)}\phi dp$$

Taking limit as $n\rightarrow\infty$, we get

$$\int_{0}^{d(gx,fx)} \phi dp \le \alpha \int_{0}^{d(gx,gx)} \phi dp \text{ implying } \int_{0}^{d(gx,fx)} \phi dp \le 0, \text{ i.e., } gx = fx.$$

Now, let z = gx = fx. Since f and g are weakly compatible mappings, therefore fgx = gfx implies that fz = fgx = gfx = gz.

We claim that fz = z.

From (5.1), we have
$$\int_{0}^{d(fz,z)} \phi dp = \int_{0}^{d(fz,fx)} \phi dp \le \alpha \int_{0}^{d(gz,gx)} \phi dp = \alpha \int_{0}^{d(fz,fx)} \phi dp$$

i.e.,
$$(1-\alpha) \int_{0}^{d(fz,fx)} \phi dp \le 0$$
, i.e., $fz = fx = z$.

So
$$fz = z = gz$$
.

Hence z is a common fixed point of f and g.

For the uniqueness of a common fixed point, we suppose that w is another common fixed point in X such that fw = gw.

From (5.1), we have

$$\int\limits_{0}^{d(gw,gz)}\phi dp=\int\limits_{0}^{d(fw,fz)}\phi dp\leq \alpha\int\limits_{0}^{d(gw,gz)}\phi dp\quad \text{implying (1--}\alpha)\int\limits_{0}^{d(gw,gz)}\phi dp=0\text{ , i.e., }gw=gz.$$

So, by Lemma 1.1, we have f and g have a unique common fixed point.

Lemma 5.1. Let $E = \mathbb{R}^2$, $P = \{x, y \in E, x, y \geq 0\}$, and $X = \mathbb{R}$. Suppose that $d : X \times X \to E$ is defined by $d(x, y) = (|x - y|, \alpha |x - y|)$, where $\alpha \geq 0$ is a constant. Suppose that $\phi : [(0,0), (a,b)] \to P$ is defined by $\phi(x, y) = (\phi_I(x), \phi_2(y))$, where $\phi_I, \phi_2 : [0, +\infty) \to [0, +\infty)$ are two Riemann-integrable functions. Then

$$\int_{(0,0)}^{(a,b)} \phi \, dp = \sqrt{a^2 + b^2} \, \left(\frac{1}{a} \int_0^a \phi_1(t) dt, \frac{1}{b} \int_0^b \phi_2(t) dt \right)$$

Example 5.1. Let $X = \{\frac{1}{n}, n \in \mathbb{N}\}$, $E = \mathbb{R}^2$ and $P = \{(x, y) \in E, x, y \ge 0\}$. Suppose that

 $d(x, y) = (|x - y|, \alpha |x - y|)$, for some constant $\alpha > 0$. Here (X, d) is a cone metric space. If $f, g: X \to X$ and $\phi: P \to P$ are defined by

$$f(x) = \begin{cases} \frac{1}{n+1} & \text{if } x = \frac{1}{n}, \\ 0 & \text{if } x = 0 \end{cases}, n \in \mathbb{N}$$

$$g(x) = \begin{cases} \frac{1}{n} & if \ x = \frac{1}{n} \\ 0 & if \ x = 0 \end{cases}, \ n \in \mathbb{N}$$

and
$$\phi(t, s) = \begin{cases} (t^{\frac{1}{t-2}}(1 - l_n(t)), s^{\frac{1}{s-2}}(1 - l_n(s))), (t, s) \in \mathbb{P} \setminus \{(0,0)\}\} \\ (0,0), (t, s) = (0,0) \end{cases}$$
 respectively.

Consider the sequence $\{x_n\} = \{\frac{1}{n}\}$, then $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = 0 = g0$, therefore f and g satisfy the (CLRg) property. Also x = 0 is the unique common fixed point.

Also
$$\int_{0}^{d(\int_{0}^{x} f)y} \phi dp \leq \frac{1}{2} \int_{0}^{d(gx,gy)} \phi dp$$

In order to obtain above inequality, set $gx = \frac{1}{n}$, $gy = \frac{1}{m}$ where m > n.

Hence

$$d(fx,\,fy)=\big(\frac{m-n}{(m+1)(n+1)},\frac{\alpha(m-n)}{(m+1)(n+1)}\big)$$

$$d(gx, gy) = \left(\frac{m-n}{mn}, \frac{\alpha(m-n)}{mn}\right)$$

Suppose

$$\phi_1(t) = \phi_2(t) = t^{\frac{1}{t-2}} (1 - l_n(t))$$
 for all $t > 0$ and $\phi_1(0) = \phi_2(0) = 0$, thus $\phi(t, s) = (\phi_1(t), \phi_2(s))$.

By Lemma 5.1, we have

$$\int_0^{d(fx,fy)} \phi dp = \int_{(0,0)}^{(\frac{m-n}{(m+1)(n+1)'(m+1)(n+1)})} (\phi_1,\phi_2) dp$$

=

$$(\frac{m-n}{(m+1)(n+1)}\sqrt{1+\alpha^2})(\frac{(m+1)(n+1)}{m-n}\int_0^{\frac{m-n}{(m+1)(n+1)}}\phi_1(t)dt,\frac{(m+1)(n+1)}{\alpha(m-n)}\int_0^{\frac{\alpha(m-n)}{(m+1)(n+1)}}\phi_2(t)dt),$$

$$= (\sqrt{1+\alpha^2}) (\int_0^{\frac{m-n}{(m+1)(n+1)}} \phi_1(t) dt, \frac{1}{\alpha} \int_0^{\frac{\alpha(m-n)}{(m+1)(n+1)}} \phi_2(t) dt).$$

Since
$$\int_0^h t^{\frac{1}{t-2}} (1 - l_n(t)) dt = h^{\frac{1}{h}}$$
, Thus

$$\int_0^{\frac{m-n}{(m+1)(n+1)}} \phi_1(t) dt \ = \left[\frac{m-n}{(m+1)(n+1)}\right]^{\frac{(m+1)(n+1)}{m-n}},$$

$$\int_0^{\frac{\alpha(m-n)}{(m+1)(n+1)}} \phi_2(t) dt = \left[\frac{\alpha(m-n)}{(m+1)(n+1)}\right]^{\frac{(m+1)(n+1)}{\alpha(m-n)}},$$

It means that

$$\int_0^{d(fx,fy)} \phi \ dp = \left(\sqrt{1+\alpha^2}\right) \left(\left[\frac{m-n}{(m+1)(n+1)} \right]^{\frac{(m+1)(n+1)}{m-n}}, \frac{1}{\alpha} \left[\frac{\alpha(m-n)}{(m+1)(n+1)} \right]^{\frac{(m+1)(n+1)}{\alpha(m-n)}} \right). \tag{5.2}$$

On the other hand, Branciari in [1] shows that

$$\left[\frac{m-n}{(m+1)(n+1)}\right]^{\frac{(m+1)(n+1)}{m-n}} \leq \frac{1}{2} \left[\frac{m-n}{mn}\right]^{\frac{mn}{m-n}} \text{ for all } m, n \in \mathbb{N}. \text{ Therefore}$$

$$\left(\left[\frac{m-n}{(m+1)(n+1)}\right]^{\frac{(m+1)(n+1)}{m-n}}, \frac{1}{\alpha}\left[\frac{\alpha(m-n)}{(m+1)(n+1)}\right]^{\frac{(m+1)(n+1)}{\alpha(m-n)}}\right) \leq \frac{1}{2}\left(\left[\frac{m-n}{mn}\right]^{\frac{mn}{m-n}}, \frac{1}{\alpha}\left[\frac{\alpha(m-n)}{mn}\right]^{\frac{mn}{\alpha(m-n)}}\right). \tag{5.3}$$

Thus inequalities (5.2) and (5.3) imply that

$$\begin{split} \int_0^{d(fx,fy)} \phi \ dp &\leq \frac{1}{2} \sqrt{1 + \alpha^2} \left(\left[\frac{m-n}{mn} \right]^{\frac{mn}{m-n}}, \frac{1}{\alpha} \left[\frac{\alpha(m-n)}{mn} \right]^{\frac{mn}{\alpha(m-n)}} \right) \\ &= \frac{1}{2} \int_0^{d(gx,gy)} \phi \ dp. \end{split}$$

6. Fixed point results for expansive mappings

In 2011, Kadelburg et. al. [6] proved the following fixed point theorem:

Theorem 6.1. Let (X, d) be cone metric space and let $f, g: X \to X$ be two maps such

that $f(X) \supset g(X)$ and one of the subsets f(X) and g(X) is complete. Suppose that $(6.1) \ d(fx, fy) \ge \alpha \ d(gx, gy)$ for some $\alpha > 1$ and all $x, y \in X$.

Then f and g have a unique point of coincidence.

If, moreover, the pair (f, g) is weakly compatible, then f and g have a unique common fixed point.

Now, we generalize this result using (CLRg) property along with weakly compatible maps as follows:

Theorem 6.2. Let (X, d) be a cone metric space and f, g be two self-maps on X satisfying (CLRg) property and the following:

(6.2) $d(gx, gy) \ge \alpha \left[\max\{d(fx, fy), d(gx, fx), d(gy, fy), d(gy, fx), d(gx, fy)\} \right]$ for some $\alpha > 1$ and all $x, y \in X$.

Then f and g have a unique point of coincidence.

If, moreover, the pair (f, g) is weakly compatible then f and g have a unique common fixed point.

Proof. Since f and g satisfy (CLRg) property, there exists a sequence $\{x_n\}$ in X such that

 $\lim_{n\to\infty}fx_n=\lim_{n\to\infty}gx_n=gx \text{ for some } x\ \in X.$

From (6.2), we have

$$\begin{split} &d(gx_n,\,gx)\geq\alpha\;[\;\text{max}\{d(fx_n,\,fx),\,d(gx_n,\,fx_n),\,d(gx,\,fx),\,d(gx,\,fx_n),\,d(gx_n,\,fx)\}]\;\text{for all }n\\ &\in\mathbb{N}. \end{split}$$

Taking limit as $n \rightarrow \infty$, we have

 $d(gx,\,gx)\geq\alpha\;[\;max\{d(gx,\,fx),\,d(gx,\,gx),\,d(gx,\,fx),\,d(gx,\,gx),\,d(gx,\,fx)\}=\alpha\;d(gx,\,fx),$ i.e., gx=fx.

Now, let z = fx = gx. Since f and g are weakly compatible mappings, therefore, fgx = gfx implies that fz = fgx = gfx = gz.

We claim that gz = z.

From (6.2), we have

 $d(gz, z) = d(gz, gx) \ge \alpha \left[\max\{d(fz, fx), d(gz, fz), d(gx, fx), d(gx, fz), d(gz, fx)\} \right]$ $= \alpha \left[\max\{d(fz, fx), 0, 0, d(fx, fz), d(fz, fx)\} \right]$

 $= \alpha d(fz, fx) = \alpha d(gz, z)$, i.e., gz = z = fz.

Hence z is a common fixed point of f and g.

For the uniqueness of a common fixed point, we suppose that w is another common fixed point in X such that fw = gw.

From (6.2), we have

 $d(gw,\,gz)\geq\alpha\;[\;max\{d(fw,\,fz),\,d(gw,\,fw),\,d(gz,\,fz),\,d(gz,\,fw),\,d(gw,\,fz)\}]=\alpha\;d(gw,\,gz),$

i.e., gw = gz.

So, we can say that f and g have a unique common fixed point.

Example 6.1. Let $E = C_{\mathbb{R}}^1[0,1]$ with $||x|| = ||x||_{\infty} + ||x'||_{\infty}$ and $P = \{x \in E : x(t) \ge 0 \text{ on } [0,1]\}$. Then P is a non-normal cone on E. Let X = [0, 1] and let $d : X \times X \to E$ be defined by $d(x, y)(t) = |x-y|\phi(t)$ where $\phi(t)>0$ is an arbitrary fixed function. Consider the functions $f, g : X \to X$ defined by $fx = \frac{x}{3}$ and $gx = \frac{x}{2}$ and take arbitrary $\alpha \in (1, \frac{3}{2}]$. Consider the sequence $\{x_n\} = \{\frac{1}{n}\}$, $n \in \mathbb{N}$, since $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = 0 = g0$, therefore, f and g satisfy the (CLRg) property. Also f is the unique common fixed point.

REFERENCES

- [1] A. Branciari, A Fixed Point Theorem for Mappings satisfying a General Contractive Condition of Integral Type, Int. Journal of Mathematics and Mathematical Sciences, vol. 29, no. 9, (2002), pp. 531-536.
- [2] L.G. Huang and X. Zhang, Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings, J. Math. Anal. Appl., 332(2) (2007), 1468-1476.
- [3] K. Jha, A Common Fixed Point Theorem in a Cone Metric Space, Kathmandu University Journal of Science and Technology, vol. 5, no. 1, (2009), pp. 1-5.
- [4] G. Jungck and B.E. Rhoades, Fixed points for set valued functions without continuity, Indian Journal of pure and applied mathematics, vol. 29, no. 3, (1998) pp. 227-238.

- [5] Z. Kadelburg, S. Radenovic and B. Rosic, Strict Contractive Conditions and Common Fixed Point Theorems in Cone Metric Spaces, Hindawi Publishing Corporation, Fixed Point Theory and applications, (2009), Article ID 173838, 14 pages.
- [6] Z. Kadelburg, P.P. Murthy and S. Radenovic, Common Fixed Points for Expansive Mappings in Cone Metric Spaces, Int. Journal of Math. Analysis, vol. 5, no. 27, (2011), 1309-1319.
- [7] F. Khojasteh, Z. Goodarzi and A. Razani, Some Fixed Point Theorems of Integral Type Contraction in Cone Metric Spaces, Hindawi Publishing Corporation, Fixed Point Theory and applications, (2010), Article ID 189684, 13 pages.
- [8] J.O. Olaleru, Some Generalizations of Fixed Point Theorems in Cone Metric Spaces, Hindawi Publishing Corporation, Fixed Point Theory and applications, (2009), Article ID 657914, 10 pages.
- [9] W. Sintunavarat and P. Kumam, Common Fixed Point Theorems for a Pair of Weakly Compatible mappings in Fuzzy Metric Spaces, Hindawi Publishing Corporation, Journal of Applied mathematics, (2011), Article ID 637958, 14 pages.