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1. Introduction

Let (X ,d) be a metric space and K be a nonempty closed and convex subset of X . A mapping

T : K→ K is said to be

(i) nonexpansive if

d(T x,Ty)≤ d(x,y), ∀x,y ∈ K,

(ii) Suzuki-generalized nonexpanpansive (or said to satisfy condition (C)) if

1
2

d(x,T x)≤ d(x,y) =⇒ d(T x,Ty)≤ d(x,y), ∀x,y ∈ K,

(iii) mean nonexpansive if

d(T x,Ty)≤ ad(x,y)+bd(x,Ty), ∀x,y ∈C, a,b≥ 0, a+b≤ 1.

Remarks: It is worth mentioning that nonexpansive mappings are Suzuki-generalized nonex-

pansive mappings. However Suzuki [19] gave an exmaple of a Suzuki-generalized nonexpan-

sive mapping which is not nonexpansive. We also mention that every nonexpansive mapping

is a mean nonexpansive mapping. However, the following examples show that there are some

mean nonexpansive mappings which are not nonexpansive.

Example 1.1. [25, 24]. Let T : [0,1]→ [0,1] be a mapping defined by

T x =


x
5 , x ∈ [0, 1

2),

x
6 , x ∈ [1

2 ,1].

Then, T is a mean nonexpansive mapping with a = 1
3 and b = 2

3 . However, we see clearly that

T is not continuous at x = 1
2 . Therefore, T cannot be a nonexpansive mapping.

Although it was shown in [14] that increasing mean nonexpansive mappings are Suzuki-

generalized nonexpansive mappings. However, Nakprasit [14] gave the following example of a

mean nonexpansive mapping which is not a Suzuki-generalized nonexpansive mapping.
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Example 1.2. Let T : [0,5]→ [0,2] be a mapping defined by

T x =


2 if x ∈ [0,4],

1 if x ∈ (4,5],

0 if x = 5.

Then T is mean nonexpansive. If x= 4 and y= 5, then we have that T is not Suzuku-generalized

nonexpansive.

The class of mean nonexpansive mappings was first introduced by Zhang [23], who proved that

a mean nonexpansive mapping has a fixed point in a weakly compact convex subset, C (with

normal structure) of a Banach space. Since then, authors began to study the mean nonexpansive

mappings in Banach spaces. For example, Zuo [25] studied some fixed point theorems for

mean nonexpansive mappings in Banach spaces and proved that under certain conditions, a

mean nonexpansive mapping has a fixed point in C, where C is a nonempty and closed subset

of a Banach space. Furthermore, he proved that if T is a mean nonexpansive mapping and

{xn} is a sequence in C, then {xn− T xn} converges strongly to 0 i.e T is regular. For other

extensive studies on mean nonexpansive mappings in Banach spaces, see [7, 21, 22, 16] and the

references contained therein. Recently, mean nonexpansive mappings was studied in CAT(0)

by Zhou and Cui [24] by approximating its fixed point using the following Ishikawa iteration:

For x1 ∈C, {tn},{sn} ∈ [0,1], define {xn} iteratively by
yn = (1− sn)xn⊕ snT xn,

xn+1 = (1− tn)xn⊕ tnTyn, n = 1,2, . . . .
(1.1)

They proved both strong and ∆-convergence theorems for the sequence {xn} generated by the

above algorithm.

Beside the nonlinear mappings involved in the study of fixed point theory, the role played by

the spaces involved is also very important. It is well known that Banach spaces with convex

structures have been studied extensively. This is because of the fact that Banach spaces are

vector space, thus it is easier to introduce a convex structure in them. However, metric spaces

do not naturally enjoy this structure. Therefore the need to introduce convex structures to it
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arises. The notion of convex metric spaces was first introduced by Takahashi [20] who studied

the fixed point theory for nonexpansive mappings in the settings of convex metric spaces. Since

then, several attempts have been made to introduce different convex structures on metric spaces.

An example of a metric space with a convex structure is the hyperbolic space. Different convex

structures have been introduced to hyperbolic spaces resulting to different definitions of hyper-

bolic spaces (see [5, 10, 17]). Although the class of hyperbolic spaces defined by Kohlenbach

[10] is slightly restrictive than the class of hyperbolic spaces introduced in [5], it is however,

more general than the class of hyperbolic spaces introduced in [17]. Moreover, it is well-known

that Banach spaces and CAT(0) spaces are examples of hyperbolic spaces introduced in [10].

Some other examples of this class of hyperbolic spaces includes Hadamard manifords, Hilbert

ball with the hyperbolic metric, Catesian products of Hilbert balls and R-trees. For more details

on hyperbolic spaces see e.g., [5, 6, 10, 17] for more discussion and examples of hyperbolic

spaces.

Recently, Alagoz et al [15] proved a strong convergence result for a finite family of nonexpan-

sive multivalued mappings in hyperbolic spaces. They study the following problem

Let X be a hyperbolic space and K be a nonempty convex subset of X . Let {Ti : i = 1,2...,k}

be a family of multivalued mappings such that Ti : K→ P(K) and PTi(x) = {y ∈ Tix : d(x,y) =

d(x,Tx)} is a nonexpansive mapping. Suppose that αin ∈ [0,1], for all n = 1,2, ... and i =

1,2, ...,k for x0 ∈ K and let {xn} be the sequence generated by the following;

(1.2)



xn+1 =W
(
u(k−1)n,y(k−1)n,αkn

)
y(k−1)n =W

(
u(k−2)n,y(k−2)n,α(k−1)n

)
...

y2n =W (u1n,y1n,α2n)

y1n =W (u0n,y0n,α1n)

where uin ∈ PTi+1(yin), i = 0,1,2, ...,k−1 and y0n = xn
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It is worth mentioning that, as far as we know, no work has been done on fixed point problems

for mean nonexpansive mappings in hyperbolic spaces. Therefore, it is necessary to extend re-

sults on fixed point problems for mean nonexpansive mappings from uniformly convex Banach

spaces and CAT(0) spaces to uniformly convex hyperbolic spaces, since the class of uniformly

convex hyperbolic spaces generalizes the class of uniformly convex Banach spaces as well as

CAT(0) spaces.

In this manuscript, we introduce the notion of multivalued mean nonexpansive mappings in hy-

perbolic spaces. We also prove some properties of fixed point set and demiclosedness principle

of this class of maps. Moreover, strong and ∆-convergence are also proved for approximation

of fixed point of this class of maps.

Thus, our results presented in this paper extend and improve the results of Zuo [25], Zhou and

Cui [24], Alagoz et al [15] and a host of other important results in this direction.

2. Preliminaries

Throughout this paper, we carry out all our study in the frame work of hyperbolic spaces intro-

duced by Kohlenbach in [10].

Let (X ,d) be a metric space and K be a nonempty subset of X . K is said to be proximinal if

there exists an element y ∈ K such that

d(x,y) = d(x,K) := inf
z∈K

d(x,z)

for each x ∈ X . The collection of all nonempty compact subset of K, the collection of all

nonempty closed bounded subsets and nonempty Proximinal bounded subsets of K are denoted

by C(K), CB(K) and P(K) respectively. The hausdorff metric H on CB(X) is defined by

H(A,B) := max{sup
x∈A

d(x,B),sup
y∈B

d(y,A)}

for all A,B ∈CB(X). Let T : K→CB(K) be a multivalued mapping. A element x ∈ K is said

to be a fixed point of T if x ∈ T x. A multivalued mapping T : K →CB(X) is said to be mean
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nonexpansive if

H(T x,Ty) ≤ ad(x,y)+bd(x,T x),∀x,y ∈ K a,b,≥ 0, a+b≤ 1(2.1)

If b = 0 and a = 1 (2.1) reduces to multivalued nonexpansive mapping.

Note: If X is a metric space and CB(X) be the family of all nonempty closed and bounded

subsets of X . Suppose A,B ∈CB(X) and a ∈ A, then

d(a,B)≤ H(A,B).

Indeed, from the definition of Hausdorff distance, we have

H(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)}

≥ sup
a∈A

d(a,B)

≥ d(a,B),

which implies d(a,B)≤ H(A,B), ∀a ∈ A.

Definition 2.1. A hyperbolic space (X ,d,W ) is a metric space (X ,d) together with a convexity

mapping W : X2× [0,1]→ X satisfying

(1) d(u,W (x,y,α))≤ αd(u,x)+(1−α)d(u,y);

(2) d(W (x,y,α),W (x,y,β )) = |α−β |d(x,y);

(3) W (x,yα) =W (y,x,1−α);

(4) d(W (x,z,α),W (y,w,α))≤ (1−α)d(x,y)+αd(z,w);

for all w,x,y,z ∈ X and α,β ∈ [0,1].

Example 2.2. [18] Let X be a real Banach space which is equipped with norm ||.||. Define the

function

d : X2→ [0,∞) by

d(x,y) = ||x− y||

as a metric on X . Let C be a nonempty bounded closed and convex subset of Banach space.

Then, we have that (X ,d) is a hyperbolic space with mapping W : X2× [0,1]→ X defined by

W (x,y,α) = (1−α)x+αy.
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Definition 2.3. (see [18]) Let X be a hyperbolic space with a mapping W : X2× [0,1]→ X .

(i) A hyperbolic space is said to be uniformly convex if for any r > 0 and ε ∈ (0,2], there

exists a δ ∈ (0,1] such that for all x,y,z ∈ X

d(W (x,y,
1
2
),z)≤ (1−δ )r,

provided d(x,z)≤ r,d(y,z)≤ r and d(x,y)≥ εr.

(ii) A map η : (0,∞)× (0,2]→ (0,1] which provides such a δ = η(r,ε) for a given r > 0

and ε ∈ (0,2] is known as a modulus of uniform convexity of X . The mapping η is said

to be monotone, if it decreases with r (for a fixed ε).

Definition 2.4. Let C be a nonempty subset of a metric space X and {xn} be any bounded

sequence in C. For x ∈ X , we define a continuous functional r(·,{xn}) : X → [0,∞) by

r(x,{xn}) = limsup
n→∞

d(xn,x).

The asymptotic radius r(C,{xn}) of {xn} with respect to C is given by

r(C,{xn}) = inf{r(x,{xn}) : x ∈C}.

A point x ∈C is said to be an asymptotic center of the sequence {xn} with respect to C ⊆ X if

r(x,{xn}) = inf{r(y,{xn}) : y ∈C}.

The set of all asymptotic centers of {xn} with respect to C is denoted by A(C,{xn}). If the

asymptotic radius and the asymptotic center are taken with respect to X , then we simply denote

them by r({xn}) and A({xn}) respectively.

It is well-known that in uniformly convex Banach spaces and CAT(0) spaces, bounded se-

quences have unique asymptotic center with respect to closed convex subsets.

Definition 2.5. [11]. A sequence {xn} in X is said to be 4-convergence to x ∈ X , if x is the

unique asymptotic center of {xnk} for every subsequence {xnk} of {xn}. In this case, we write

4- lim
n→∞

xn = x.

Remark 2.6. [12]. We note that the 4-convergence coincides with the usually weak conver-

gence known in Banach spaces with the Opial property.
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Lemma 2.7 ([13]). Let X be a complete uniformly convex hyperbolic space with monotone mod-

ulus of uniform convexity η . Then every bounded sequence {xn} in X has a unique asymptotic

center with respect to any nonempty closed convex subset C of X .

Lemma 2.8 ([3]). Let X be a complete uniformly convex hyperbolic space with monotone mod-

ulus of uniform convexity η and let {xn} be a bounded sequence in X with A({xn}) = {x}.

Suppose {xnk} is any subsequence of {xn} with A({xnk}) = {x1} and {d(xn,x1)} converges,

then x = x1.

Lemma 2.9 ([8]). Let (X ,d,W ) be a complete uniformly convex hyperbolic space with mono-

tone modulus of uniform convexity η . Let x∗ ∈ X and {tn} be a sequence in [a,b] for some a,b∈

(0,1). If {xn} and {yn} are sequences in X such that limsupn→∞ d(xn,x∗)≤ c, limsupn→∞ d(yn,x∗)≤

c and limn→∞ d(W (xn,yn, tn),x∗) = c, for some c > 0. Then limn→∞ d(xn,yn) = 0.

Definition 2.10. Let C be a nonempty subset of a hyperbolic space X and {xn} be a sequence in

X . Then {xn} is called a Fejér monotone sequence with respect to C if for all x ∈C and n ∈ N,

d(xn+1,x)≤ d(xn,x).

Lemma 2.11 ([2]). Let C be a nonempty closed subset of a complete metric space X and {xn}

be a Fejér monotone sequence with respect to C. Then {xn} converges to some x∗ ∈ C if and

only if limn→∞ d(xn,C) = 0.

Proposition 2.12. Let {xn} be a sequence in X and C be a nonempty subset of X . Suppose

T : C→C is any nonlinear mapping and the sequence {xn} is Fejer monotone with respect of

C, then we have the following:

(i) {xn} is bounded.

(ii) The sequence {d(xn,x∗)} is decreasing and converges for all x∗ ∈ F(T ).

(iii) limn→∞ d(xn,F(T )) exists.

3. Main Result

3.1. Some Properties of Fixed Point Set of Multivalued Mean Nonexpansive Mappings.
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Theorem 3.1. Let K be a nonempty closed and convex subset of a complete hyperbolic space

X . Let T : K→CB(K) be a multivalued mean nonexpansive mapping with b < 1 and F(T ) 6= /0

and T x∗ = {x∗} for each x∗ ∈ F(T ), then F(T ) is closed and convex.

Proof. We first show that F(T ) is closed. Let {xn} be a sequence in F(T ) such that {xn}

converges to some y ∈C. We show that y ∈ F(T ) as follows:

Observe that

d(xn,Ty)≤ H(T xn,Ty)≤ ad(xn,y)+bd(xn,Ty),

which implies d(xn,Ty)≤ a
1−b

d(xn,y)

≤ d(xn,y).

Taking limn→∞ of both sides, we have

lim
n→∞

d(xn,Ty)≤ lim
n→∞

d(xn,y) = 0.

Then, by the uniqueness of limit, we have that

y ∈ Ty.

Hence, F(T ) is closed.

Next, we show that F(T ) is convex. Let x,y ∈ F(T ) and α ∈ [0,1]. Then, we have

d(x,T (W (x,y,α)))≤ H(T x,T (W (x,y,α)))≤ ad(x,W (x,y,α))+bd(x,T (W (x,y,α))),

which implies d(x,T (W (x,y,α)))≤ a
1−b

d(x,W (x,y,α))

≤ d(x,W (x,y,α))(3.1)

Using similar argument, we have

d(y,T (W (x,y,α)))≤ d(y,W (x,y,α)).(3.2)
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Using (3.1) and (3.2), we have

d(x,y)≤ d(x,T (W (x,y,α)))+d(T (W (x,y,α)),y)

≤ d(x,W (x,y,α))+d(W (x,y,α),y)(3.3)

≤ (1−α)d(x,x)+αd(x,y)+(1−α)d(x,y)+αd(y,y)

≤ d(x,y).

Hence, we conclude that (3.1) and (3.2) are d(x,T (W (x,y,α)))= d(x,W (x,y,α)) and d(y,T (W (x,y,α)))=

d(y,W (x,y,α)) respectively. Because if d(x,T (W (x,y,α)))< d(x,W (x,y,α)) or d(y,T (W (x,y,α)))<

d(y,W (x,y,α)), then the inequality in (3.3) becomes strictly less than (<), which therefore gives

us a contradiction, that is, d(x,y)< d(x,y). Hence, we have that

T (W (x,y,α)) =W (x,y,α) ∀x,y ∈ F(T ) and α ∈ [0,1].

Thus, W (x,y,α) ∈ F(T ), which implies that F(T ) is convex. �

Corollary 3.2. Let K be a nonempty closed and convex subset of complete uniformly convex

hyperbolic space X. Let T : K→CB(K) be a multivalued nonexpansive mapping and {xn} be

a bounded sequence in K such that limn→∞ d(xn,T xn) = 0. Then F(T ) is closed and convex.

We now establish the demiclosedness principle for mean nonexpansive mappings in hyperbolic

spaces.

Theorem 3.3. Let K be a nonempty closed and convex subset of complete uniformly convex

hyperbolic space X with monotone modulus of convexity η . Let T : K→CB(K) be a multival-

ued mean nonexpansive mapping with b < 1 and {xn} be a bounded sequence in K such that

limn→∞ d(xn,T xn) = 0 and ∆− limn→∞ xn = x∗. Then x∗ ∈ F(T ).

Proof. Since {xn} is a bounded sequence in X , we have from Lemma 2.7 that {xn} has a unique

asymptotic center in K. Also, since ∆− limn→∞ xn = x∗, we have that A({xn}) = {x∗}.
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Now,

d(xn,T x∗)≤ d(xn,T xn)+d(T xn,T x∗)

≤ d(xn,T xn)+H(T xn,T x∗)

≤ d(xn,T xn)+ad(xn,x∗)+bd(xn,T x∗)

which implies d(xn,T x∗)≤ 1
1−b

[d(xn,T xn)+ad(xn,x∗)].

Taking limsupn→∞ of both sides, we have

r(T x∗,{xn}) = limsup
n→∞

d(xn,T x∗)≤ 1
1−b

limsup
n→∞

[d(xn,T xn)+ad(xn,x∗)]≤ limsup
n→∞

d(xn,x∗) = r(x∗,{xn}).

By the uniqueness of the asymptotic center of {xn}, we have T x∗ = x∗. Hence, x∗ ∈ F(T ). �

Corollary 3.4. Let K be a nonempty closed and convex subset of complete uniformly convex

hyperbolic space X with monotone modulus of convexity η . Let T : K → CB(K) be a mul-

tivalued nonexpansive mapping with b < 1 and {xn} be a bounded sequence in K such that

limn→∞ d(xn,T xn) = 0 and ∆− limn→∞ xn = x∗. Then x∗ ∈ F(T ).

3.2. Strong and ∆-Converges Theorems for Multi-valued Mean Nonexpansive Mappings.

Lemma 3.5. Let K be a nonempty closed convex subset of a complete uniformly convex hyper-

bolic space X . Let Ti : K → CB(K) (i = 1,2, ...,k) be finite family of multivalued mean non-

expansive mapping, such that ϒ := ∩n
i=1F(Ti) 6= /0. Suppose that Ti(p) = {p} ∀ ∈ ∩n

i=1F(Ti),

αin ∈ [0,1], for all n = 1,2, ... and i = 1,2, ...,k for x0 ∈ K and let {xn} be the sequence gener-

ated by

(3.4)



xn+1 =W
(
u(k−1)n,y(k−1)n,αkn

)
y(k−1)n =W

(
u(k−2)n,y(k−2)n,α(k−1)n

)
...

y2n =W (u1n,y1n,α2n)

y1n =W (u0n,y0n,α1n)

where uin ∈ Ti+1(yin), i = 0,1,2, ...,k−1 and y0n = xn,then

(i) d(yin, p)≤ d(xn, p), i = 1,2, ...,k−1.
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(ii) lim
n→∞

d(xn, p) exist.

Proof.

d(y1n, p) = d (W (u0n,y0n,α1n), p)

≤ (1−α1n)d(u0n, p)+α1nd(y0n, p)

≤ (1−α1n)H (T1(y0n),T1(p))+α1nd(y0n, p)

= (1−α1n) [ad(y0n, p)+bd(y0n, p)]+α1nd(y0n, p)

= [a(1−α1n)+b(1−α1n)+α1n]d(y0n, p)

= [(a+b)(1−α1n)+α1n]d(y0n, p)

≤ d(y0n, p)

≤ d(xn, p).(3.5)

Assume that d(yin, p)≤ d(xn, p) holds for some 1≤ j ≤ k−2. Then

d(y( j+1)n, p) = d
(
W (u jn,y jn,α( j+1)n, p

)
≤ (1−α( j+1)n)d(u jn, p)+α( j+1)nd(yin, p)

≤ (1−α( j+1))H
(
T( j+1)nyin,T( j+1)n(p)

)
+α(i+1)nd(yin, p)

≤ d(yin, p)

= d(xn, p) (from our assumption).(3.6)

We now show that d(yin, p)≤ d(xn, p) for j = k−1.

d(y(k−1)n, p) = d
(
W (u(k−2)n,y(k−2)n,α(k−1)n), p

)
≤ (1−α(k−1)n)d(u(k−2)n, p)+α(k−1)nd(y(k−2)n, p)

≤ (1−α(n−1)n)H
(
Tk−1y(k−2)n,Tk−1(p)

)
+α(k−1)nd(y(k−2)n, p)

(3.7)
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≤ (1−α(k−1)n)
[
ad(y(k−2)n, p)+bd(y(k−2)n, p)

]
+α(k−1)nd(y(k−2)n, p)

= (1−α(k−1)n)
[
(a+b)d(y(k−2)n, p)

]
+α(k−1)nd(y(k−2)n, p)

≤ (1−α(k−1)n)d(y(k−2)n, p)+α(k−1)nd(y(k−2)n, p)

= d(y(k−2)n, p)≤ d(xn, p).(3.8)

Thus, by induction, we obtain

d(yin, p) ≤ d(xn, p) ∀ i = 1,2, ...,k−1.(3.9)

Also, from (3.4) and (3.9), we obtain

d(xn+1, p) = d
(
W (u(k−1)n,y(k−1)n,αkn), p

)
≤ (1−αkn)d(u(k−1)n, p)+αknd(y(k−1)n, p)

≤ (1−αkn)H
(
Tk(y(k−1)n),Tk(p)

)
+αknd(y(k−1)n, p)

≤ (1−αkn)
[
ad(y(k−1)n, p)+bd(y(k−1)n, p)

]
+αknd(y(k−1)n, p)

= (1−αkn)
[
(a+b)d(y(k−1)n, p)

]
+αknd(y(k−1)n, p)

≤ (1−αkn)d(y(k−1)n, p)+αknd(y(k−1)n, p)

= d(y(k−1)n, p)

≤ d(xn, p).(3.10)

which implies that limn→∞ d(xn, p) exists for p ∈ ϒ. �

Lemma 3.6. Let K be a nonempty closed subset of a complete uniformly convex hyperbolic

space X with monotone modulus of uniform convexity η and Ti : K → CB(K), i = 1,2, ...,k

be a family of multivalued mean nonexpansive mapping such that ϒ := ∩k
i=1F(Ti) 6= /0. sup-

pose that Ti(p) = {p} for each p ∈ ϒ. Let {xn} be defined iteratively by Algorithm (3.4), then

limn→∞ d(xn,Tixn) = 0, i = 1,2, ...,k

Proof. By Lemma 3.5, lim
n→∞

d(xn, p) exists for each p ∈ ϒ. Thus {d(xn, p)} converges to c, for

some C ≥ 0. If c = 0, then the proof is complete. So, we suppose that c > 0. That is

lim
n→∞

d(xn, p) = c > 0.(3.11)
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Taking limsup on both sides of (3.9), we have from (3.11) that Also for i = 1,2, ...,k, we obtain

limsup
n→∞

d(yin, p)≤ c, i = 1,2, ...,k−1.(3.12)

d(u(i−1)n, p) ≤ H
(
Ti(y(i−1)n),Ti(p)

)
≤ ad(y(i−1)n, p)+bd(y(i−1)n, p)

≤ d(y(i−1)n, p).

Which implies that

limsup
n→∞

d(u(i−1)n, p)≤ c, i = 1,2, ...,k.(3.13)

From (3.11), we have that lim
n→∞

d(xn+1, p) = c, hence

lim
n→∞

d
(
W (u(k−1)n,,y(k−1)n,αkn)

)
= c.(3.14)

From (3.12), (3.13), (3.14) and Lemma (2.9) we have

lim
n→∞

d(y(k−1)n,u(k−1)n) = 0.(3.15)

From (3.7), we have

d(xn+1, p)≤ d(y(k−1)n, p)≤ d(y(k−2)n, p)≤ d(y(k−3)n,P)≤ ...≤ d(yin, p)≤ d(y1n, p)

which implies

d(xn+1, p)≤ d(yin, p), i = 1,2, ...,k−1.

Therefore, c≤ liminfd(yin, p), i = 1,2, ...,k−1 which implies

c ≤ liminf
n→∞

d(y(i−n)n, p), i = 1,2, ...(3.16)

From Algorithm (3.4), we have

d
(
W (u(i−2)n,y(i−2)n,α(i−1)n), p

)
= d(y(i−1)n, p), i = 1,2, ...,k.(3.17)

From (3.12),(3.16) and (3.17), we have

lim
n→∞

d
(
W (u(i−2)n,y(i−2)n,α(i−1)n, p

)
= lim

n→∞
d(y(i−1)n, p) = c.(3.18)
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Also, from (3.12),(3.13) (3.18), we have

lim
n→∞

d(u(i−2)n,y(i−2)n) = 0.(3.19)

Thus, by induction

lim
n→∞

d(y(i−1)n,u(i−1)n) = 0, for i = 1,2, ...,k.(3.20)

Also we have

d(yin,y(i−1)n) = d
(
W (u(i−1)n,y(i−1)n,α(i−1)n

)
≤ (1−αin)d(u(i−1)n,y(i−1)n)+αind(y(i−1)n,y(i−1)n),

which implies from (3.20) that

lim
n→∞

d(yin,y(i−1)n) = 0, i = 1,2, ...,k.(3.21)

Again from (3.4), we have

d(xn,y1n) = d(xn,W (u0n,y0n,αin))

≤ (1−α1n)d(xn,u0n)+αind(xn,y0n)

= (1−α1n)d(xn,u0n)+αind(xn,xn)

which implies that

lim
n→∞

d(xn,y1n) = 0.(3.22)

Using triangular inequality, we obtain

d(xn,yin)≤ d(xn,y1n)+d(y1n,y12)+d(y1n,y12)+ ...+d(y(i−1)n,yin), i = 1,2, ...,k−1.

From (3.20) and (3.21), we have

lim
n→∞

d(xn,yin) = 0, i = 1,2, ...,k−1.(3.23)



FIXED POINT THEORY FOR MEAN NONEXPANSIVE MAPPINGS 539

Now, we estimate d(xn,Tixn).

d(xn,Tixn) ≤ d(xn,y(i−1)n)+d(y(i−1)n,u(i−1)n)+d(u(i−1)n,Tixn)

≤ d(xn,y(i−1)n)+d(y(i−1)n,u(i−1)n)+H
(
Ti(y(i−1)n),Tixn

)
≤ d(xn,y(i−1)n)+d(y(i−1)n,u(i−1)n)+ad(y(i−1)n,xn)+bd(y(i−1)n,Tixn)

≤ d(xn,y(i−1)n)+d(y(i−1)n,u(i−1)n)+ad(y(i−1)n,xn)+bd(y(i−1)n,xn)+bd(xn,Tixn),

which implies

d(xn,Tixn) ≤
(1+b)
1−b

d(xn,y(i−1)n)+
a

1−b
d(xn,y(i−1)n)+

1
1−b

d(y(i−1)n,u(i−1)n)

≤ 2d(xn,y(i−1)n)+d(y(i−1)n,u(i−1)n).(3.24)

Hence from (3.20), (3.23) and (3.24), we obtain

lim
n→∞

d(xn,Tixn) = 0, i = 1,2, ...,k.(3.25)

Theorem 3.7. Let K be a nonempty closed and convex subset of a complete uniformly convex

hyperbolic spaces X which is monotone modulus of uniform convexity η . Let Ti, ∩k
i=1F(Ti) be

as in Lemma 3.6. Then {xn} defined by Algorithm (3.4) ∆- converges to p ∈ ∩k
i=1F(Ti).

Let p∈ϒ Then p∈F(Ti) for i= 1,2, ...,k By lemma 3.5 {xn} is bounded and also lim
n→∞

d(xn, p)

exists. The {xn} has a unique asymptotic center. In other words, we have A({xn}) = {x}. Let

{wn} be a subsequence of {xn} subsequence of {xn} such that A({wn}) = {x∗}. From Lemma

3.6 we get limn→∞(wn,Ti(wn) = 0. We claim that x∗ is a fixed point T1
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To prove this, we take another sequence {vm} in T1(x∗). Then,

r(vm,{wn}) = limsup
n→∞

d(vm,wn)

≤ lim
n→∞
{d(vm,T1(wn))+d(T1(wn),wn)}

≤ lim
n→∞
{H(T1(x∗),T1(wn))+d(T1(wn),wn))}

≤ lim
n→∞

[ad(x∗,wn)+bd(x∗,T1(wn))]

≤ lim
n→∞

[ad(x∗,wn)+bd(x∗,(wn)+bd(wn,T1(wn))]

≤ lim
n→∞

[(a+b)d(x∗,wn)+bd(wn,T1(wn))]

≤ limsup
n→∞

d(x∗,wn)

= r(x∗,{wn})

so we have |r(vm,{wn})−r(x∗,{wn})| → 0. for m→∞. By Lemma 2.3 we get limn→∞ vm = x∗.

Hence T1(x∗) is either closed or bounded. Consequently limn→∞ vm = x∗ ∈ T1(x∗). Similarly

x∗ ∈ T2(x∗), x∗ ∈ T3(x∗),...,x∗ ∈ Tk(x∗). �

Theorem 3.8. Let K be a nonempty closed convex subset of a hyperbolic space X and Let Ti

and ϒ be as defined in Lemma 3.6 and let {xn} be the iterative process defined in (3.4), then

{xn} converges to p in F if and only if limn→∞ d(xn,F) = 0.

Proof. If {xn} converges to p ∈ ϒ, then limn→∞ d(xn, p) = 0. since 0≤ d(xn,ϒ)≤ d(xn, p), we

have limn→∞ d(xn,ϒ) = 0. Conversely, suppose that limn→∞ d(xn,ϒ) = 0. By Lemma 3.5, we

have

d(xn+1, p)≤ d(xn,ϒ)

which implies

d(xn+1,ϒ)≤ d(xn,ϒ).

This implies that limn→∞ d(xn,ϒ) exists. Therefore, by the hypothesis of our Theorem , liminfn→∞ d(xn,ϒ)=

0. Thus we have that limn→∞ d(xn,ϒ) = 0. Now we show that {xn} is a Cauchy sequence in K.

Let m,n ∈N and assume m > n. Then it follows that d(xm, p)≤ d(xn, p) for all p ∈ ϒ. Thus we

get,

d(xm,xn)≤ d(xm, p)+d(xn, p)≤ 2d(xn, p).
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Taking inf on the set ϒ, we have d(xm,xn) ≤ d(xn,ϒ). Now as n,m → ∞ in the inequality

d(xm,xn) ≤ d(xn,ϒ) we have that it converges to a point q ∈ K. Next we show that q ∈ F(T1).

Indeed by d(xn,F(T1)) = inf
y∈F(T1)

d(xn,y). So for each ε > 0, there exists p(ε)n ∈ F(T1) such that,

d(xn, p(ε)n )< d(xn,F(T1))+
ε

2

This implies limn→∞ d(xn, p(ε)n ) ≤ ε

2 . Since d(p(ε)n ,q) ≤ d(xn, p(ε)n ) + d(xn,q) it follows that

lim
n→∞

d(p(ε)n ,q)≤ ε

2 . Hence we obtain

d(T1(q),q) ≤ d(q, p(ε)n )+d(p(ε)n ,T1(q))

≤ d(q, p(ε)n )+H(T1(p(ε)n ),T1(q))

≤ d(q, p(ε)n )+ad(p(ε)n ,q)+bd(p(ε)n ,T1(q))

= d(q, p(ε)n )+ad(p(ε)n ,q)+bd(p(ε)n ,q)

= d(q, p(ε)n )+(a+b)d(p(ε)n ,q)

≤ 2d(p(ε)n ,q)

which shows that d(T1(q),q)< ε. So, d(T1(q),q) = 0. since ε was arbitrary chosen. Similarly

we get for any i = 1,2, ...,k we obtain d(Ti(q),q) = 0. Since ϒ is closed, then q ∈ ϒ. �
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