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1. Introduction 

In recent years, the study of random fixed points has attracted much attention, some of the recent 

literatures in random fixed point may be noted in [2, 3, 4, 5, 6, 9, 10, 11]. 

The study of common fixed point theorems in symmetric spaces was initiated in the work of 

Hicks and Rhoades [8]. Recently Beg and Abbas [5] prove some random fixed point theorem for 

weakly compatible random operators under generalized contractive condition in symmetric space. 

The purpose of this paper is to obtain some common fixed point theorems in symmetric spaces 

for a certain class of mappings on general setting. Theses mapping satisfy the (E.A) property 

which is studied for first time by Aamri and Moutawakil[1]. 

 

2. Preliminaries 

Throughout this paper, (,) denotes a measurable space ( - sigma algebra). 
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Definition 2.1. Let X be a non-empty set and d: X  X [0, ∞) a functional. Then d is called a 

symmetric on X if  

(S1): d(x, y)  0; 

(S2): d(x, y) = 0; if and only if x=y; 

(S3): d(x, y) = d(y, x); 

The pair (X, d) is called a symmetric space of semi–symmetric space.  If we include the triangle 

inequality in the above definition then we get the usual definition of a metric space. However, a 

symmetric on X need not to be metric on X. Therefore the class of symmetric spaces is larger 

than metric spaces. 

Let d be a symmetric on a set X. For  > 0 and x X, B(x,) denotes the spherical ball centered 

at x with radius , defined as the set {yX: d(x, y) <}. 

A topology t(d) on X is given by U t(d) if and only if for each xU, B(x, )  U for some >0. 

Note that  

lim
𝑛→∞

d(xn, x) = 0 Iff xnx in the topology t(d).  

Let F be a subset of X. A mapping ξ: Ω → X is measurable if  ξ−1(U)ϵ Σ for each open subset U 

of X. The mapping T:  F  F is a random map if and only if for each fixed xF, the mapping 

T(. , X) ∶  F is measurable. 

A measurable mapping ξ: Ω → X is a random fixed point of random operators T:  F  F  if 

and only if T(ω, ξ(ω)) =  ξ(ω) for each ω ϵ Ω. We denote the set of random fixed points of a 

random map T by RF(T) and the set of all measurable mappings for  into a symmetric space by 

M(, X).  

The following two axioms are given by Wilson[11] 

Definition 2.2. Let {xn} and {yn} be two sequences in a symmetric space (X, d) and x, y  X. 

The space X is said to satisfy the following axioms: 

(W. 1) lim
n→∞

d(xn, x) = lim
n→∞

d(xn, y) implies x = y  

(W. 2) lim
n→∞

d(xn, x) = lim
n→∞

d(xn, yn) implies d(yn, x) = 0 

The following definition is essentially due to Aamri and Moutawakil[1] on a metric space. 

Definition 2.3. Let X be a symmetric space. Two mappings S, T: XX satisfy the property 

(E.A.) if there exists a sequence{ξn} in M(, X) such that for some  M(, X) 
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lim
n→∞

 T(ω, ξn(ω)) = lim
n→∞

S(ω, ξn(ω)) =  ξ(ω) for every ωϵΩ  

 

3. Common Fixed Point Theorems 

Throughout this section we shall use the following notations: 

1. X: = A symmetric space (X, d) 

2. := A class of functions : [0, ∞)  [0, ∞) satisfying. 

a.  is continuous and monotone non-decreasing. 

b. (t) = 0 ⟺  t = 0.  

3. MT ((ω, x), (ω, y)) = max{d(x, y), d(x, T(ω, x)), d(y, T(ω, y)), d(x, T(ω, y)),

d(y, T(ω, x))} 

4. MS,T ((ω, x), (ω, y)) = max{d(x, y), d(x, S(ω, x)), d(y, T(ω, y)), d(x, T(ω, y)),

d(y, S(ω, x))} 

Definition 3.1. Let X be a metric space and T: XX. Then mapping T will be called a quasi-

weak contraction if  

ψ (d(T(ω, x), T(ω, y)))  ≤  ψ (MT((ω, x), (ω, y))) −  Ø (MT((ω, x), (ω, y))) 

for all x, yX,  where  ψ, Ø  .  

When ψ(t)  =  t and Ø(t)  =  (1 − k)t  with k  (0, 1), in the definition 3.1, we recover the well 

known quasi-contraction due to Ciric[7].  

 

3. Main Result 

Theorem 3.1: Let X be a symmetric space and T: XCB(X) be a quasi-contraction 

satisfying the property (E.A.). Then T has a unique random fixed point. 

Proof: since T satisfying the (E.A.) property, then there exists a sequences {n} in M (, X) 

such that   

lim
n→∞

T(ω, ξn(ω)) =  lim
n→∞

ξn(ω) =  ξ(ω) 

For every , for some M (, X).  

Since T is a quasi-weak contraction then we get 
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ψ (d (T(ω, ξ(ω)), T(ω, ξn(ω))))  

≤  ψ (MT ((ω, ξ(ω)), (ω, ξn(ω))))

−  Ø (MT ((ω, ξ(ω)), (ω, ξn(ω))))             (3.1)  

Now consider  

lim
n→∞

MT ((ω, ξ(ω)), (ω, ξn(ω)))

=  lim
n→∞

max ({d(ξ(ω), ξn(ω)), d (ξ(ω), T(ω, ξ(ω))) , d (ξn(ω), T(ω, ξn(ω))) ,

d (ξ(ω), T(ω, ξn(ω))) ,   d (ξn(ω), T(ω, ξ(ω)))}) 

=  max ({d(ξ(ω), ξ(ω)), d (ξ(ω), T(ω, ξ(ω))) , d(ξ(ω), ξ(ω)),

d(ξ(ω), ξ(ω)),   d (ξ(ω), T(ω, ξ(ω)))}) 

=  max ({0, d (ξ(ω), T(ω, ξ(ω))) , 0 , 0, d (ξ(ω), T(ω, ξ(ω)))}) 

                          =  d (ξ(ω), T(ω, ξ(ω))) 

lim
n→∞

MT ((ω, ξ(ω)), (ω, ξn(ω))) =  d (ξ(ω), T(ω, ξ(ω)))                                                 (3.2) 

Since ψ, Ø    then (3.1) and (3.2) implies that 

lim
n→∞

 ψ (d (T(ω, ξ(ω)), T(ω, ξn(ω)))) =  ψ (d (T(ω, ξ(ω)), ξ(ω))) 

   ≤  ψ (d (ξ(ω), T(ω, ξ(ω)))) −  Ø (d (ξ(ω), T(ω, ξ(ω)))) 

which is a contradiction.  

Hence T(ω, ξ(ω)) =  ξ(ω) 

Therefore ξ(ω) is a random fixed point of T. 

Uniqueness: To prove the uniqueness, we suppose that T has two distinct points  ξ1(ω) and 

ξ2(ω) then 

MT ((ω, ξ1(ω)), (ω, ξ2(ω)))

=  max ({d(ξ1(ω), ξ2(ω)), d (ξ1(ω), T(ω, ξ1(ω))) , d (ξ2(ω), T(ω, ξ2(ω))) ,

d (ξ1(ω), T(ω, ξ2(ω))) , d (ξ2(ω), T(ω, ξ1(ω)))}) 
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                          =  max({d(ξ1(ω), ξ2(ω)), d(ξ1(ω), ξ1(ω)), d(ξ2(ω), ξ2(ω)),

d(ξ1(ω), ξ2(ω)), d(ξ2(ω), ξ1(ω))})                                                               (3.3)  

                           = d(ξ1(ω), ξ2(ω)) 

Since ψ, Ø    then 

ψ (d(ξ1(ω), ξ2(ω))) =  ψ (d (T(ω, ξ1(ω)), T(ω, ξ2(ω)))) 

                                      ≤  ψ MT ((ω, ξ1(ω)), (ω, ξ2(ω))) −  Ø (MT ((ω, ξ1(ω)), (ω, ξ2(ω)))) 

= ψ (d(ξ1(ω), ξ2(ω))) −  Ø (d(ξ1(ω), ξ2(ω))) 

i. e.  ψ (d(ξ1(ω), ξ2(ω))) ≤ ψ (d(ξ1(ω), ξ2(ω))) −  Ø (d(ξ1(ω), ξ2(ω))) 

which is a contradiction  

so      d(ξ1(ω), ξ2(ω)) = 0. 

ξ1(ω) =  ξ2(ω) for every . 

Therefore ξ(ω) is a common unique random fixed point of T. 

Theorem 3.2: Let X be a symmetric space and S, T: XCB(X) be mappings satisfying the 

modified property (E.A.) such that 

ψ d (S(ω, x), T(ω, y)) ≤  ψ (MS,T((ω, x), (ω, y))) −  Ø (MS,T((ω, x), (ω, y))) 

for all x, yX,  where ψ, Ø  . Then T and S have a unique common random fixed point. 

Proof: Since S and T satisfies the (E.A.) property then there exists a sequences {n} in M(, X) 

such that  

lim
n→∞

T(ω, ξn(ω)) =  lim
n→∞

S(ω, ξn(ω)) =  lim
n→∞

ξn(ω) = ξ(ω) 

For every, for some  M (, X) since S and T is a quasi-weak contraction then we get 

d (S(ω, ξ(ω)), T(ω, ξn(ω)))

≤  ψ (MS,T ((ω, ξ(ω)), (ω, ξn(ω)))) −  Ø (MS,T ((ω, ξ(ω)), (ω, ξn(ω)))) 

Now consider 

lim
n→∞

MS,T ((ω, ξ(ω)), (ω, ξn(ω)))

=  lim
n→∞

max ({d(ξ(ω), ξn(ω)), d (ξ(ω), S(ω, ξ(ω))) , d (ξn(ω), T(ω, ξn(ω))) ,

d (ξ(ω), T(ω, ξn(ω))) ,   d (ξn(ω), S(ω, ξ(ω)))}) 
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                       =  max ({d(ξ(ω), ξ(ω)), d (ξ(ω), S(ω, ξ(ω))) , d(ξ(ω), ξ(ω)),

d(ξ(ω), ξ(ω)),   d (ξ(ω), S(ω, ξ(ω)))}) 

                       =  max ({0, d (ξ(ω), S(ω, ξ(ω))) , 0, 0,   d (ξ(ω), S(ω, ξ(ω)))}) 

                      = d (ξ(ω), S(ω, ξ(ω))) 

 ψ, Ø   then implies that 

lim
n→∞

ψ d (S(ω, ξ(ω)), T(ω, ξn(ω))) =  ψ (d (𝑆(ω, ξ(ω)), ξ(ω))) 

                                                                  ≤  ψ (d (ξ(ω), S(ω, ξ(ω)))) −  Ø (d (ξ(ω), S(ω, ξ(ω)))) 

which is a contradiction 

so  S(ω, ξ(ω)) =  ξ(ω) 

Therefore ξ(ω) is a fixed point of S. 

Similarly, we have proved that ξ(ω) is a fixed point of T. 

Uniqueness: To prove the uniqueness, we suppose that S and T has two distinct points  ξ1(ω) 

and ξ2(ω) then 

MS,T ((ω, ξ1(ω)), (ω, ξ2(ω)))  

≤ max {d(ξ1(ω), ξ2(ω)), d (ξ1(ω), S(ω, ξ1(ω))) , d (ξ2(ω), T(ω, ξ2(ω))) ,

d (ξ1(ω), T(ω, ξ2(ω))) ,   d (ξ2(ω), S(ω, ξ1(ω)))} 

MS,T ((ω, ξ1(ω)), (ω, ξ2(ω)))  

≤ max{d(ξ1(ω), ξ2(ω)), d(ξ1(ω), ξ1(ω)), d(ξ2(ω), ξ2(ω)),

d(ξ1(ω), ξ2(ω)),   d(ξ2(ω), ξ1(ω))}  

                            =  d(ξ1(ω), ξ2(ω)) 

Since ψ, Ø   then   

ψ d(ξ1(ω), ξ2(ω)) ≤  ψ (d (S(ω, ξ1(ω)), T(ω, ξ2(ω)))) 

                             ≤  ψ (MS,T(ω, ξ1(ω)), (ω, ξ2(ω))) −  Ø (MS,T(ω, ξ1(ω)), (ω, ξ2(ω))) 

                                  ≤  ψ (d(ξ1(ω), ξ2(ω))) −  Ø (d(ξ1(ω), ξ2(ω))) 

i. e. 
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ψ d(ξ1(ω), ξ2(ω)) ≤  ψ (d(ξ1(ω), ξ2(ω))) −  Ø (d(ξ1(ω), ξ2(ω))) 

which is a contradiction 

so d(ξ1(ω), ξ2(ω)) = 0  

⇒  ξ1(ω) =  ξ2(ω) for every ω ∈ Ω. 

Therefore, S and T have a common random unique fixed point. 
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