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1. Introduction

Let (X ,d) be a metric space and C be a nonempty closed and convex subset of X . A point x ∈C

is called a fixed point of a nonlinear mapping T : C→C, if

T x = x. (1.1)

The set of all fixed points of T is denoted by F(T ).

Many real life problems emanating from different disciplines such as Biology, Chemistry,

Physics and so on, are modelled into mathematical equations. Over the years mathematicians

have been able to express these equations in form of Equation (1.1). However, it became very

tedious to get an analytic solution to Equation (1.1). Thus, researchers in this area opted for

an approximate solutions. In view of this, different researchers came up with different iteration

process to approximate Equation (1.1) with suitable nonlinear mappings in different domain.

The Picard iterative process

xn+1 = T xn, ∀n ∈ N, (1.2)

is one of the earliest iterative process used to approximate Equation (1.1), where T is a con-

traction mapping. Recall that a mapping T : C→C is said to be a contraction mapping if there

exists k ∈ (0,1) such that

d(T x,Ty)≤ kd(x,y), ∀x,y ∈C. (1.3)

If k = 1 in (1.3), then T is called a nonexpansive mapping. In this case, the Picard iterative

process fails to approximate Equation (1.1) even when the existence of the fixed point is guaran-

teed. To overcome this limitation, researchers in this area developed different iterative processes

to approximate fixed points of nonexpansive mappings and other mappings more general than

nonexpansive mappings. Among many others, are; Mann [19], Ishikawa [11], Krasnosel’skii

[17], Agarwal [3], Noor [20] and so on. There are numerous papers dealing with the approxi-

mation of fixed points of nonexpansive mappings, asymptotically nonexpansive mappings, total

asymptotically nonexpansive mappings in uniformly convex Banach spaces and CAT(0) spaces

(for example, see [1, 2, 3, 13] and the references therein).
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In 2011, Sahu [23] introduced the Normal S-iteration process in Banach space and established

that the rate of convergence of the Normal S-iteration process is as fast as the Picard iteration

process but faster than other fixed point iteration process that was in existence then. The Normal

S-iteration process is defined as follows: Let C be a convex subset of a normed space E and

T : C→C be any nonlinear mapping. For each x1 ∈C, the sequence {xn} in C is defined by


yn = (1−αn)xn +αnT xn,

xn+1 = Tyn, n≥ 1,
(1.4)

where {αn} is a sequence in (0,1).

In time past, researchers in this area have introduced iterative processes whose rate of conver-

gence are faster than that of the Normal S-iteration. For example, in [12], Kadioglu and Yildirim

introduced Picard Normal S-iteration process and they established that the rate of convergence

of the Picard Normal S-iteration process is faster than the Normal S-iteration process. The Pi-

card Normal S-iteration process is defined as follows: Let C be a convex subset of a normed

space E and T : C→C be any nonlinear mapping. For each x1 ∈C, the sequence {xn} in C is

defined by 
zn = (1−βn)xn +βnT xn,

yn = (1−αn)zn +αnT zn,

xn+1 = Tyn, n≥ 1,

(1.5)

where {αn} and {βn} are sequences in (0,1).

Remark 1.1. Clearly, if αn = βn = 0, then iterative process (1.5) reduces to (1.2) and if βn = 0,

iterative process (1.5) reduces to (1.4).

It is worth mentioning that, in fixed point theory researchers try as much as possible to general-

ize existing maps. Suzuki [25] introduce a generalization of nonexpansive mapping called the

Suzuki-generalized nonexpansive mapping (or mapping satisfying condition (C)). We recall

form [25] that, for a nonempty subset K of a Banach space E. A mapping T : K→ K is said to
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satisfy condition (C) (or called Suzuki-generalized nonexpansive) if for all x,y ∈ K

1
2
||x−T x|| ≤ ||x− y|| ⇒ ||T x−Ty|| ≤ ||x− y||.

Suzuki [25] established the following result.

Theorem 1.2 ([25]). Let K be a nonempty convex subset of a Banach space E and T : K→ K

be a mapping satisfying condition (C). Assume also that either of the following holds:

(i) K is compact;

(ii) K is weakly compact and E has Opial property.

Then T has a fixed point.

Aoyama and Kohsaka [4] introduced another type of generalized nonexpansive mapping called

α-nonexpansive mapping.

Definition 1.3. Let E be a Banach space and C be a nonempty closed and convex subset of E.

A mapping T : C→C is said to be α-nonexpansive if for all x,y ∈C and α < 1,

||T x−Ty||2 ≤ α||T x− y||2 +α||Ty− x||2 +(1−2α)||x− y||2.

They obtained the following result.

Theorem 1.4 ([4]). Let C be a nonempty convex subset of a uniformly convex Banach space

E and T : C→C be an α-nonexpansive mapping. Then F(T ) is nonempty if and only if there

exists x ∈C such that {T n(x)} is bounded.

The Suzuki-generalized nonexpansive mapping and the α-nonexpansive mapping raised the

following natural question.

Question: Does there exists a class of mapping, which contain both the Suzuki-generalized

nonexpansive mapping and α-nonexpansive mapping.

The question was partially answered in affirmation by Pant and Shukla in [21]. Indeed, they

introduce and studied the generalized α-nonexpansive mapping in Banach space.
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Definition 1.5. Let E be a Banach space and C be a nonempty subset of E. A mapping T :C→C

is said to be a generalized α-nonexpansive if for all x,y ∈C there exists α ∈ [0,1) such that

1
2
||x−T x|| ≤ ||x− y|| ⇒ ||T x−Ty|| ≤ α||T x− y||+α||Ty− x||+(1−2α)||x− y||.

Example 1.6 ([21]). Let X = {(0,0),(2,0),(0,4),(4,0),(4,5),(5,4)} be a subset of R2. Define

a norm ‖·‖ on X by ‖(x1,x2)‖= |x1|+ |x2|. Then (X ,‖·‖) is a Banach space. Define a mapping

T : X → X by

T :

(0,0),(2,0),(0,4),(4,0),(4,5),(5,4)

(0,0),(0,0),(0,0),(2,0),(4,0),(0,4)

 , (1.6)

It was established in [21] that T is a generalized α-nonexpansive mapping for α ≥ 1
5 , but is

neither a Suzuki-generalize nonexpansive nor an α-nonexpansive mapping. Furthermore, exis-

tence and convergence results were established in [21].

Remark 1.7. (i) It is well-known that nonexpansive mappings satisfy condition C. How-

ever, the converse of this statement is not always true (see [25]).

(ii) Clearly, if α = 0, then α-nonexpansive mapping reduces to a nonexpansive mapping.

(iii) Also, if α = 0, then generalized α-nonexpansive mapping reduces to Suzuki-generalized

nonexpansive mapping.

Beside the nonlinear mappings involved in the study of fixed point theory, the role played by

the spaces involved is also very important. It is known in literature that Banach spaces have

been studied extensively. This is because of the fact that Banach spaces always have convex

structures. However, metric spaces do not naturally enjoy this structure. Therefore the need to

introduce convex structures to it arises. The notion of convex metric spaces was first introduced

by Takahashi [26] who studied the fixed point theory for nonexpansive mappings in the settings

of convex metric spaces. Since then, several attempts have been made to introduce different

convex structures on metric spaces. An example of a metric space with a convex structure is

the hyperbolic space. Different convex structures have been introduced to hyperbolic spaces

resulting to different definitions of hyperbolic spaces (see [8, 15, 22]). Although the class of

hyperbolic spaces defined by Kohlenbach [15] is slightly restrictive than the class of hyperbolic
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spaces introduced in [8], it is however, more general than the class of hyperbolic spaces in-

troduced in [22]. Moreover, it is well-known that Banach spaces are examples of hyperbolic

spaces introduced in [15]. Some other examples of this class of hyperbolic spaces includes

CAT(0) spaces, Hadamard manifords, Hilbert ball with the hyperbolic metric, Catesian prod-

ucts of Hilbert balls and R-trees. The reader should please see [8, 9, 15, 22] for more discussion

and examples of hyperbolic spaces.

It is worth mentioning that, as far as we know, no work has been done on fixed point problems

for generalized α-nonexpansive mappings in convex metric spaces. Therefore, it is necessary

to extend results on fixed point problems for generalized α-nonexpansive mappings from the

frame work of Banach spaces to the settings of hyperbolic spaces, since the class of hyperbolic

spaces generalizes the class of Banach spaces.

Motivated by all these facts, we introduce and study some fixed points properties and demiclose-

ness principle for generalized α-nonexpansive mapping in uniformly convex hyperbolic spaces

introduced by Kohlenbach [15], and establish both strong and ∆-convergence theorems for ap-

proximating fixed point of this class of mappings using the Picard Normal S-iteration. Thus, the

results obtained in this paper extend and generalize corresponding results in uniformly convex

Banach spaces and many other results in this direction.

2. Preliminaries

Throughout this paper, we carry out all our study in the frame work of hyperbolic space intro-

duced by Kohlenbach [15].

Definition 2.1. A hyperbolic space (X ,d,W ) is a metric space (X ,d) together with a convex

mapping W : X2× [0,1]→ X satisfying

(1) d(u,W (x,y,α))≤ αd(u,x)+(1−α)d(u,y);

(2) d(W (x,y,α),W (x,y,β )) = |α−β |d(x,y);

(3) W (x,y,α) =W (y,x,1−α);

(4) d(W (x,z,α),W (y,w,α))≤ (1−α)d(x,y)+αd(z,w);

for all w,x,y,z ∈ X and α,β ∈ [0,1].
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Example 2.2. [24] Let X be a real Banach space which is equipped with norm ||.||. Define the

function

d : X2→ [0,∞) by

d(x,y) = ||x− y||

as a metric on X . Then, we have that (X ,d,W ) is a hyperbolic space with mapping W : X2×

[0,1]→ X defined by W (x,y,α) = (1−α)x+αy.

Definition 2.3. [24] Let X be a hyperbolic space with a mapping W : X2× [0,1]→ X .

(i) A nonempty subset C of X is said to be convex if W (x,y,α) ∈ C for all x,y ∈ C and

α ∈ [0,1].

(ii) X is said to be uniformly convex if for any r > 0 and ε ∈ (0,2], there exists a δ ∈ (0,1]

such that for all x,y,z ∈ X

d(W (x,y,
1
2
),z)≤ (1−δ )r,

provided d(x,z)≤ r,d(y,z)≤ r and d(x,y)≥ εr.

(iii) A map η : (0,∞)× (0,2]→ (0,1] which provides such a δ = η(r,ε) for a given r > 0

and ε ∈ (0,2] is known as a modulus of uniform convexity of X . The mapping η is said

to be monotone, if it decreases with r (for a fixed ε).

Definition 2.4. Let C be a nonempty subset of a metric space X and {xn} be any bounded

sequence in C. For x ∈ X , let r(·,{xn}) : X → [0,∞) be a continuous functional defined by

r(x,{xn}) = limsup
n→∞

d(xn,x).

The asymptotic radius r(C,{xn}) of {xn} with respect to C is given by

r(C,{xn}) = inf{r(x,{xn}) : x ∈C}.

A point x ∈C is said to be an asymptotic center of the sequence {xn} with respect to C ⊆ X if

r(x,{xn}) = inf{r(y,{xn}) : y ∈C}.

The set of all asymptotic centers of {xn} with respect to C is denoted by A(C,{xn}). If the

asymptotic radius and the asymptotic center are taken with respect to X , then we simply denote
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them by r({xn}) and A({xn}) respectively.

It is well-known that in uniformly convex Banach spaces and CAT(0) spaces, bounded se-

quences have unique asymptotic center with respect to closed convex subsets.

Definition 2.5. [14]. A sequence {xn} in X is said to 4-converge to x ∈ X , if x is the unique

asymptotic center of {xnk} for every subsequence {xnk} of {xn}. In this case, we write 4-

lim
n→∞

xn = x.

Remark 2.6. [16]. We note that 4-convergence coincides with the usually weak convergence

known in Banach spaces with the usual Opial property.

Lemma 2.7. [18] Let X be a complete uniformly convex hyperbolic space with monotone mod-

ulus of uniform convexity η . Then every bounded sequence {xn} in X has a unique asymptotic

center with respect to any nonempty closed convex subset C of X .

Lemma 2.8. [7] Let X be a complete uniformly convex hyperbolic space with monotone mod-

ulus of uniform convexity η and let {xn} be a bounded sequence in X with A({xn}) = {x}.

Suppose {xnk} is any subsequence of {xn} with A({xnk}) = {x1} and {d(xn,x1)} converges,

then x = x1.

Lemma 2.9. [13] Let X be a complete uniformly convex hyperbolic space with monotone mod-

ulus of uniform convexity η . Let x∗ ∈ X and {tn} be a sequence in [a,b] for some a,b ∈ (0,1). If

{xn} and {yn} are sequences in X such that limsupn→∞ d(xn,x∗)≤ c, limsupn→∞ d(yn,x∗)≤ c

and limn→∞ d(W (xn,yn, tn),x∗) = c, for some c > 0. Then limn→∞ d(xn,yn) = 0.

Definition 2.10. Let C be a nonempty subset of a hyperbolic space X and {xn} be a sequence in

X . Then {xn} is called a Fejér monotone sequence with respect to C if for all x ∈C and n≥ 1,

d(xn+1,x)≤ d(xn,x).

Proposition 2.11. [10] Let {xn} be a sequence in X and C be a nonempty subset of X . Suppose

that T : C→C is any nonlinear mapping and the sequence {xn} is Fejer monotone with respect

to C, then we have the following:

(i) {xn} is bounded.
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(ii) The sequence {d(xn,x∗)} is decreasing and converges for all x∗ ∈ F(T ).

(iii) limn→∞ d(xn,F(T )) exists.

Lemma 2.12 ([21]). Let C be a nonempty subset of a hyperbolic space X . Let T : C→C be a

generalized α-nonexpansive mapping and F(T ) 6= /0, then T is quasi-nonexpansive.

Lemma 2.13 ([21]). Let C be a nonempty subset of a hyperbolic space X . Let T : C→C be a

generalized α-nonexpansive mapping, then for all x,y ∈C, ||x−Ty|| ≤ (3+α)
(1−α) ||x−T x||+ ||x−

y||.

3. Main Results

We recall that in a metric space X , a mapping T : C ⊆ X → C is said to be generalized α-

nonexpansive if for all x,y ∈C there exists α ∈ [0,1) such that

1
2

d(x,T x)≤ d(x,y)⇒ d(T x,Ty)≤ αd(T x,y)+αd(Ty,x)+(1−2α)d(x,y).

3.1. Fixed Points Properties for Generalized α-Nonexpansive Mappings.

Theorem 3.1. Let C be a nonempty closed and convex subset of a hyperbolic space X . Let

T : C→C be a generalized α-nonexpansive mapping and F(T ) 6= /0, then F(T ) is closed and

convex.

Proof. Let {xn} be a sequence in F(T ) such that {xn} converges to some y ∈C. We show that

y ∈ F(T ). Since 1
2d(xn,T xn) =

1
2d(T xn,T xn) = 0≤ d(xn,y), by definition of T , we obtain

d(xn,Ty)≤ αd(T xn,y)+αd(Ty,xn)+(1−2α)d(xn,y)

=⇒(1−α)d(xn,Ty)≤ αd(xn,y)+(1−2α)d(xn,y)

=⇒d(xn,Ty)≤ d(xn,y),

Since lim
n→∞

d(xn,y) = 0, then by sandwich theorem, we obtain

lim
n→∞

d(xn,Ty) = 0.
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By the uniqueness of limit, we have that

Ty = y.

Hence, F(T ) is closed.

Next, we show that F(T ) is convex. Let x,y∈F(T ), since 1
2d(x,T x) = 1

2d(T x,T x) = 0≤ d(x,z)

and 1
2d(y,Ty) = 1

2d(Ty,Ty) = 0≤ d(y,z), by definition of T , we obtain

d(x,T z)≤ αd(T x,z)+αd(T z,x)+(1−2α)d(x,z)

⇒(1−α)d(x,T z)≤ αd(x,z)+(1−2α)d(x,z)

⇒d(x,T z)≤ d(x,z). (3.1)

Using similar argument, we have

d(y,T z)≤ d(y,z). (3.2)

Let z =W (x,y,β ), for β ∈ [0,1], then from (3.1) and (3.2), we obtain

d(x,y)≤ d(x,T z)+d(T z,y)

≤ d(x,z)+d(z,y) (3.3)

= d(x,W (x,y,β ))+d(W (x,y,β ),y)

≤ (1−β )d(x,x)+βd(x,y)+(1−β )d(x,y)+βd(y,y)

= d(x,y).

Hence, we conclude that (3.1) and (3.2) are d(x,T z) = d(x,z) and d(y,T z) = d(y,z) respectively.

Because if d(x,T z) < d(x,z) or d(y,T z) < d(y,z), then the inequality in (3.3) becomes strictly

less than, which therefore gives us a contradiction, that is, d(x,y)< d(x,y). Hence, we have that

T z = z. Thus, W (x,y,β ) ∈ F(T ), which implies that F(T ) is convex. �

In view of Remark 1.7, we have the following corollaries.

Corollary 3.2. Let C be a nonempty closed and convex subset of a hyperbolic space X . Let

T : C→C be a nonexpansive mapping and F(T ) 6= /0, then F(T ) is closed and convex.
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Corollary 3.3. Let C be a nonempty closed and convex subset of a hyperbolic space X . Let

T : C→C be a Suzuki-generalized nonexpansive mapping and F(T ) 6= /0, then F(T ) is closed

and convex.

Next, we establish the demiclosedness principle for generalized α-nonexpansive mappings in

hyperbolic spaces.

Theorem 3.4. Let C be a nonempty closed and convex subset of a complete hyperbolic space X

with monotone modulus of uniform convexity η . Let T : C→C be a generalized α-nonexpansive

mapping and {xn} be a bounded sequence in C such that limn→∞ d(xn,T xn)= 0 and ∆-limn→∞ xn =

x. Then x ∈ F(T ).

Proof. Since {xn} is a bounded sequence in X , we have from Lemma 2.7 that {xn} has a unique

asymptotic center in C. Also, since ∆− limn→∞ xn = x, we have that A({xn}) = {x}. Using

Lemma 2.13 and the hypothesis that limn→∞ d(xn,T xn) = 0, we have

d(xn,T x)≤ (3+α)

(1−α)
d(xn,T xn)+d(xn,x),

taking limsupn→∞, we have

limsup
n→∞

d(xn,T x)≤ (3+α)

(1−α)
limsup

n→∞

d(xn,T xn)+ limsup
n→∞

d(xn,x)

= limsup
n→∞

d(xn,x).

By the uniqueness of asymptotic center, we obtain that T x = x. Hence x ∈ F(T ). �

3.2. Strong and ∆-Convergence Theorems for α-Nonexpansive Mappings. We now study

iterative process (1.5) in hyperbolic spaces. Let C be a nonempty closed and convex subset of a

complete uniformly convex hyperbolic space X and T : C→C be a generalized α-nonexpansive

mapping. The sequence {xn} is defined recursively as follows:

x1 ∈C,

zn =W (xn,T xn,βn),

yn =W (zn,T zn,γn),

xn+1 =W (Tyn,0,0), n≥ 1,

(3.4)
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where {γn} and {βn} are sequences in (0,1). We now state and prove the following lemmas

which will be needed in the proof of our main theorems. In the course of establishing our result,

we note that for all x∗ ∈ F(T ), we have

1
2

d(x∗,T x∗) =
1
2

d(x∗,x∗)≤ d(x∗,zn),

1
2

d(x∗,T x∗) =
1
2

d(x∗,x∗)≤ d(x∗,xn) and

1
2

d(x∗,T x∗) =
1
2

d(x∗,x∗)≤ d(x∗,yn), (3.5)

which by the definition of T , implies

d(T x∗,T zn)≤ αd(T x∗,zn)+αd(T zn,x∗)+(1−2α)d(x∗,zn)

d(T x∗,T xn)≤ αd(T x∗,xn)+αd(T xn,x∗)+(1−2α)d(x∗,xn) and

d(T x∗,Tyn)≤ αd(T x∗,yn)+αd(Tyn,x∗)+(1−2α)d(x∗,yn). (3.6)

Lemma 3.5. Let C be a nonempty closed and convex subset of a hyperbolic space X . Let T :

C→C be a generalized α-nonexpansive mapping and F(T ) 6= /0. Suppose that {xn} is defined

by (3.4), where {βn} and {γn} are sequences in (0,1), then the following hold:

(i) {xn} is bounded.

(ii) limn→∞ d(xn,x∗) exists for all x∗ ∈ F(T ).

(iii) limn→∞ d(xn,F(T )) exists.

Proof. Let x∗ ∈ F(T ), then from (3.6) and Lemma 2.12, we obtain

d(T x∗,T zn)≤ d(x∗,zn)

d(T x∗,T xn)≤ d(x∗,xn),

d(T x∗,Tyn)≤ d(x∗,yn). (3.7)
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Again, from (3.4) and (3.7), we have

d(zn,x∗) = d(W (xn,T xn,βn),x∗)

≤ (1−βn)d(xn,x∗)+βnd(T xn,x∗)

≤ (1−βn)d(xn,x∗)+βnd(xn,x∗)

= d(xn,x∗). (3.8)

From (3.4), (3.7) and (3.8), we obtain

d(yn,x∗) = d(W (zn,T zn,γn),x∗)

≤ (1− γn)d(zn,x∗)+ γnd(T zn,x∗)

≤ (1− γn)d(zn,x∗)+ γnd(zn,x∗)

= d(zn,x∗) (3.9)

≤ d(xn,x∗).

From (3.4), (3.7) and (3.9), we obtain

d(xn+1,x∗) = d(W (Tyn,0,0),x∗)

≤ d(Tyn,x∗)

≤ (yn,x∗) (3.10)

≤ d(xn,x∗),

which implies that d(xn+1,x∗) ≤ d(xn,x∗) for all x∗ ∈ F(T ). Hence, {xn} is Fejer monotone

with respect to F(T ) and by Proposition 2.11, {xn} is bounded, limn→∞ d(xn,x∗) exists for all

x∗ ∈ F(T ) and limn→∞ d(xn,F(T )) exists. �

Lemma 3.6. Let X be a complete uniformly convex hyperbolic space with monotone modulus

of uniform convexity η and C be a nonempty closed and convex subset of X . Let T : C→C be

a generalized α-nonexpansive mapping and F(T ) 6= /0. Suppose that {xn} is defined by (3.4),

where {βn} and {γn} are sequences in (0,1), then limn→∞ d(xn,T xn) = 0.
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Proof. From Lemma 3.5, we have that limn→∞ d(xn,x∗) exists for all x∗ ∈ F(T ). Suppose that

limn→∞ d(xn,x∗) = c. If we take c = 0, then we are done. Thus, we consider the case where

c > 0.

Since

1
2

d(x∗,T x∗) = 0≤ d(x∗,xn),

we obtain from the definition of T that

d(x∗,T xn) = d(T x∗,T xn)≤ αnd(T x∗,xn)+αnd(T xn,x∗)+(1−2αn)d(x∗,xn)

⇒(1−αn)d(x∗,T xn)≤ (1−αn)d(xn,x∗)

⇒d(x∗,T xn)≤ d(xn,x∗).

Thus,

limsup
n→∞

d(T xn,x∗)≤ c.

From (3.8), we have

d(zn,x∗)≤ d(xn,x∗),

which implies that

limsup
n→∞

d(zn,x∗)≤ c. (3.11)

From (3.9) and (3.10), we have

d(xn+1,x∗)≤ d(zn,x∗).

Thus, taking liminfn→∞, we have that

c≤ liminf
n→∞

d(zn,x∗). (3.12)

From (3.11) and (3.12), we obtain that limn→∞ d(zn,x∗) = c. That is,

lim
n→∞

d(W (xn,T xn,βn),x∗) = c.

Thus, by Lemma 2.9, we have

lim
n→∞

d(xn,T xn) = 0.

�
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Theorem 3.7. Let C be a nonempty closed and convex subset of a complete hyperbolic space X

with monotone modulus of uniform convexity η . Let T : C→C be a generalized α-nonexpansive

mapping with F(T ) 6= /0. Suppose that the sequence {xn} is defined by (3.4), then {xn} ∆-

converges to a fixed point of T.

Proof. Let W∆(xn) := ∪A({un}), where the union is taken over all subsequence {un} of {xn}.

We now show that W∆(xn)⊂ F(T ) and that W∆(xn) contains only one point.

Let u∈W∆(xn), then by Lemma 3.5, there exists a subsequence {un} of {xn} such that A({un})=

{u}. This implies from Lemma 2.7 that we can find a subsequence {vn} of {un} such that

∆− limn→∞ vn = v, for some v ∈C. By Lemma 3.6, we have that limn→∞ d(vn,T vn) = 0, which

together with Theorem 3.4 gives that v∈ F(T ). Therefore, {d(un,v)} converges and by Lemma

2.8, we have that v = u ∈ F(T ). Hence, W∆(xn)⊂ F(T ).

Next, we show that W∆(xn) contains only one point. Let A({xn}) = {x} and {un} be arbitrary

subsequence of {xn} such that A({un}) = {u}. Then by Lemma 3.5, we have that {d(xn,u)}

converges, since u ∈ F(T ). Thus, by Lemma 2.8, we have that u = x ∈ F(T ). Hence, W∆(xn) =

{x}. Therefore, {xn} 4-converges to a common fixed point of T . �

Theorem 3.8. Let C be a nonempty closed and convex subset of a complete hyperbolic space X

with monotone modulus of uniform convexity η . Let T : C→C be a generalized α-nonexpansive

mapping with F(T ) 6= /0 and the sequence {xn} be generated by (3.4). Then the sequence {xn}

converges strongly to some fixed point of T if and only if liminfn→∞ d(xn,F(T )) = 0, where

d(xn,F(T )) = infx∈F(T ) d(xn,x).

Proof. Suppose that {xn} converges to a fixed point, say x∗ of T. Then limn→∞ d(xn,x∗) =

0, and since 0 ≤ d(xn,F(T )) ≤ d(xn,x∗), it follows that limn→∞ d(xn,F(T )) = 0. Therefore,

liminfn→∞ d(xn,F(T )) = 0.

Conversely, suppose that liminfn→∞ d(xn,F(T ))= 0. From Lemma 3.5, we have that limn→∞ d(xn,F(T ))

exists and so, it follows that limn→∞ d(xn,F(T )) = 0. Suppose that {xnk} is any arbitrary subse-

quence of {xn} and {pk} a sequence in F(T ) such that for all n≥ 1,

d(xnk , pk)<
1
2k .
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From (3.10), we obtain that

d(xn+1, pk)≤ d(xnk , pk)<
1
2k .

Thus,

d(pk+1, pk)≤ d(pk+1,xn+1)+d(xn+1, pk)

<
1

2k+1 +
1
2k

<
1

2k−1 .

This shows that {pk} is a Cauchy sequence in F(T ). Also, by Lemma 3.1, we have that F(T )

is closed. Thus, {pk} is a convergent sequence in F(T ) and say it converges to q ∈ F(T ).

Therefore, since

d(xnk ,q)≤ d(xnk , pk)+d(pk,q)→ 0 as n→ ∞,

we have limn→∞ d(xnk ,q)= 0 and so {xnk} converges strongly to q∈F(T ). Since, limn→∞ d(xn,q)

exists, it follows that {xn} converges strongly to q. �

Theorem 3.9. Let C be a nonempty closed and convex subset of a complete hyperbolic space X

with monotone modulus of uniform convexity η . Let T : C→C be a generalized α-nonexpansive

mapping with F(T ) 6= /0 and the sequence {xn} be generated by (3.4). Suppose that there exists a

nondecreasing function f : [0,∞)→ [0,∞) with f (0) = 0 and f (t)> 0 for all t ∈ (0,∞) such that

f (d(x,F(T ))≤ d(x,T x) for all x ∈C. Then the sequence {xn} converges strongly to x∗ ∈ F(T ).

Proof. From Lemma 3.5, we have limn→∞ d(xn,F(T )) exist and by Lemma 3.6, we have limn→∞ d(xn,T xn)=

0. Using the fact that f (d(x,F(T ))≤ d(x,T x) for all x∈C, we have that limn→∞ f (d(xn,F(T )))=

0. Since f is nondecreasing with f (0) = 0 and f (t) > 0 for t ∈ (0,∞), it then follows that

limn→∞ d(xn,F(T )) = 0. Hence, by Theorem 3.8 {xn} converges strongly to x∗ ∈ F(T ). �

In view of Remark 1.1, be letting βn = 0, (3.4) becomes:
x1 ∈C,

yn =W (xn,T xn,γn),

xn+1 =W (T xn,0,0), n≥ 1,

(3.13)
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where {γn} is a sequence in (0,1). Thus, the following corollaries hold.

Corollary 3.10. Let C be a nonempty closed and convex subset of a complete hyperbolic

space X with monotone modulus of uniform convexity η . Let T : C → C be a generalized

α-nonexpansive mapping with F(T ) 6= /0. If {xn} is the sequence defined by (3.13), then {xn}

∆-converges to a fixed point of T.

Corollary 3.11. Let C be a nonempty closed and convex subset of a complete hyperbolic

space X with monotone modulus of uniform convexity η . Let T : C → C be a generalized

α-nonexpansive mapping with F(T ) 6= /0. If {xn} is the sequence defined by (3.13), then {xn}

converges strongly to some fixed point of T if and only if liminfn→∞ d(xn,F(T )) = 0, where

d(xn,F(T )) = infx∈F(T ) d(xn,x).

Corollary 3.12. Let C be a nonempty closed and convex subset of a complete hyperbolic

space X with monotone modulus of uniform convexity η . Let T : C → C be a generalized

α-nonexpansive mapping with F(T ) 6= /0 and the sequence {xn} be defined by (3.13). Suppose

that there exists a nondecreasing function f : [0,∞)→ [0,∞) with f (0) = 0 and f (t)> 0 for all

t ∈ (0,∞) such that f (d(x,F(T )) ≤ d(x,T x) for all x ∈ C. Then the sequence {xn} converges

strongly to x∗ ∈ F(T ).

In view of Remark 1.7, the following corollaries also hold.

Corollary 3.13. Let C be a nonempty closed and convex subset of a complete hyperbolic space

X with monotone modulus of uniform convexity η . Let T : C → C be a Suzuki-generalized

nonexpansive mapping with F(T ) 6= /0. Let the sequence {xn} be defined by (3.4), then {xn}

∆-converges to a fixed point of T.

Corollary 3.14. Let C be a nonempty closed and convex subset of a complete hyperbolic space

X with monotone modulus of uniform convexity η . Let T : C → C be a Suzuki-generalized

nonexpansive mapping with F(T ) 6= /0. Let the sequence {xn} be defined by (3.4), then {xn}

converges strongly to some fixed point of T if and only if liminfn→ d(xn,F(T )) = 0, where

d(xn,F(T )) = infx∈F(T ) d(xn,x).
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Corollary 3.15. Let C be a nonempty closed and convex subset of a complete hyperbolic space

X with monotone modulus of uniform convexity η . Let T : C → C be a Suzuki-generalized

nonexpansive mapping with F(T ) 6= /0 and the sequence {xn} be defined by (3.4). Suppose that

there exists a nondecreasing function f : [0,∞)→ [0,∞) with f (0) = 0 and f (t) > 0 for all

t ∈ (0,∞) such that f (d(x,F(T )) ≤ d(x,T x) for all x ∈ C. Then the sequence {xn} converges

strongly to x∗ ∈ F(T ).
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