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Abstract. In this paper, we obtain the Tripled best proximity point theorems for mixed g-monotone mappings in
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1. Introduction

The existence and uniqueness of a fixed point of non-self mappings is one of the interesting

subjects in fixed point theory. In fact, given nonempty closed subsets A and B of a complete

metric space (X, d), a contraction non-self-mapping T : A→ B does not necessarily yield a fixed

∗Corresponding author

E-mail address: vinitadewangan12@gmail.com

Received August 6, 2017

544



TRIPLED BEST PROXIMITY POINT THEOREM 545

point T x = x. In this case, it is very natural to investigate whether there is an element x such

that d(x, Tx) is minimum. A notion of best proximity point appears at this point.

Let (X, d) is a metric space, and A, B are subsets of X. A point x is called best proximity

point of T : A→ B if d(x,T x) = d(A,B), where d(A,B) = inf{d(x,y) : x ∈ A,y ∈ B}.

A best proximity point represents an optimal approximate solution to the equation T x = x

whenever a non-self-mapping T has no fixed point. It is clear that a fixed point coincides with

a best proximity point if d(A,B) = 0. Since a best proximity point reduces to a fixed point if

the underlying mapping is assumed to be self-mappings, the best proximity point theorems are

natural generalizations of the Banachs contraction principle.

In 1969, Fan [1] introduced the notion of a best proximity and established a classical best

approximation theorem. Subsequently, many researchers have studied the best proximity point

results in many ways (see in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). The study of the existence

of best proximity point in the setting of partially ordered metric spaces has been considered in

[15, 16, 17, 18, 19, 20]. Bhaskar and Lakshmikanthan [21] proved the existence of a new fixed

point theorem for a mixed monotone mapping in a metric space with the help of partial order,

this new type of fixed point called as coupled fixed point. This concept is extended to tripled

fixed point by Berinde and Borcut [22]. They obtained the existence and uniqueness theorems

for contractive mappings in partially ordered complete metric spaces. In recent years many

authors established various coupled and tripled fixed point theorems in partially ordered metric

space (see [23, 24, 25, 26, 27, 28, 29, 30, 31, 32] and references there in).

2. Preliminaries

We recall the main concepts needed to present our results.

Let A and B be two nonempty subsets of a metric space (X,d). We denote by A0 and B0 the

following sets:

A0 = {x ∈ A : d(x,y) = d(A,B) f or some y ∈ B}

B0 = {y ∈ B : d(x,y) = d(A,B) f or some x ∈ A}
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where d(A,B) = inf{d(x,y) : x ∈ A,y ∈ B}.

We refer to [2] for sufficient conditions that guarantee that A0 and B0 are nonempty.

Now, we endow the set X with a partial order. Let (X ,≤) be a partially ordered set and let d

be a metric on X such that (X,d) is a complete metric space. Consider on the product space X3

the following partial order: for (x,y,z),(u,v,w) ∈ X3,

(x,y,z)≤ (u,v,w)⇔ x≤ u,y≥ v,z≤ w.

Definition 2.1. [22] Let (X ,≤) be a partially ordered set and F : X3→ X. We say that F has

the mixed monotone property if F(x,y,z) is monotone nondecreasing in x and z, and is monotone

nonincreasing in y, that is, for any x,y,z ∈ X

x1,x2 ∈ X x1 ≤ x2⇒ F(x1,y,z)≤ F(x2,y,z),

y1,y2 ∈ X y1 ≤ y2⇒ F(x,y1,z)≥ F(x,y2,z),

z1,z2 ∈ X z1 ≤ z2⇒ F(x,y,z1)≤ F(x,y,z2).

Definition 2.2. [22] Let X be a non-empty set. An element (x,y,z) ∈ X3 is called a tripled fixed

point of the mapping F if F(x,y,z) = x and F(y,x,y) = y and F(z,y,x) = z.

Definition 2.3. [33] A mapping F : A3→ B is said to be the proximal mixed monotone property

if F(x,y,z) is proximally nondecreasing in x and z, and is proximally nonincreasing in y, that is

x1 ≤ x2 ≤ x3

d(u1,F(x1,y,z)) = d(A,B)

d(u2,F(x2,y,z)) = d(A,B)

d(u3,F(x3,y,z)) = d(A,B)

⇒ u1 ≤ u2 ≤ u3,



y1 ≤ y2 ≤ y3

d(v1,F(x,y1,z)) = d(A,B)

d(v2,F(x,y2,z)) = d(A,B)

d(v3,F(x,y3,z)) = d(A,B)

⇒ v3 ≤ v2 ≤ v1,
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and 

z1 ≤ z2 ≤ z3

d(w1,F(x,y,z1)) = d(A,B)

d(w2,F(x,y,z2)) = d(A,B)

d(w3,F(x,y,z3)) = d(A,B)

⇒ w1 ≤ w2 ≤ w3,

where x1,x2,x3,y1,y2,y3,z1,z2,z3,u1,u2,u3,v1,v2,v3,w1,w2,w3 ∈ A.

If A = B in the above definition, the notion of proximal mixed monotone property reduces to

that of mixed monotone property.

Definition 2.4. Let Φ denote all functions φ : [0,∞)→ [0,∞) which satisfy

(i) φ is continuous and nondecreasing,

(ii) φ(t) = 0 if and only if t = 0,

(iii) φ(t + s)≤ φ(t)+φ(s),∀t,s ∈ (0,∞].

Definition 2.5. Let ψ denote all functions ψ : [0,∞)→ [0,∞) which satisfy limt→r ψ(t)> 0 for

all r > 0 and limt→0+ ψ(t) = 0.

Luong and Thuan [24], obtained a more general result of coupled fixed point following.

Theorem 2.6. Let (X ,≤) be a partially ordered set and suppose there is a metric d on X such

that (X,d) is a complete metric space. Let F : X×X→X be mapping having the mixed monotone

property on X such that

φ
(
d(F(x,y),F(u,v))

)
≤ 1

2
φ
(
d(x,u)+d(y,v)

)
−ψ

(d(x,u)+d(y,v)
2

)
for all x,y,u,v ∈ X with x≥ u and y≤ v, where ψ ∈Ψ and φ ∈Φ. If there exist x0,y0 ∈ X such

that x0 ≤ F(x0,y0) and y0 ≥ F(y0,x0). Suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn}→ x, then xn ≤ x for all n,

(ii) if a non-increasing sequence {yn}→ y, then y≥ yn for all n.
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Then there exist x,y ∈ X such that F(x,y) = x and F(y,x) = y.

In [16], Kumam et al. generalized the results of Luong and Thuan [24]. Recently, Nantadilok

and Chaipornjareansri [33], extended the main result of Kumam et al. [16]. The main result of

in [33] is the following.

Theorem 2.7. Let (X ,d,≤) be a partially ordered complete metric space. Let A, B be nonempty

closed subsets of the metric space (X, d) such that A0 6= /0. Let F : A×A×A→ B satisfy the

following conditions:

(a) F is continuous proximally tripled weak (ψ,φ) contraction on A having the proximal

mixed monotone property on A such that F(A0,A0,A0)⊆ B0.

(b) there exist elements (x0,y0,z0) and (x1,y1,z1) ∈ A0×A0×A0 such that

d(x1,F(x0,y0,z0)) = d(A,B) with x0 ≤ x1,

d(y1,F(y0,x0,z0)) = d(A,B) with y0 ≥ y1, and

d(z1,F(z0,y0,x0)) = d(A,B) with z0 ≤ z1.

Then, there exists (x,y,z) ∈ A× A× A such that d(x,F(x,y,z)) = d(A,B), d(y,F(y,x,z)) =

d(A,B) and d(z,F(z,y,x)) = d(A,B).

Motivated by the above theorems, we first define the concept of proximal mixed g-monotone

property and proximally tripled weak (ψ,φ) contraction on A. We also explore the existence

and uniqueness of tripled best proximity points in the setting of partially ordered metric spaces.

Further, we attempt to give the generalization of Theorem 2.7.

3. Tripled best proximity point theorems

Let X be a nonempty set. We recall that an element (x,y,z)∈X×X×X is called a tripled coinci-

dence point of two mappings F : X×X×X → X and g : X → X provided that F(x,y,z) = g(x),

F(y,x,y) = g(y) and F(z,y,x) = g(z) for all x,y,z ∈ X . Also, we say that F and g are com-

mutative if g(F(x,y,z)) = F(g(x),g(y),g(z)) for all x,y,z ∈ X . We now present the following

definitions.
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Definition 3.1. Let (X ,d,≤) be a partially ordered metric space. Let A, B be nonempty subsets

of X, and F : A×A×A→ B and g : A→ A be two given mappings. We say that F has the

proximal mixed g-monotone property provided that for all x,y,z ∈ A, if

g(x1)≤ g(x2)≤ g(x3),

d
(
g(u1),F(g(x1),g(y),g(z))

)
= d(A,B)

d
(
g(u2),F(g(x2),g(y),g(z))

)
= d(A,B)

d
(
g(u3),F(g(x3),g(y),g(z))

)
= d(A,B)

=⇒ g(u1)≤ g(u2)≤ g(u3),



g(y1)≤ g(y2)≤ g(y3),

d
(
g(v1),F(g(x),g(y1),g(z))

)
= d(A,B)

d
(
g(v2),F(g(x),g(y2),g(z))

)
= d(A,B)

d
(
g(v3),F(g(x),g(y3),g(z))

)
= d(A,B)

=⇒ g(v3)≤ g(v2)≤ g(v1),

and 

g(z1)≤ g(z2)≤ g(z3),

d
(
g(w1),F(g(x),g(y),g(z1))

)
= d(A,B)

d
(
g(w2),F(g(x),g(y),g(z2))

)
= d(A,B)

d
(
g(w3),F(g(x),g(y),g(z3))

)
= d(A,B)

=⇒ g(w1)≤ g(w2)≤ g(w3),

where x1,x2,x3,y1,y2,y3,z1,z2,z3,u1,u2,u3,v1,v2,v3,w1,w2,w3 ∈ A.

Definition 3.2. Let (X ,d,≤) be a partially ordered metric space and A, B are nonempty subsets

of X. Let F : A×A×A→ B and g : A→ A be two given mappings. F is said to be proximally

tripled weak (ψ,φ) contraction on A, whenever
g(x1)≤ g(x2), g(y1)≥ g(y2), g(z1)≤ g(z2)

d
(
g(u1),F(g(x1),g(y1),g(z1))

)
= d(A,B)

d
(
g(u2),F(g(x2),g(y2),g(z2))

)
= d(A,B)
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=⇒ φ
(
d(g(u1),g(u2))

)
≤ 1

3
φ

(
d(g(x1),g(x2))+d(g(y1),g(y2))+d(g(z1),g(z2))

)
−ψ

(d(g(x1),g(x2))+d(g(y1),g(y2))+d(g(z1),g(z2))

3

)
,

(3.1)

where x1,x2,y1,y2,z1,z2,u1,u2 ∈ A.

Lemma 3.3. Let (X ,d,≤) be a partially ordered metric space and A, B be nonempty subsets of

X, A0 6= /0 and F : A×A×A→ B and g : A→ A be two given mappings. If F has the proximal

mixed g-monotone property, with g(A0) = A0, F(A0,A0,A0)⊆ B0.

g(x1)≤ g(x2)≤ g(x3), g(y3)≤ g(y2)≤ g(y1),

g(z1)≤ g(z2)≤ g(z3)

d
(
g(u1),F(g(x1),g(y1),g(z1))

)
= d(A,B)

d
(
g(u2),F(g(x2),g(y2),g(z2))

)
= d(A,B)

d
(
g(u3),F(g(x3),g(y3),g(z3))

)
= d(A,B)

=⇒ g(u1)≤ g(u2)≤ g(u3) (3.2)

where x1,x2,x3,y1,y2,y3,z1,z2,z3,u1,u2,u3 ∈ A0.

Proof. Since g(A0) = A0, F(A0,A0,A0)⊆ B0, it follows that F(g(x3),g(y1),g(z1)) ∈ B0. Hence

there exists g(u∗1) ∈ A0 such that

d(g(u∗1),F(g(x3),g(y1),g(z1))) = d(A,B). (3.3)

Using the fact that F has the proximal mixed g-monotone property, together with (3.2) and (3.3),

we get 

g(x1)≤ g(x2)≤ g(x3)

d
(
g(u1),F(g(x1),g(y1),g(z1))

)
= d(A,B)

d
(
g(u2),F(g(x2),g(y2),g(z2))

)
= d(A,B)

d
(
g(u∗1),F(g(x3),g(y1),g(z1))

)
= d(A,B)

=⇒ g(u1)≤ g(u2)≤ g(u∗1). (3.4)
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Also, from the proximal mixed g-monotone property of F with (3.2) and (3.4), we get
g(y3)≤ g(y2)≤ g(y1)

d
(
g(u3),F(g(x3),g(y3),g(z3))

)
= d(A,B)

d
(
g(u∗1),F(g(x3),g(y1),g(z1))

)
= d(A,B)

=⇒ g(u∗1)≤ g(u3). (3.5)

From (3.4) and (3.5) , one can conclude the g(u1)≤ g(u2)≤ g(u3). Hence the proof is complete.

�

Lemma 3.4. Let (X ,d,≤) be a partially ordered metric space and A, B be nonempty subsets of

X, A0 6= /0 and F : A×A×A→ B and g : A→ A be two given mappings. Let F have the proximal

mixed g-monotone property, with g(A0) = A0, F(A0,A0,A0)⊆ B0. If

g(x1)≤ g(x2)≤ g(x3), g(y3)≤ g(y2)≤ g(y1),

g(z1)≤ g(z2)≤ g(z3)

d
(
g(v1),F(g(y1),g(x1),g(z1))

)
= d(A,B)

d
(
g(v2),F(g(y2),g(x2),g(z2))

)
= d(A,B)

d
(
g(v3),F(g(y3),g(x3),g(z3))

)
= d(A,B)

=⇒ g(v3)≤ g(v2)≤ g(v1), (3.6)

where x1,x2,x3,y1,y2,y3,z1,z2,z3,v1,v2,v3 ∈ A0.

Proof. Since g(A0) = A0, F(A0,A0,A0)⊆ B0, it follows that F(g(y3),g(x1),g(z1)) ∈ B0. Hence

there exists g(v∗1) ∈ A0 such that

d(g(v∗1),F(g(y3),g(x1),g(z1))) = d(A,B). (3.7)

Using the fact that F has the proximal mixed g-monotone property, together with (3.6) and (3.7),

we get

g(x1)≤ g(x2)≤ g(x3), g(y3)≤ g(y2)≤ g(y1),

d
(
g(v1),F(g(y1),g(x1),g(z1))

)
= d(A,B)

d
(
g(v2),F(g(y2),g(x2),g(z2))

)
= d(A,B)

d
(
g(v∗1),F(g(y3),g(x1),g(z1))

)
= d(A,B)

=⇒ g(v∗1)≤ g(v2)≤ g(v1). (3.8)
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Also, from the proximal mixed g-monotone property of F with (3.6) and (3.8), we get
g(x1)≤ g(x2)≤ g(x3), g(z1)≤ g(z2)≤ g(z3)

d
(
g(v3),F(g(y3),g(x3),g(z3))

)
= d(A,B)

d
(
g(v∗1),F(g(y3),g(x1),g(z1))

)
= d(A,B)

=⇒ g(v3)≤ g(v∗1). (3.9)

From (3.8) and (3.9) , one can conclude the g(v3)≤ g(v2)≤ g(v1). Hence the proof is complete.

�

Lemma 3.5. Let (X ,d,≤) be a partially ordered metric space and A, B be nonempty subsets of

X, A0 6= /0 and F : A×A×A→ B and g : A→ A be two given mappings. If F has the proximal

mixed g-monotone property, with g(A0) = A0, F(A0,A0,A0)⊆ B0

g(x1)≤ g(x2)≤ g(x3), g(y3)≤ g(y2)≤ g(y1),

g(z1)≤ g(z2)≤ g(z3)

d
(
g(w1),F(g(x1),g(y1),g(z1))

)
= d(A,B)

d
(
g(w2),F(g(x2),g(y2),g(z2))

)
= d(A,B)

d
(
g(w3),F(g(x3),g(y3),g(z3))

)
= d(A,B)

=⇒ g(w1)≤ g(w2)≤ g(w3), (3.10)

where x1,x2,x3,y1,y2,y3,z1,z2,z3,w1,w2,w3 ∈ A0.

Proof. The proof is similar to that of Lemma 3.3 and Lemma 3.4. �

The following main result is a tripled best proximity point theorem for non-self weak (ψ,φ)

proximal contractions.

Theorem 3.6. Let (X ,d,≤) be a partially ordered complete metric space. Let A, B be nonempty

closed subsets of the metric space (X, d) such that A0 6= /0. Let F : A×A×A→ B and g : A→ A

be two given mappings satisfying the following conditions:

(a) F and g are continuous;

(b) F has the proximal mixed g-monotone property on A such that g(A0)=A0, F(A0,A0,A0)⊆

B0;

(c) F is a proximally tripled weak (ψ,φ) contraction on A;
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(d) there exist elements (x0,y0,z0) and (x1,y1,z1) ∈ A0×A0×A0 such that

d
(
g(x1),F(g(x0),g(y0),g(z0))

)
= d(A,B) with g(x0)≤ g(x1),

d
(
g(y1),F(g(y0),g(x0),g(z0))

)
= d(A,B) with g(y0)≥ g(y1), and

d
(
g(z1),F(g(z0),g(y0),g(x0))

)
= d(A,B) with g(z0)≤ g(z1).

Then there exists (x,y,z) ∈ A×A×A such that

d
(
g(x),F(g(x),g(y),g(z))

)
= d(A,B), d

(
g(y),F(g(y),g(x),g(z))

)
= d(A,B)

and d
(
g(z),F(g(z),g(y),g(x))

)
= d(A,B).

Proof. Let (x0,y0,z0),(x1,y1,z1) ∈ A0×A0×A0 be such that

d
(
g(x1),F(g(x0),g(y0),g(z0))

)
= d(A,B) with g(x0)≤ g(x1),

d
(
g(y1),F(g(y0),g(x0),g(z0))

)
= d(A,B) with g(y0)≥ g(y1), and

d
(
g(z1),F(g(z0),g(y0),g(x0))

)
= d(A,B) with g(z0)≤ g(z1).

Since F(A0,A0,A0) ⊆ B0 and g(A0) = A0, there exists an element (x2,y2,z2) ∈ A0×A0×A0

such that

d
(
g(x2),F(g(x1),g(y1),g(z1))

)
= d(A,B),

d
(
g(y2),F(g(y1),g(x1),g(z1))

)
= d(A,B), and

d
(
g(z2),F(g(z1),g(y1),g(x1))

)
= d(A,B).

And also, there exists an element (x3,y3,z3) ∈ A0×A0×A0 such that

d
(
g(x3),F(g(x2),g(y2),g(z2))

)
= d(A,B),

d
(
g(y3),F(g(y2),g(x2),g(z2))

)
= d(A,B), and

d
(
g(z3),F(g(z2),g(y2),g(x2))

)
= d(A,B).

Hence from Lemma 3.3, Lemma 3.4 and Lemma 3.5, we obtain g(x1)≤ g(x2)≤ g(x3), g(y1)≥

g(y2) ≥ g(y3), and g(z1) ≤ g(z2) ≤ g(z3). Continuing this process, we can construct the se-

quences {xn},{yn} and {zn} ∈ A0 such that

d
(
g(xn+1),F(g(xn),g(yn),g(zn))

)
= d(A,B) f or all n≥ 0,
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with

g(x0)≤ g(x1)≤ g(x2)≤ · · · ≤ g(xn)≤ g(xn+1)≤ · · ·, (3.11)

d
(
g(yn+1),F(g(yn),g(xn),g(zn))

)
= d(A,B) f or all n≥ 0,

with

g(y0)≥ g(y1)≥ g(y2)≥ · · · ≥ g(yn)≥ g(yn+1)≥ · · ·, (3.12)

and

d
(
g(zn+1),F(g(zn),g(yn),g(xn))

)
= d(A,B) f or all n≥ 0,

with

g(z0)≤ g(z1)≤ g(z2)≤ · · · ≤ g(zn)≤ g(zn+1)≤ · · ·. (3.13)

Then

d
(
g(xn),F(g(xn−1),g(yn−1),g(zn−1))

)
= d(A,B) and

d
(
g(xn+1),F(g(xn),g(yn),g(zn))

)
= d(A,B),

and also we have g(xn−1) ≤ g(xn), g(yn−1) ≥ g(yn) and g(zn−1) ≤ g(zn). Now using the fact

that F is a proximally tripled weak (ψ,φ) contraction on A, we get

φ
(
d(g(xn),g(xn+1))

)
≤ 1

3
φ
(
d(g(xn−1),g(xn))+d(g(yn−1),g(yn))+d(g(zn−1),g(zn))

)
−ψ

(d(g(xn−1),g(xn))+d(g(yn−1),g(yn))+d(g(zn−1),g(zn))

3

)
.

(3.14)

Similarly,

φ
(
d(g(yn),g(yn+1))

)
≤ 1

3
φ
(
d(g(yn−1),g(yn))+d(g(xn−1),g(xn))+d(g(zn−1),g(zn))

)
−ψ

(d(g(yn−1),g(yn))+d(g(xn−1),g(xn))+d(g(zn−1),g(zn))

3

)
.

(3.15)
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φ
(
d(g(zn),g(zn+1))

)
≤ 1

3
φ
(
d(g(zn−1),g(zn))+d(g(yn−1),g(yn))+d(g(xn−1),g(xn))

)
−ψ

(d(g(zn−1),g(zn))+d(g(yn−1),g(yn))+d(g(xn−1),g(xn))

3

)
.

(3.16)

Adding (3.14), (3.15) and (3.16), we get

φ
(
d(g(xn),g(xn+1))

)
+φ
(
d(g(yn),g(yn+1))

)
+φ
(
d(g(zn),g(zn+1))

)
≤ φ

(
d(g(xn−1),g(xn))+d(g(yn−1),g(yn))+d(g(zn−1),g(zn))

)
−3ψ

(d(g(xn−1),g(xn))+d(g(yn−1),g(yn))+d(g(zn−1),g(zn))

3

)
.

(3.17)

By the definition of φ , we have

φ
(
d(g(xn),g(xn+1))+d(g(yn),g(yn+1))+d(g(zn),g(zn+1))

)
≤ φ

(
d(g(xn),g(xn+1))

)
+φ
(
d(g(yn),g(yn+1))

)
+φ
(
d(g(zn),g(zn+1))

)
.

(3.18)

From (3.17) and (3.18), we get

φ
(
d(g(xn),g(xn+1))+d(g(yn),g(yn+1))+d(g(zn),g(zn+1))

)
≤ φ

(
d(g(xn−1),g(xn))+d(g(yn−1),g(yn))+d(g(zn−1),g(zn))

)
−3ψ

(d(g(xn−1),g(xn))+d(g(yn−1),g(yn))+d(g(zn−1),g(zn))

3

)
.

(3.19)

Since φ is nondecreasing, we get

d(g(xn),g(xn+1))+d(g(yn),g(yn+1))+d(g(zn),g(zn+1))

≤ d(g(xn−1),g(xn))+d(g(yn−1),g(yn))+d(g(zn−1),g(zn)). (3.20)
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Set δn = d(g(xn),g(xn+1)) + d(g(yn),g(yn+1)) + d(g(zn),g(zn+1)), then the sequence (δn) is

decreasing. Therefore, there is some δ ≥ 0 such that

lim
n→∞

δn = lim
n→∞

[
d(g(xn),g(xn+1))+d(g(yn),g(yn+1))+d(g(zn),g(zn+1))

]
= δ . (3.21)

We shall show that δ = 0. Suppose, to the contrary, that δ > 0. Then taking the limit as n→ ∞

both sides of (3.19) and having in mind that we assume limt→r ψ(t) > 0 for all r > 0 and φ is

continuous, we have

φ(δ ) = lim
n→∞

φ(δn)≤ lim
n→∞

φ(δn−1)−3ψ

(
δn−1

3

)
= φ(δ )−3 lim

n→∞
ψ

(
δn−1

3

)
< φ(δ ), (3.22)

a contradiction. Thus δ = 0, that is,

lim
n→∞

δn = lim
n→∞

[
d(g(xn),g(xn+1))+d(g(yn),g(yn+1))+d(g(zn),g(zn+1))

]
= 0. (3.23)

Now, we prove that {g(xn)}, {g(yn)} and {g(zn)} are Cauchy sequences. Suppose that at least

one of the sequences {g(xn)}, {g(yn)} and {g(zn)} is not a Cauchy sequence. This implies that

lim
n,m→∞

d(g(xn),g(xm))9 0, or lim
n,m→∞

d(g(yn),g(ym))9 0,

or lim
n,m→∞

d(g(zn),g(zm))9 0,

and, consequently

lim
n,m→∞

[
d(g(xn),g(xm))+d(g(yn),g(ym))+d(g(zn),g(zm))

]
9 0. (3.24)

Then there exists an ε > 0 for which we can find subsequences {g(xn(k))}, {g(xm(k))} of

{g(xn)}, {g(yn(k))}, {g(ym(k))} of{g(yn)} and {g(zn(k))}, {g(zm(k))} of {g(zn)} such that n(k)

is the smallest index for which n(k)> m(k)> k,

[
d(g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k)))+d(g(zn(k)),g(zm(k)))

]
≥ ε. (3.25)

This means that

[
d(g(xn(k)−1),g(xm(k)))+d(g(yn(k)−1),g(ym(k)))+d(g(zn(k)−1),g(zm(k)))

]
< ε. (3.26)
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Therefore by using (3.25), (3.26) and the triangle inequality, we obtain

ε ≤ rk = d(g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k)))+d(g(zn(k)),g(zm(k)))

≤ d(g(xn(k)),g(xn(k)−1))+d(g(xn(k)−1),g(xm(k)))+d(g(yn(k)),g(yn(k)−1))

+d(g(yn(k)−1),g(ym(k)))+d(g(zn(k)),g(zn(k)−1))+d(g(zn(k)−1),g(zm(k)))

≤ d(g(xn(k)),g(xn(k)−1))+d(g(yn(k)),g(yn(k)−1))+d(g(zn(k)),g(zn(k)−1))+ ε.

On taking the limit k→ ∞ and using (3.23), we obtain

lim
k→∞

rk = lim
k→∞

[
g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k)))+g(zn(k)),g(zm(k)))

]
= ε. (3.27)

By the triangle inequality

rk = d(g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k)))+d(g(zn(k)),g(zm(k)))

≤ d(g(xn(k)),g(xn(k)+1))+d(g(xn(k)+1),g(xm(k)+1))+d(g(xm(k)+1),g(xm(k)))

+d(g(yn(k)),g(yn(k)+1))+d(g(yn(k)+1),g(ym(k)+1))+d(g(ym(k)+1),g(ym(k)))

+d(g(zn(k)),g(zn(k)+1))+d(g(zn(k)+1),g(zm(k)+1))+d(g(zm(k)+1),g(zm(k)))

= δn(k)+δm(k)+d(g(xn(k)+1),g(xm(k)+1))+d(g(yn(k)+1,g(ym(k)+1))

+d(g(zn(k)+1),g(zm(k)+1)).

Using the property of φ , we obtain

φ(rk) = φ

(
δn(k)+δm(k)+d(g(xn(k)+1),g(xm(k)+1))+d(g(yn(k)+1,g(ym(k)+1))

+d(g(zn(k)+1),g(zm(k)+1))
)

≤ φ
(
δn(k)

)
+φ
(
δm(k)

)
+φ
(
d(g(xn(k)+1),g(xm(k)+1))

)
+φ
(
d(g(yn(k)+1,g(ym(k)+1))

)
+φ
(
d(g(zn(k)+1),g(zm(k)+1))

)
. (3.28)
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Since g(xn(k)) ≥ g(xm(k)), g(yn(k)) ≤ g(ym(k)) and g(zn(k)) ≥ g(zm(k)), using the fact that F is a

proximally tripled weak (ψ,φ) contraction on A, we get

φ
(
d(g(xn(k)+1),g(xm(k)+1))

)
≤ 1

3
φ
(
d(g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k)))+d(g(zn(k)),g(zm(k)))

)
−ψ

(d(g(xn(k)),g(xm(k)))+d(g(yn(k)),g(ym(k)))+d(g(zn(k)),g(zm(k)))

3

)
≤ 1

3
φ(rk)−ψ

(rk

3

)
. (3.29)

Similarly, we also have

φ
(
d(g(yn(k)+1),g(ym(k)+1))

)
≤ 1

3
φ
(
d(g(yn(k)),g(ym(k)))+d(g(xn(k)),g(xm(k)))+d(g(zn(k)),g(zm(k)))

)
−ψ

(d(g(yn(k)),g(ym(k)))+d(g(xn(k)),g(xm(k)))+d(g(zn(k)),g(zm(k)))

3

)
≤ 1

3
φ(rk)−ψ

(rk

3

)
.

(3.30)

and

φ
(
d(g(zn(k)+1),g(zm(k)+1))

)
≤ 1

3
φ
(
d(g(zn(k)),g(zm(k)))+d(g(yn(k)),g(ym(k)))+d(g(xn(k)),g(xm(k)))

)
−ψ

(d(g(zn(k)),g(zm(k)))+d(g(yn(k)),g(ym(k)))+d(g(xn(k)),g(xm(k)))

3

)
≤ 1

3
φ(rk)−ψ

(rk

3

)
.

(3.31)

From (3.28),(3.29), (3.30) and (3.31), we obtain

φ(rk)≤ φ
(
δn(k)+δm(k)

)
+φ(rk)−3ψ

(rk

3
)
. (3.32)

On taking the limit k→ ∞ using (3.23),(3.27) and (3.32), we have

φ(ε)≤ φ(0)+φ(ε)−3 lim
k→∞

ψ
(rk

3
)
= φ(ε)−3 lim

k→∞
ψ
(rk

3
)
< φ(ε). (3.33)
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Which is a contradiction. This shows that {g(xn)}, {g(yn)} and {g(zn)} are Cauchy sequences.

Since A is a closed subset of a complete metric space X, there exist x′,y′,z′ ∈ A such that

g(xn)→ x′, g(yn)→ y′ and g(zn)→ z′ as n→ ∞. Here xn,yn,zn ∈ A0, g(A0) = A0 so that

g(xn),g(yn),g(zn) ∈ A0. Since A0 is closed, we conclude that x′,y′,z′ ∈ A0×A0×A0, i.e., there

exist x,y,z ∈ A0 such that g(x) = x′, g(y) = y′ and g(z) = z′. Therefore

g(xn)→ g(x),g(yn)→ g(y) and g(zn)→ g(z). (3.34)

Since {g(xn)} is monotone increasing, {g(yn)} is monotone decreasing and {g(zn)} is mono-

tone increasing, we have g(xn) ≤ g(x), g(yn) ≥ g(y) and g(zn) ≤ g(z). From (3.11),(3.12) and

(3.13), we have

d
(
g(xn+1),F(g(xn),g(yn),g(zn))

)
= d(A,B), (3.35)

d
(
g(yn+1),F(g(yn),g(xn),g(zn))

)
= d(A,B), (3.36)

and

d
(
g(zn+1),F(g(zn),g(yn),g(xn))

)
= d(A,B). (3.37)

Since F is continuous, we have, from (3.34),

F(g(xn),g(yn),g(zn))→ F(g(x),g(y),g(z)),

F(g(yn),g(xn),g(zn))→ F(g(y),g(x),g(z))

and

F(g(zn),g(yn),g(xn))→ F(g(z),g(y),g(x)).

Thus, the continuity of the metric d implies that

d
(
g(xn+1),F(g(xn),g(yn),g(zn))

)
→ d

(
g(x),F(g(x),g(y),g(z))

)
, (3.38)

d
(
g(yn+1),F(g(yn),g(xn),g(zn))

)
→ d

(
g(y),F(g(y),g(x),g(z))

)
(3.39)

and

d
(
g(zn+1),F(g(zn),g(yn),g(xn))

)
→ d

(
g(z),F(g(z),g(y),g(x))

)
. (3.40)

Therefore from (3.35), (3.36), (3.38),(3.41) and (3.40)

d
(
g(x),F(g(x),g(y),g(z))

)
= d(A,B) d

(
g(y),F(g(y),g(x),g(z))

)
= d(A,B),
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d
(
g(z),F(g(z),g(y),g(x))

)
= d(A,B).

�

If g is assumed to be the identity mappings in Theorem 3.6.

Corollary 3.7. Let (X ,d,≤) be a partially ordered complete metric space. Let A, B be nonempty

closed subsets of the metric space (X, d) such that A0 6= /0. Let F : A×A×A→B given mappings

satisfying the following conditions:

(a) F be continuous;

(b) F has the proximal mixed monotone property on A such that F(A0,A0,A0)⊆ B0;

(c) F is a proximally tripled weak (ψ,φ) contraction on A;

(d) there exist elements (x0,y0,z0) and (x1,y1,z1) ∈ A0×A0×A0 such that

d
(
x1,F(x0,y0,z0)

)
= d(A,B) with x0 ≤ x1, d

(
y1,F(y0,x0,z0)

)
= d(A,B) with y0 ≥ y1,

and d
(
z1,F(z0,y0,x0)

)
= d(A,B) with z0 ≤ z1.

Then there exists (x,y,z) ∈ A×A×A such that

d
(
x,F(x,y,z)

)
= d(A,B), d

(
y,F(y,x,z)

)
= d(A,B) and d

(
z,F(z,y,x)

)
= d(A,B).

Corollary 3.8. Let (X ,d,≤) be a partially ordered complete metric space. Let A be a nonempty

closed subsets of the metric space (X, d). Let F : A×A×A→ A and g : A→ A be two given

mappings satisfying the following conditions:

(a) F and g are continuous;

(b) F has the mixed g-monotone property on A such that g(A) = A, F(A,A,A)⊆ A;

(c) F is a tripled weak (ψ,φ) contraction on A;

(d) there exist elements (x0,y0,z0) and (x1,y1,z1) ∈ A×A×A such that

g(x1) = F(g(x0),g(y0),g(z0)) with g(x0)≤ g(x1),

g(y1) = F(g(y0),g(x0),g(z0)) with g(y0)≥ g(y1), and

g(z1) = F(g(z0),g(y0),g(x0)) with g(z0)≤ g(z1).

Then there exists (x,y,z) ∈ A×A×A such that

d
(
g(x),F(g(x),g(y),g(z))

)
= 0, d

(
g(y),F(g(y),g(x),g(z))

)
= 0,
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d
(
g(z),F(g(z),g(y),g(x))

)
= 0.

Theorem 3.9. Let (X ,d,≤) be a partially ordered complete metric space. Let A, B be nonempty

closed subsets of the metric space (X, d) such that A0 6= /0. Let F : A×A×A→ B and g : A→ A

be two given mappings satisfying the following conditions:

(a) g is continuous;

(b) F has the proximal mixed g-monotone property on A such that g(A0)=A0, F(A0,A0,A0)⊆

B0;

(c) F is a proximally tripled weak (ψ,φ) contraction on A;

(d) there exist elements (x0,y0,z0) and (x1,y1,z1) ∈ A0×A0×A0 such that

d
(
g(x1),F(g(x0),g(y0),g(z0))

)
= d(A,B) with g(x0)≤ g(x1),

d
(
g(y1),F(g(y0),g(x0),g(z0))

)
= d(A,B) with g(y0)≥ g(y1) and

d
(
g(z1),F(g(z0),g(y0),g(x0))

)
= d(A,B) with g(z0)≤ g(z1).

(e) if {xn} is a nondecreasing sequence in A such that xn→ x, then xn ≤ x and if {yn} is a

nonincreasing sequence in A such that yn→ y, then yn≥ y and if {zn} is a nondecreasing

sequence in A such that zn→ z, then zn ≤ z.

Then there exists (x,y,z) ∈ A×A×A such that

d
(
g(x),F(g(x),g(y),g(z))

)
= d(A,B), d

(
g(y),F(g(y),g(x),g(z))

)
= d(A,B)

and d
(
g(z),F(g(z),g(y),g(x))

)
= d(A,B).

Proof. As in the proof of Theorem 3.6, there exist sequences {xn}, {yn} and {zn} in A0 such

that

d
(
g(xn+1),F

(
g(xn),g(yn),g(zn)

))
= d(A,B) with g(xn)≤ g(xn+1) f or all n≥ 0, (3.41)

d
(
g(yn+1),F

(
g(yn),g(xn),g(zn)

))
= d(A,B) with g(yn)≥ g(yn+1) f or all n≥ 0. (3.42)

and

d
(
g(zn+1),F

(
g(zn),g(yn),g(xn)

))
= d(A,B) with g(zn)≤ g(zn+1) f or all n≥ 0. (3.43)
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Also, g(xn)→ g(x), g(yn)→ g(y) and g(zn)→ g(z). From (e), we get g(xn)≤ g(x), g(yn)≥ g(y)

and g(zn)≤ g(z). Since F(A0,A0,A0)⊆B0, it follows that F(g(x),g(y),g(z)), F(g(y),g(x),g(z))

and F(g(z),g(y),g(x)) are in B0. Therefore, there exists (x∗1,y
∗
1,z
∗
1) ∈ A0×A0×A0 such that

d
(
x∗1,F(g(x),g(y),g(z))

)
= d(A,B),

d
(
y∗1,F(g(y),g(x),g(z))

)
= d(A,B),

d
(
z∗1,F(g(z),g(y),g(x))

)
= d(A,B).

Since g(A0) = A0, there exist x∗,y∗,z∗ ∈ A0 such that g(x∗) = x∗1, g(y∗) = y∗1 and g(z∗) = z∗1.

Hence,

d
(
g(x∗),F(g(x),g(y),g(z))

)
= d(A,B), (3.44)

d
(
g(y∗),F(g(y),g(x),g(z))

)
= d(A,B) and (3.45)

d
(
g(z∗),F(g(z),g(y),g(x))

)
= d(A,B). (3.46)

Since g(xn) ≤ g(x), g(yn) ≥ g(y) and g(zn) ≤ g(z) and F is a proximally tripled weak (ψ,φ)

contraction on A for (3.41),(3.42),(3.43), (3.44), (3.45) and (3.46) we get

φ
(
d
(
g(xn+1),g(x∗)

))
≤ 1

3
φ
(
d(g(xn),g(x))+d(g(yn),g(y))+d(g(zn),g(z))

)
−ψ

(d(g(xn),g(x))+d(g(yn),g(y))+d(g(zn),g(z))
3

)
,

φ
(
d
(
g(yn+1),g(y∗)

))
≤ 1

3
φ
(
d(g(yn),g(y))+d(g(xn),g(x))+d(g(zn),g(z))

)
−ψ

(d(g(yn),g(y))+d(g(xn),g(x))+d(g(zn),g(z))
3

)
,

and

φ
(
d
(
g(zn+1),g(z∗)

))
≤ 1

3
φ
(
d(g(zn),g(z))+d(g(yn),g(y))+d(g(xn),g(x))

)
−ψ

(d(g(zn),g(z))+d(g(yn),g(y))+d(g(xn),g(x))
3

)
,

By taking the limit of the above inequalities, we get g(x) = g(x∗), g(y) = g(y∗) and g(z) = g(z∗).

Hence, from (3.44), (3.45), (3.46), we get

d
(
g(x),F(g(x),g(y),g(z))

)
= d(A,B), d(g(y),F

(
g(y),g(x),g(z))

)
= d(A,B),
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and d
(
g(z),F(g(z),g(y),g(x))

)
= d(A,B). �

Remark 3.10. Corollary 3.7 holds true if we replace the continuity of F by the condition (e) of

Theorem 3.9.

One can prove that the tripled best proximity point is in fact unique, provided that the product

space A×A endowed with the partial order mentioned earlier has the following property:

Every pair o f elements has either a lower bound or an upper bound.

It is known that this condition is equivalent to the following. For every pair of (x,y,z),(x∗,y∗,z∗)∈

A×A×A, there exists (u,v,w) ∈ A×A×A that is comparable to (x,y,z) and (x∗,y∗,z∗).

Theorem 3.11. Suppose that all the hypotheses of Theorem 3.6 hold and further, for all (x,y,z) and

(x∗,y∗,z∗) ∈ A0×A0×A0, there exists (u,v,w) ∈ A0×A0×A0 such that (u,v,w) is comparable

to (x,y,z), (x∗,y∗,z∗) (with respect to the ordering in A×A×A). Then there exists a unique

(x,y,z)∈A×A×A such that d
(
g(x),F

(
g(x),g(y),g(z)

))
= d(A,B), d

(
g(y),F

(
g(y),g(x),g(z)

))
=

d(A,B) and d
(
g(z),F

(
g(z),g(y),g(x)

))
= d(A,B).

Proof. In Theorem3.6, there exists an element (x,y,z) ∈ A×A×A such that

d
(
g(x),F

(
g(x),g(y),g(z)

))
= d(A,B), (3.47)

d
(
g(y),F

(
g(y),g(x),g(z)

))
= d(A,B), (3.48)

and

d
(
g(z),F

(
g(z),g(y),g(x)

))
= d(A,B). (3.49)

Now, suppose that there exists an element x∗,y∗,z∗ ∈ A×A×A such that

d
(
g(x∗),F(g(x∗),g(y∗),g(z∗))

)
= d(A,B), (3.50)

d
(
g(y∗),F(g(y∗),g(x∗),g(z∗))

)
= d(A,B) (3.51)

and

d
(
g(z∗),F(g(z∗),g(y∗),g(x∗))

)
= d(A,B). (3.52)

First, let (g(x),g(y),g(z)) be comparable to (g(x∗),g(y∗),g(z∗)) with respect to the ordering in

A×A×A.
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Since d
(
g(x),F(g(x),g(y),g(z))

)
= d(A,B) and d

(
g(x∗),F(g(x∗),g(y∗),g(z∗))

)
= d(A,B) it

follows from the fact that F is a proximally tripled weak (ψ,φ) contraction on A, we get

φ
(
d
(
g(x),g(x∗)

))
≤ 1

3
φ
(
d(g(x),g(x∗))+d(g(y),g(y∗))+d(g(z),g(z∗))

)
−ψ

(d(g(x),g(x∗))+d(g(y),g(y∗))+d(g(z),g(z∗))
3

)
,

(3.53)

φ
(
d
(
g(y),g(y∗)

))
≤ 1

3
φ
(
d(g(y),g(y∗))+d(g(x),g(x∗))+d(g(z),g(z∗))

)
−ψ

(d(g(y),g(y∗))+d(g(x),g(x∗))+d(g(z),g(z∗))
3

)
,

(3.54)

φ
(
d
(
g(z),g(z∗)

))
≤ 1

3
φ
(
d(g(z),g(z∗))+d(g(y),g(y∗))+d(g(x),g(x∗))

)
−ψ

(d(g(z),g(z∗))+d(g(y),g(y∗))+d(g(x),g(x∗))
3

)
.

(3.55)

Adding (3.53), (3.54), (3.55), we get

φ
(
d
(
g(x),g(x∗)

))
+φ
(
d
(
g(y),g(y∗)

))
+φ
(
d
(
g(z),g(z∗)

))
≤ φ

(
d(g(x),g(x∗))+d(g(y),g(y∗))+d(g(z),g(z∗))

)
−3ψ

(d(g(x),g(x∗))+d(g(y),g(y∗))+d(g(z),g(z∗))
3

)
.

(3.56)

By the definition of φ , we have

φ
(
d(g(x),g(x∗))+d(g(y),g(y∗))+d(g(z),g(z∗))

)
≤ φ

(
d
(
g(x),g(x∗)

))
+φ
(
d
(
g(y),g(y∗)

))
+φ
(
d
(
g(z),g(z∗)

))
. (3.57)
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From (3.56) and (3.57), we have

φ
(
d(g(x),g(x∗))+d(g(y),g(y∗))+d(g(z),g(z∗))

)
≤ φ

(
d(g(x),g(x∗))+d(g(y),g(y∗))+d(g(z),g(z∗))

)
−3ψ

(d(g(x),g(x∗))+d(g(y),g(y∗))+d(g(z),g(z∗))
3

)
.

(3.58)

this implies that 3ψ

(
d(g(x),g(x∗))+d(g(y),g(y∗))+d(g(z),g(z∗))

3

)
≤ 0 and using the property of ψ , we

get d(g(x),g(x∗))+d(g(y),g(y∗))+d(g(z),g(z∗)) = 0, hence gx = gx∗, gy = gy∗ and gz = gz∗.

Second, let (g(x),g(y),g(z)) is not comparable to (g(x∗),g(y∗),g(z∗)), then there exists

(g(u1),g(v1),g(w1))∈A0×A0×A0 which is comparable to (g(x),g(y),g(z)) and (g(x∗),g(y∗),g(z∗)).

Since F(A0,A0,A0)⊆ B0 and g(A0) = A0, there exists (g(u2),g(v2),g(w2))∈ A0×A0×A0 such

that d
(
g(u2),F(g(u1),g(v1),g(w1))

)
= d(A,B), d

(
g(v2),F(g(v1),g(u1),g(w1))

)
= d(A,B) and

d
(
g(w2),F(g(w1),g(v1),g(u1))

)
= d(A,B).

We assume, without loss of generality, that (g(u1),g(v1),g(w1))≤ (g(x),g(y),g(z)), i.e., g(u1)≤

g(x) and g(v1)≥ g(y) and g(w1)≤ g(z). Therefore (g(y),g(x),g(z))≤ (g(v1),g(u1),g(w1)) and

(g(w1),g(v1),g(u1))≤ (g(z),g(y),g(x)). From Lemma 3.3 and Lemma 3.4, we get
g(u1)≤ g(x), g(v1)≥ g(y), g(w1)≤ g(z),

d
(
g(u2),F(g(u1),g(v1),g(w1))

)
= d(A,B)

d
(
g(x),F(g(x),g(y),g(z))

)
= d(A,B)

=⇒ g(u2)≤ g(x),


g(u1)≤ g(x) g(v1)≥ g(y), g(w1)≤ g(z),

d
(
g(v2),F(g(v1),g(u1),g(w1))

)
= d(A,B)

d
(
g(y),F(g(y),g(x),g(z))

)
= d(A,B)

=⇒ g(v2)≥ g(y),


g(u1)≤ g(x), g(v1)≥ g(y), g(w1)≤ g(z),

d
(
g(w2),F(g(w1),g(v1),g(u1))

)
= d(A,B)

d
(
g(z),F(g(z),g(y),g(x))

)
= d(A,B)

=⇒ g(w2)≤ g(z).
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On continuing this process, we construct sequences {un}, {vn} and {wn} such that

d
(
g(un+1),F(g(un),g(vn),g(wn))

)
= d(A,B)

d
(
g(vn+1),F(g(vn),g(un),g(wn))

)
= d(A,B)

d
(
g(wn+1),F(g(wn),g(vn),g(xn))

)
= d(A,B)

with (g(un),g(vn),g(wn)) ≤ (g(x),g(y),g(z)). By using the fact that F is a proximally tripled

weak (ψ,φ) contraction on A, we get
g(un)≤ g(x) g(vn)≥ g(y), g(wn)≤ g(z)

d
(
g(un+1),F(g(un),g(vn),g(wn))

)
= d(A,B)

d
(
g(x),F(g(x),g(y),g(z))

)
= d(A,B)

=⇒ φ
(
d
(
g(un+1),g(x)

))
≤ 1

3
φ
(
d(g(un),g(x))+d(g(vn),g(y))+d(g(wn),g(z))

)
−ψ

(d(g(un),g(x))+d(g(vn),g(y))+d(g(wn),g(z))
3

)
.

(3.59)

Similarly, we have 
g(un)≤ g(x) g(vn)≥ g(y), g(wn)≤ g(z)

d
(
g(vn+1),F(g(vn),g(un),g(wn))

)
= d(A,B)

d
(
g(y),F(g(y),g(x),g(z))

)
= d(A,B)

=⇒ φ
(
d
(
g(vn+1),g(y)

))
≤ 1

3
φ
(
d(g(vn),g(y))+d(g(un),g(x))+d(g(wn),g(z))

)
−ψ

(d(g(vn),g(y))+d(g(un),g(x))+d(g(wn),g(z))
3

)
,

(3.60)
g(un)≤ g(x) g(vn)≥ g(y), g(wn)≤ g(z)

d
(
g(wn+1),F(g(wn),g(vn),g(un))

)
= d(A,B)

d
(
g(z),F(g(z),g(y),g(x))

)
= d(A,B)
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=⇒ φ
(
d
(
g(wn+1),g(z)

))
≤ 1

3
φ
(
d(g(wn),g(z))+d(g(vn),g(y))+d(g(un),g(x))

)
−ψ

(d(g(wn),g(z))+d(g(vn),g(y))+d(g(un),g(x))
3

)
.

(3.61)

Adding (3.59), (3.60) and (3.61), we obtain

φ
(
d
(
g(un+1),g(x)

))
+φ
(
d
(
g(vn+1),g(y)

))
+φ
(
d
(
g(wn+1),g(z)

))
≤ φ

(
d(g(un),g(x))+d(g(vn),g(y))+d(g(wn),g(z))

)
−3ψ

(d(g(un),g(x))+d(g(vn),g(y))+d(g(wn),g(z))
3

)
.

But

φ
(
d
(
g(un+1),g(x)

)
+d
(
g(vn+1),g(y)

)
+d
(
g(wn+1),g(z)

))
≤ φ

(
d
(
g(un+1),g(x)

))
+φ
(
d
(
g(vn+1),g(y)

))
+φ
(
d
(
g(wn+1),g(z)

))
,

hence

φ
(
d
(
g(un+1),g(x)

)
+d
(
g(vn+1),g(y)

)
+d
(
g(wn+1),g(z)

))
≤ φ

(
d(g(un),g(x))+d(g(vn),g(y))+d(g(wn),g(z))

)
−3ψ

(d(g(un),g(x))+d(g(vn),g(y))+d(g(wn),g(z))
3

)
.

(3.62)

Using the fact that φ is nondecreasing, we get

d
(
g(un+1),g(x)

)
+d
(
g(vn+1),g(y)

)
+d
(
g(wn+1),g(z)

)
≤ d

(
g(un),g(x)

)
+d
(
g(vn),g(y)

)
+d
(
g(wn),g(z)

)
.

Therefore d
(
g(un),g(x)

)
+ d
(
g(vn),g(y)

)
+ d
(
g(wn),g(z)

)
is a decreasing sequence. Hence

there exists r ≥ 0 such that

lim
n→∞

[
d
(
g(un),g(x)

)
+d
(
g(vn),g(y)

)
+d
(
g(wn),g(z)

)]
= r.
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We shall show that r = 0. Suppose, to the contrary, that r > 0. On taking the limit as n→ ∞ in

(3.62), we have

φ(r)≤ φ(r)−3 lim
n→∞

ψ

(d(g(un),g(x))+d(g(vn),g(y))
3

)
< φ(r),

which is a contradiction. Hence, r = 0, that is,

lim
n→∞

[
d
(
g(un),g(x)

)
+d
(
g(vn),g(y)

)
+d
(
g(wn),g(z)

)]
= 0,

so that g(un)→ g(x), g(vn)→ g(y) and g(wn)→ g(z). Analogously, one can prove that g(un)→

g(x∗), g(vn)→ g(y∗) and g(wn)→ g(z∗). Therefore, g(x) = g(x∗), g(y) = g(y∗) and g(z) =

g(z∗). Hence the proof is complete. �

Considering g is assumed to be the identity mappings in Theorem 3.11 then we obtained the

following result.

Corollary 3.12. Suppose that all the hypotheses of Corollary 3.7 hold and further, for all

(x,y,z),(x∗,y∗,z∗) ∈ A0×A0×A0, there exists (u,v,w) ∈ A0×A0×A0 such that (u,v,w) is com-

parable to (x,y,z), (x∗,y∗,z∗) (with respect to the ordering in A×A×A). Then there exists a

unique (x,y,z) ∈ A×A×A such that d
(
x,F
(
x,y,z)

)
= d(A,B) and d

(
y,F
(
y,x,z)

)
= d(A,B)

and d
(
z,F
(
z,y,x)

)
= d(A,B).

If A = B in Theorem 3.11, we obtained the result of tripled fixed point.

Corollary 3.13. Suppose that all the hypotheses of Corollary 3.8 hold and further, for all

(x,y,z),(x∗,y∗,z∗) ∈ A×A×A, there exists (u,v,w) ∈ A×A×A such that (u,v,w) is compa-

rable to (x,y,z), (x∗,y∗,z∗) (with respect to the ordering in A× A× A). Then there exists a

unique (x,y,z) ∈ A×A×A such that

d
(
g(x),F

(
g(x),g(y),g(z))

)
= 0, d

(
g(y),F

(
g(y),g(x),g(z))

)
= 0

and d
(
g(z),F

(
g(z),g(y),g(x))

)
= 0.

We shall illustrate our results by the following example.
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Example 3.14. Let X = R and d(x,y) =| x− y | be the usual metric on X and let the usual

ordering (x,y,z)≤ (u,v,w)⇔ x≤ u,y≥ v,z≤ w. Assume that A = [1,∞) and B = (∞,−1] and

A, B are nonempty closed subsets of X. We also have A0 = {1} and B0 = {−1} and d(A,B) = 2.

Let F : A× A× A → B and g : A → A be two mappings such that F(x,y,z) = −x+y+z
3 and

g(x) = x2. Then F and g are continuous and F(1,1,1) = -1 and g(1) = 1, i.e., F(A0,A0,A0)⊆ B0

and g(A0) = A0. Notice that the all the hypotheses of Theorem 3.11 are satisfied, then there

exists a unique point (1,1,1) ∈ A×A×A such that d
(
g(1),F(g(1),g(1),g(1))

)
= 2 = d(A,B).
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