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1. Introduction 

Aamri et al. [1] introduced the concept of property (E.A.) which was perhaps inspired by the 

condition of compatibility introduced by Jungck [11] and further Imdad et al. [10] extended this 

result. Babu et al. [7, 8, 9] proved common fixed point theorem for occasionally weakly compatible 

maps satisfying property (E.A.) using an inequality involving quadratic terms. Aliouche [4] proved 

a common fixed point theorem of Gregus type weakly compatible mappings satisfying generalized 

contractive conditions.  
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Abbas [2] established a common fixed point for Lipschitzian mapping satisfying rational 

contractive conditions. Murty et.al. [15] proved fixed points of nonlinear contraction in metric 

space. 

 

2. Preliminaries 

Throughout this paper (X, d) is a metric space which is denoted by X.  

Definition 2.1: Jungck and Rhoades [13]. Let A and S be selfmaps of a set X. If Au = Su =  (say), 

  X, for some u in X, then u is called a coincidence point of A and S and the set of coincidence 

points of A and S is denoted by C (A, S), and  is called a point of coincidence of A and S.  

Definition 2.2: Let A, B, S and T be self maps of a set X. If  ( , )u C A S and  ( , )v C B T for 

some ,u v X and Au Su Bv Tv    z (say), then z is called a common point of 

coincidence of the pairs (A. S) and (B. T ).  

 

Definition 2.3: The pair (A, S) is said to: 

(I) Satisfy property ( . .)E A   [1] if there exists a sequence { }nx in X such that 

lim limn n
n n

Ax Sx t
 

  for some t in X.  

(II) Compatible [11] if lim ( , ) 0n n
n

d ASx SAx


 , for some t in X whenever { }nx is a 

sequence in X such that lim limn n
n n

Ax Sx t
 

  . 

(III) Weakly compatible [12], if they commute at their coincidence point. 

(IV) Occasionally weakly compatible (owc) [3, 5, 6] if ASx SAx for some  ( , )x C A S . 

 

Remark 2.4 

(I) [12] Every compatible pair is weakly compatible but its converse need not be true.   
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(II) [16] Weak compatibility and property (E. A.) are independent of each other. 

(III) [11] Every weakly compatible pair is occasionally weakly compatible but its converse 

need not be true.  

(IV) [8] Occasionally weakly compatible and property (E.A.) are independent of each other.  

 

Definition 2.5: [14] Let (X, d) be a metric space and A, B, S and T be four selfmaps on X. The 

pairs ( , )A S and ( , )B T are said to satisfy common property (E.A.) if there exists two sequences 

{ }nx and { }ny in X such that lim lim lim limn n n n
n n n n

Ax Sx t By Ty
   

     for some t in X.  

 

Remark 2.6: Let , ,A B S and T be self maps of a set X. If the pairs (A, S) and (B, T) have common 

point of coincidence in X then C(A, S)   and C (B, T)  . But converse is not true.  

 

Example 2.7: Let X = [0, ) with usual metric and A, B, S and T self maps on x and defined by 

2 21 1
1 ; 1 ; ;

2 2

x
Ax x sx x Bx x Tx


       for all x X.  

It is easy to observe that ( , ) {0,1}C A S  and 
1

( , ) 0,
2

C B T
 

  
 

but the pairs (A, S) and (B, T) not 

having common point of coincidence.  

 

Remark 2.8: The converse of the remark 2.6 is true, provided it satisfies inequality (3.1). This is 

given as proposition (3.1).  

 

Preposition 2.9: [2] Let A and S be two self maps of a set X and the pair (A, S)  satisfies 

occasionally weakly compatible (owc) condition. If the pairs (A, S) have unique point of 

coincidence Ax = Sx = z then z is the unique common fixed point of A and S.  

 

Proof: To be given Ax = Sx = {z} (say) for any  ( , )x C A S .            (2.1) 
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Since the pair (A, S) satisfies the property owc, therefore  

 Az ASx SAx Sz   implies that   ( , )z C A S . 

From (2.1),  Az Sz z . Hence proposition follows.  

 

In 1996, Tas et al. [18] proved the following.  

 

Theorem 2.10: Let A, B, S and T be selfmaps of a complete metric space ( , )X d  such that 

( ) ( )A X T X and ( ) ( )B X S X and satisfying the inequality.  

    2 2 2 2
1[ ( , )] max [ ( , )] ,[ ( , )] ,[ ( , )]d Ax By C d Sx Ax d Ty By d Sx Ty  

   2 max{ ( , ) ( , ), ( , ) ( , )}C d Sx Ax d Sx By d Ty Ax d Ty By  

   3 ( , ) ( , )C d Sx By d Ty Ax  

for all ,x y X , where      
1 3 2 3 1 2 1 3

, , 0, 2 1, 1C C C C C C C C . Further, assume that the 

pairs ( , )A S and ( , )B T are compatible on X. If one of the mappings , ,A B S and T is continuous 

then , ,A B S and T have a unique common fixed point in X.  

 

3. Main results 

 

Proposition 3.1. Let A, B, S and T be self maps of a metric space (X, d) and satisfying the inequality.  

 

d(Ax,By) ≤  k max { 
𝑑(𝑆𝑥,𝐴𝑥)[1+𝑑(𝑆𝑥,𝐴𝑥)]

1+𝑑(𝑆𝑥,𝑡𝑦)
 , d(Sx,Ty) ,

𝑑(𝑇𝑦,𝐵𝑦)[1+𝑑(𝑆𝑥,𝑇𝑦)]

1+𝑑(𝐴𝑥,𝑇𝑦)
  }  (3.1) 

for all ,x y X , where k ≥ 0 and k < 1. Then the pairs ( , )A S and ( , )B T  have common point 

of coincidence in X if and only if ( , )C A S  and ( , )C B T   . 

 

Proof: If part: It is trivial 

Only if part: Assume ( , )C A S  and ( , )C B T   . 
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Then there is a uC (A, S) and v C (B, T) such that  

   Au Su p    (say)              (3.2) 

   Bv Tv q   (say)              (3.3) 

on taking x u and y v in (3.1), we get 

 

d(Au,Bv) ≤ k max { 
𝑑(𝑠𝑢,𝐴𝑢)[1+𝑑(𝑆𝑢,𝐴𝑢)]

1+𝑑(𝑆𝑢,𝑡𝑣)
 , d(Su,Tv),

𝑑(𝑇𝑣,𝐵𝑣)[1+𝑑(𝑆𝑢,𝑇𝑣)]

1+𝑑(𝐴𝑢,𝑇𝑣)
  }. 

Using (3.2) and (3.3), we get 

 d (p,q) ≤ k d(p,q), a contradiction. Thus p q . 

Therefore , ,A B S and T have common point of coincidence in X.  

 

In the proposition (2.1) of Babu et al. [9], we can obtain some more conclusions from his paper. 

Therefore our result improves and strengthens proposition (3.1) and subsequent theorems in metric 

spaces.  

 

Proposition 3.2: Let A, B, S and T be four self maps of a metric space ( , )X d  satisfying the 

inequality (3.1). Suppose that either 

 

(i) ( ) ( )B X S X , the pair ( , )B T satisfies  property (E.A.) and ( )T X is a closed 

subspace of X; or  

(ii) ( ) ( ),A X T X the pair ( , )A S satisfies property ( . )E A and ( )S X is a closed subspace 

of X holds.  

Then the pair ( , )A S and ( , )B T  satisfies the common property (E.A), also both the pairs 

( , )A S and ( , )B T have common point of coincidence in X.  

I have shortened the proof of theorem 2.2 of [9] by relaxing many lines:  
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Theorem 3.3: (Improved version of theorem (2.2) of [9]) 

Let , ,A B S and T are satisfying all the conditions given in proposition (3.2) with the following 

additional assumption.  

The pairs ( , )A S and ( , )B T are on X.  

Then , ,A B S and T have a unique common fixed point in X.  

 

Proof: By proposition (3.2) the pairs ( , )A S and ( , )B T have common point of coincidence. 

Therefore there is  ( , )u C A S and  ( , )v C B T such that  

  Au Su z   (say) =Bv Tv                (3.4) 

Now, we show that z is unique common point of coincidence of the pairs ( , )A S  and( , )B T . 

Let if possible z' is another point of coincidence of , ,A B S and T. Then there is  

u'C (A,S) and v'  C (B,T) such that  

  ' ' 'Au Su z   (say) = ' 'Bv Tv               (3.5) 

Putting x u and 'y v in inequality (3.1), we have  

 

d(Au,Bv') ≤  k max { 
𝑑(𝑆𝑢,𝐴𝑢)[1+𝑑(𝑆𝑢,𝐴𝑢)]

1+𝑑(𝑆𝑢,𝑇𝑣′)
,d(Su,Tv') , 

𝑑(𝑇𝑣′,𝐵𝑣′)[1+𝑑(𝑆𝑢,𝑇𝑣′)]

1+𝑑(𝐴𝑢,𝑇𝑣′)
 } 

Now using (3.4) and (3.5), we get 

d(z,z') ≤ k d(z,z') , and arrive at a contradiction. Hence 'z z and we have 

( , ) { } ( , )C A S z C B T  . By proposition (2.9), z is the unique common fixed point of , ,A B S

and T in X.  

 

Remark 3.4: Proposition (2.5) of [9] and theorem (2.6) of [9] remain true, if we replace 

completeness of S(X) and T(X) by the completeness of ( ) ( )S X T X in X. For this we have given 

an example 2.7 in the following manner without proof.  

 

Now we rewriting the proposition (2.5) and theorem 2.6 of [9]. 
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Proposition 3.5: Let A, B, S and T be four self maps of a metric space (X, d) satisfying the inequality 

(3.1) of proposition (3.1). Suppose that ( , )A S and ( , )B T satisfy a common property ( . )E A and 

( ) ( )S X T X are closed subset of X, then A, B, S and T have a unique common point of coincidence.  

Therefore theorem (3.3) in addition to the above proposition (3.5) on A, B, S and T, if both the pairs (A, 

S) and (B, T) are owc maps on X, then the point of coincidence is a unique common fixed point of 

, ,A B S and T.  
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