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Abstract. By using some elementary results concerning cone metric spaces over Banach algebras and the related
ones about c-sequence on cone metric spaces, some new coincidence point and common fixed point theorems for
two generalized expansive mappings were discussed and obtained on cone metric spaces over Banach algebras

without the assumption of normality and some unique fixed point theorems were given. Also, One of the main

results is supported with a relevant example.
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1. Introduction

In 2007, cone metric spaces were reviewed by Huang and Zhang, as a generalization of metric

spaces (see [1]). The distance d(x,y) of two elements x and y in a cone metric space X is defined
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to be a vector in an ordered Banach space E, quite different from that which is defined a non-
negative real numbers in general metric space. In 2011, I. Beg, A. Azam and M. Arshad([2])
introduced the concept of topological vector space-valued cone metric spaces, where the ordered
Banach space in the definition of cone metric spaces is replaced by a topological vector space.

Recently, some authors investigated the problems of whether cone metric spaces are equiva-
lent to metric spaces in terms of the existence of fixed points of the mappings and successfully
established the equivalence between some fixed point results in metric spaces and in (topolog-
ical vector space-valued) cone metric spaces, see [3-6]. Actually, they showed that any cone
metric space (X,d) is equivalent to a usual metric space (X,d*), where the real-metric func-
tion d* is defined by a nonlinear scalarization function &,(see [4]) or by a Minkowski function
q.(see[S]). After that, some other interesting generalizations were developed, see. for instance,
[7].

In 2013, Liu and Xu [8] introduced the concept of cone metric spaces over Banach algebras,
replacing a Banach space E by a Banach algebra .7 as the underlying spaces of cone metric
spaces. And the authors in [8-11] discussed and obtained Banach fixed point theorem, Kannan
type fixed point theorem, Chatterjea type fixed point theorem and ¢iri€ type fixed point theorem
in cone metric spaces over Banach algebras. Especially, the authors in [10] gave an example to
show that fixed point results of mappings in this new space are indeed more different than the
standard results of cone metric spaces presented in literature.

In this paper, we use the elementary results of the c-sequences and the basic properties of cone
metric spaces over Banach algebras to obtain some new unique common fixed point theorems
for two generalized expansive mappings on cone metric spaces over Banach algebras without
the assumption of normality and give some unique fixed point theorems. Finally, we give an

example to support the main result.

2. Preliminaries

Let o always be a Banach algebra. That is, .7 is a real Banach space in which an operation

of multiplication is defined, subject to the following properties(for all x,y,z € o7, & € R):

L. (xy)z = x(yz);
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2. x(y+z) =xy+xzand (x+y)z = xz+yz;

3. a(xy) = (ox)y = x(ay);

Ay Iyl -

In this paper, we shall assume that a Banach algebra has a unit (i.e., a multiplicative identity)
e such that ex = xe = x for all x € /. An element x € <7 is said to be invertible if there is an
inverse element y € A such that xy = yx = e. The inverse of x is denoted by x~!. For more detail,
we refer to [12].

We say that {x1,x2,---,x,} C o/ commute if x;x; = x;x; forall i, j € {1,2,--- ,n}.
Proposition 2.1.[12] Let o7 be a Banach algebra with a unit e, and x € <7 . If the spectral radius

r(x) of x is less than 1, i.e.,
— L n = n
() = Tim | 2[5 = int [ " | < 1.

Then (e — x) is invertible. Actually,

Remark 2.1. 1) r(x) <|| x || for any x € <7 (see [12]).
2) In Proposition 2.1, if the condition r(x) < 1 is replaced by the condition || x || < 1, then the

conclusion remains true.

A subset P of a Banach algebra <7 is called a cone if

1. P is nonempty closed and {0,e} C P, where 0 denotes the null of the Banach algebra <7,

2. a P+ B P C P for all non-negative real numbers . f3;

3.P2=PPCP;

4. Pn(—P) ={0}.

For a given cone P C .7, we can define a partial ordering < with respect to P by x <y if and
only if y —x € P. x < y stand for x < y and x # y. While x < y sill stand for y — x € int P, where
int P denotes the interior of P. A cone P is called solid if int P # 0.

The cone P is called normal if there is a number M > 0 such that for all x,y € o7
0<x<y=|xlI<M|y].

The least positive number satisfying the above is called the normal constant of P.
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Here, we always assume that P is a solid and < is the partial ordering with respect to P.
Definition 2.1.[1, 9-10] Let X be a non-empty set. Suppose that the mapping d : X x X — &7
satisfies

1. 0 <d(x,y) for all x,y € X and d(x,y) = 0 if and only if x = y;

2. d(x,y) =d(y,x) for all x,y € X;

3.d(x,y) <d(x,z)+d(z,y) forall x,y,z € X.

Then d is called a cone metric on X and (X,d) is called a cone metric space(over a Banach
algebra 7).
Remark 2.2. The examples of cone metric spaces(over a Banach algebra .<7) can be found in

[8-10].

Definition 2.2.[1, 8] Let (X,d) be a cone metric space over a Banach algebra <7, x € X and
{x,} a sequence in X. Then:

1. {x,} converges to x whenever for each ¢ € &/ with 0 < ¢ there is a natural number N such
that d(x,,x) < ¢ for all n > N. We denote this by lim,,_,ex,, = x Or X, — X.

2. {x,} is Cauchy sequence whenever for each ¢ € &7 with 0 < ¢ there is a natural number
N such that d(x,,x,) < ¢ for all n,m > N.

3. (X,d) is a complete cone metric space if every Cauchy sequence is convergent.

Definition 2.3.[13-14] Let P is a solid cone in a Banach space <. A sequence {u,} C P is

called a c-sequence if for each ¢ > 0 there exists ng € N such that u, < ¢ for all n > ny.

Proposition 2.2.[13] Let P is a solid cone in a Banach space </ and let {x,} and {y,} be
sequences in P. If {x,} and {y,} are c-sequences and o, > 0, then {otx, + By,} is a c-

sequence.

Proposition 2.3.[13] Let P is a solid cone in a Banach algebra </ and {x,} a sequence in P.
Then the following conditions are equivalent:

(1) {xn} is a c-sequence;

(2) for each ¢ > Othere exists ny € N such that x, < c for all n > ny;

(3) for each ¢ > Othere exists n; € N such that x,, < c for all n > n;.
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Proposition 2.4.[10] Let P is a solid cone in a Banach algebra <7 and {u,} a sequence in P.
Suppose that k € P is an arbitrarily given vector and {u,} is a c-sequence in P. Then {ku,} is

a c-sequence.

Proposition 2.5.[10] Let </ be a Banach algebra with a unit e, P a cone in </ and < be the
semi-order generated by the cone P. The following assertions hold true:

(i) For any x,y € @/, a € P with x <y, ax < ay;

(ii) For any sequences {x,},{yn} C < with x, — x and y, — y as n — o, where x,y € <,

we have x,y, — Xy as n — oo.

Proposition 2.6.[10] Let </ be a Banach algebra with a unit e, P a cone in </ and < be the
semi-order generated by the cone P. Let A € P. If the spectral radius r(A) of A is less than 1,
then the following assertions hold true:

(i) Suppose that x is invertible and that x~' > 0 implies x > 0, then for any integer n > 1, we
have A" < A <e.

(ii) For any u > 0, we have u ;é Au,i.e, A\u—u¢P.

(iii) If . > 0, then (e — 1)~ > 0.

Proposition 2.7.[10] Let (X, d) be a complete cone metric space over a Banach algebra </ and
P a solid cone in Banach algebra A. If a sequence {x,} in X converges to x € X, then
(i) {d(xn,x)} is a c-sequence.

(ii) For any p € N, {d(xn,xn4p)} is a c-sequence.

Lemma 2.1.[15] If E is a real Banach space with a cone P and if a < Aa with a € P and

0< A<, thena=0.

Lemma 2.2.[16] If E is a real Banach space with a cone P and if 0 < u < c for all 0 < ¢, then
u=0.

Lemma 2.3.[16] If E is a real Banach space with a solid cone P and if || x, | = 0 as n — oo,

then for any 0 < c, there exists N € N such that x,, < c for any n > N.

Lemma 2.4.[10] If </ is a Banach algebra and k € <7 with r(k) < 1, then || k" ||— 0 as n — oo.
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Lemma 2.5.[10] Let </ be a Banach algebra and x,y € /. If x and y commute, then the
following hold:
(i) r(xy) < r(x)r(y);
(i) r(x+y) <r(x) +r(y);
(ii) | r(x) —r(y) [< r(x—y).
Lemma 2.6.[10] Let </ be a Banach algebra and {x,} a sequence in <f. Suppose that {x,}

converge to x € o/ and that x,, and x commute for all n, then r(x,) — r(x) as n — oo.

Lemma 2.7.[17-18] Let P be a solid cone in a Banach algebra </ and {a.,3,y} C </ with

r(y) < L. If {e, B, Y} commute, then

< r(a+p)

r(a) +r(B)
~ 1=r(y) '

1—r(y)

<

r((e=n7"(@+B))

Lemma 2.8.[17-18] (Cauchy Principle) Let (X ,d) be a cone metric space over a Banach alge-
bra <f, P a solid cone in </ and k € P with r(k) < 1. If a sequence {x,} C X satisfies that

d(xn+17xn+2) < kd(xnaxn+l)7vn =0,1,2,---.

Then {x,} is a Cauchy sequence.

Lemma 2.9.[9] Let (X,d) be a cone metric space over a Banach algebra <7, P a solid cone in

of and {x,} C X a sequence. If {x,} is convergent, then the limits of {x,} is unique.

Definition 2.4.[19] Two mappings f,g : X — X are weakly compatible if, for every x € X,
fex = gfx holds whenever fx = gx.

Definition 2.5.[19] Let f,g : X — X be two mappings. If w = fx = gx for some x,w € X, then

x is called a coincidence point of f and g, and w is a point of coincidence of f and g.

Lemma 2.10.[19] If f,g : X — X be weakly compatible and have a unique point of coincidence

w = fx = gx, then w is the unique common fixed point of f and g.

In 1982, Wang, Li and Gao[20] introduce the following concepts:
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Let (X,d) be a real metric space, f : X — X a mapping. If there exists a > 1 such that
d(fx,fy) Z ad(x,y), ¥ x,y € X.

Then f is called I-expansive mapping.
They also proved that any onto /-expansive mapping on complete real metric space has a
unique fixed point.

Obviously,
d(fx,fy) > ad(x,y) <= bd(fx,fy) >d(x,y),

where a > 1 and 0 < b < 1 are two constant real numbers.

In this paper, by generalizing the concepts of /-expansive mappings, we will obtain the exis-
tence theorems of unique common fixed points for two mappings satisfying generalized expan-
sive conditions on a cone metric space (X,d) over a Banach algebra <7 and give some unique

fixed point theorems.
3. Unique common fixed points for expansive mappings

Theorem 3.1. Let (X,d) be a cone metric space over a Banach algebra </ and S,T : X — X

two mappings satisfying SX C TX and P a solid cone in <7. Suppose that for each x,y € X with

XFY,
od(Tx,Ty)+ Bd(Sx,Ty) +yd(Sy, Tx) > d(Sx,Sy), (3.1)

where {a,B,v} C P commutes and satisfies r(o) +r(B) +r(y) < 1. If TX or SX is complete,
then S, T have a unique point of coincidence. Furthermore, if S and T are weakly compatible,

then S, T have a unique common fixed point.

Proof. Take an xy € X. Using SX C TX, we obtain sequence {x,} and {y,} in X satisfying
Yo =8x%, =Txp11,Vn=0,1,2,---. (3.2)

If there exists n such that x, = x,, 11, then y,, = Sx,, = Tx;,, hence y,, is the point of coincidence
of S and T. So we can assume that x, # x,,+1,Vn=0,1,2,---.

Suppose that r(y) < r(f), then r(a) + 2r(y) < 1.
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For any fixedn =0,1,2,---, by (3.1),
ad(Txni1, Txni2) + Bd(Sxni1, Txn12) + ¥d (Sxn42, TXnt1) > d(SXni1,S%n+2),

using (3.2), we have

0td (Y, Ynt1) + YA (Ynt2,¥n) = d(Vnt1, Yn42),
hence
od (Y, Yn1) + Y[d(Vn+2, Y1) +d(nt1,50)] = d(Vns1,Yn42)-
Therefore
(e =Ndn+1,yn42) < (00 +V)d(Vn, Ynt1)-

Since (e — ) is invertible and (e —y)~! > 0 by Proposition 2.1 and Proposition 2.6, we obtain

d(yn+la)’n+2) < (e - '}’)_1 (OC + }’)d(yn,ynﬂ)-

Since r((e —y) (o +7)) < r(f‘_):“(ry()ﬂ < 1 by Lemma 2.7, {y,} is a Cauchy sequence by

Lemma 2.8. Similarly, {y,} is also Cauchy for the case r(f8) < r(y).

Since TX or SX is complete and y, € SX C TX,Vn, there exist z,x € X such thaty, - z=Tx
as n — oo,

For x,,41 and x, using (3.1), we obtain

od(Txpy1,Tx)+ Bd(Sxpr1,Tx)+ yd(Sx,Txp1) > d(Sxpy1,5%),

that is,
otd (yn, Tx) + Bd(yn+1,Tx) + vd(Sx,yn) = d(Ynt1,5%),
hence
otd (yn, Tx) + Bd(Yp41,Tx) + Y[d(SX, Yp+1) +d (Y, yat1)] = d(Yns1,5%),
SO

d(yns1,8%) < (e =) [0td (yn, Tx) + B (Vs1, Tx) + ¥ (¥, Yn1)]-

Since (e — )~ ad(yn, Tx)+ Bd(yni1,TX)+¥d(yu,yns1)] is a c-sequence by Proposition 2.2
and Proposition 2.4 and Proposition 2.7, so d(y,+1,S5x) is also a c-sequence, hence {y,} — Sx

as n — oo. Therefore z = Tx = Sx by Lemma 2.9.
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If z; is also a point of coincidence of S and 7', then there exists x; € X such that z; = Sx| =

Tx;. For x and x{, using (3.1), we have
od(Tx,Txy)+ Bd(Sx,Txy) + yd(Sx;,Tx) > d(Sx,Sx;),

that 1s,

d(z,z1) < (a+B+7)d(z,21),
hence

d(z,21) < (@ + P +7)"d(z,21),n.

Using r(a+B+7) <r(a)+r(B)+r(y) <1, we have || (¢ + B +7)" ||— 0 as n — o by
Lemma 2.4, hence {(a + B + y)"d(z,z1)} is a c-sequence, so d(z,z1) =0, i.e., z=z;. This
means that z is the unique point of coincidence of S and 7. If S and T are weakly compatible,

then z is the unique common fixed point of S and 7 by Lemma 2.10.

Using Theorem 3.1, we can obtain the following fixed point theorems:
Theorem 3.2. Let (X,d) be a cone metric space over a Banach algebra <7 and T : X — X a

mapping and let P is a solid cone in <7 . Suppose that for each x,y € X,x # y,
ad(Tx, Ty) + Bd(T?x, Ty) + yd(T?y, Tx) > d(T°x,T%y),
where {a,B,y} C P commutes and satisfies r(a) +r(B)+r(y) < 1. If TX is complete, then T

has a unique fixed point.

Proof. Let 7% = S, then S and T are weakly compatible, hence S, T satisfy all conditions of

Theorem 3.1, so T has a unique fixed point by Theorem 3.1.

Theorem 3.3. Let (X,d) be a cone metric space over a Banach algebra <7 and T : X — X a

mapping satisfying TX = T?X and let P is a solid cone in /. Suppose that for each x,y €
X, x#y,
ad(T?x, T?y) + Bd(Tx,T?y) + yd(Ty,T?x) > d(Tx, Ty),

where {a,B,y} C P commutes and satisfies r(a) +r(B)+r(y) < 1. If TX is complete, then T

has a unique fixed point.
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Proof. Let F = T2 and G = T, then there exists x € X such that Fx = Gx by Theorem 3.1, i.e.,

T (Tx) = Tx, hence Tx is the fixed point of 7. The uniqueness of fixed point of T is obvious.

Theorem 3.4. Let (X,d) be a complete cone metric space over a Banach algebra </ and T

X — X a onto mapping and let P is a solid cone in <f. Suppose that for each x,y € X ,x #y,
od(Tx,Ty)+ Bd(x,Ty) + vd(y,Tx) > d(x,y),

where {a, B,Y} C P commutes and satisfies r(a) +r(B) +r(y) < 1. Then T has a unique fixed

point.
Proof. Let S = 1x in Theorem 3.1, then the conclusion follows from Theorem 3.1.

Theorem 3.5. Let (X,d) be a cone metric space over a Banach algebra <f and S : X — X a

mapping and let P is a solid cone in <7 . Suppose that for each x,y € X,x # y,
od(x,y) + Bd(Sx,y) + vd(Sy,x) = d(Sx,Sy),

where {a,,v} C P commutes and satisfies r(a) +r(B)+r(y) < 1. If SX is complete, then S

has a unique point.
Proof. Let T = 1x in Theorem 3.1, then the conclusion follows from Theorem 3.1.

Remark 3.1. If B = y =0, then Theorem 3.4 is a new version and generalization of a fixed
point theorem for a /-expansive mapping in [20] on cone metric space over Banach algebras; If
o =0, = v, then Theorem 3.4 is the expansive version of Chatterjea type fixed point theorem.
If « = 0,B = 7, then Theorem 3.5 reduce to Theorem 3.2 in [10], i.e., it is the version of
Chatterjea type fixed point theorem on cone metric space over Banach algebras. Hence Theorem
3.1-Theorem 3.5 generalize and improve many known fixed point and common fixed point

theorems.

Example 3.1. Let &7 = C}[0, 1] and define a norm on 7 by || x ||= || x ||, + || ¥ ||.. for x € 7.
Define multiplication in .7 as just pointwise multiplication. Then .7 is a real Banach algebra
with unit e = 1. The set P = {x € &/ : x > 0} is not normal cone(see[10, 21]).

Let X = {1,2,3} and define d : X x X — </ by

d(1,2)(1) =d(2,1)(t) =¢',d(1,3)(t) =d(3,1)(r) = 3¢',d(2,3)(t) = d(3,2) (1) = 2¢',d(x,x)(t) = 0.
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Then (X,d) is a complete cone metric space over a Banach algebra .7 without normality.

Define two mappings S,7 : X — X by
S1=82=2,83=1,T1=1,T2=2,T3=3.

And let &, B,y € P as follows

11 1 1 1 1
a(t)_gt—f—gaﬁ(l‘)_mt—f—gayg)_Z)t—i_ga VZE [071]
It is easy to prove that (o) = %, r(B) = %, r(y) = 2%, hence
19
rla+p+y)<r(e)+r(B)+r(v)=5;<1

And for any ¢ € [0,1],

(ad(T1,T3) + Bd(S1,T3) +yd(S3,T1)](r)

= lad(1,3)+Bd(2,3)+yd(1,1)](z)

1 1 1 1

> ¢

= d(S1,583)(¢)
and

(0d(T2,T3)+ Bd(S2,T3) +yd(S3,T2)](t)

= [ad(2,3)+Bd(2,3)+vd(1,2)](r)

1 1 1 1 1 1

> ¢

= d($2,83)(1).

Hence S and 7" have a unique common fixed point 2 by Theorem 3.1.

Next, we give the second unique common fixed point theorem for two mappings satisfying

another generalized expansive condition on cone metric spaces over Banach algebras.
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Theorem 3.6. Let (X,d) be a complete cone metric space over a Banach algebra <7, P is a

solid cone in of and S, T : X — X two surjective mappings. Suppose that for any x,y € X ,x #y,

ad(Sx,Ty) + Bd(x,Ty) + yd(y,Sx) > d(x,y),

(3.3)

where {a,B,v} C P commutes and satisfies r(ot) +2max{r(B),r(y)} < 1. Then S,T have an

unique common fixed point.

Proof. Taking an element xo € X and using the surjective conditions of S and 7', we can con-

struct a sequence {x, } satisfying
Xon = Sxon41, Xont1 = Txopy2,n=0,1,2,---.
If there is a n € N such that x,,, = x,+1, then by (3.3),
ad(Sx2n 11, Tx2p12) + Bd(xon1 1, Txon12) + ¥d (X2012, %201 1) > d(X2n11,X2042),
using (3.4) and d(x2,,X2,+1) = 0, we obtain

vd (X2, X2n42) > d(X2n+1,X2n42),

hence
Yid (x2n,X2n+1) +d (Xons1,%2042)] > d(X2n11,%20+2),
that is,
Yd(xX2n+1,%n12) = d(X2n+1,X20+42),
therefore

(e —Y)d(x2n41,X2n+42) < 0.

Hence d(xp,+1,%2,+2) = 0 by Proposition 2.6, i.e., X241 = X2542-

If there is a n € N such that xo,,+1 = x2,+2, then by (3.3),
od (Sx2p43, Txon12) + Bd(x2n43, TX2p12) + Yd (X2012,S%2043) 2> d(X2p43,X2042)
using (3.4) and d(xp,+1,Xx2,4+2) = 0, we obtain

Bd(x2n+3,%2n41) > d(X2n43,X2n42),

(3.4)
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hence
Bld(x2n+1,X2n+2) +d(X2n42,X20+3)] > d(X2p41,%2042),
that is ,
Bd(xan+2,%0+3) = d(X2n+2,X20+3),
therefore

(e - ﬁ)d(x2n+27x2n+3) <0.

Hence d(xp,42,%2,+3) = 0 by Proposition 2.6, i.e, X212 = X2,,+3-

Therefore, we have the following fact: If there is a np € N such that x;,, = x,,+1, then x,, =
xn+1 for all n > ng. In this case, {x,} must be a Cauchy sequence. So from now on, we assume
that x, # x,+1,Vn=0,1,2,---.

For any fixed n € N, by (3.3),

od(Sxon+1, Txont2) + Bd(x2n41, Txons2) + Yd (X2n42, SX2n41) > d(X2n41,X2042),

that is,
ad(xan, Xon+1) + Yd (X2n42,X20) > d(X2p41,%2042),
hence
ad (x2n,X2n+1) + Y1d (X2, X2011) +d (X201, X2012)] > d(X2n11,X2012),
that is,

(e = V)d(x2n+1,%2m+2) < (@ +Y)d(X2n,%2n+1)-
Using r(y) < 1, we obtain
d(Xont1,X2n42) < (e = 1)~ (@ +¥)d (20, X2041)- (3.5)
Similarly, we obtain
d(x2n42,%2043) < (e — B) ' (@ + B)d (x2n41,%2n42)- (3.6)

Let K = (e—7y) Y(a+7), Ka=(e—B) '(+B) and K = K| K;. Since {«, 3,7} com-
mute and (e —B) "' =Y B and (e—y) ! = ¥ ¥, hence {«,B,7,K|,K>} also commute.
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Therefore by Lemma 2.5 and Lemma 3.1,
r(a) +r(y) r(a) +r(B)

r(K) <r(K))r(Kz) < <1
I1—r(y)  1-r(B)
Using mathematical induction and (3.5)-(3.6), we can obtain
d(xont1,X2m12) < Kid(xop,%0011) < Ki1Kod (x0p—1,%0,) < -+ < K"K1d(x0,x1) (3.7)
and
d(xX2n12,%2m13) < Kad (Xon11,%0012) < K" d(x0,x1). (3.8)
So for any p,q € N with p < g,
2q
d(pr+1,XQq+1) < Z d(xi,x,-H Kl Z Kl+ Z Kl )Co,xl (e K) le(Kl +K)d(x0,x1).
i=2p+1 i=p+1
(3.9)
Similarly,
2q
d(x2p, X2g41) < Y, d(xiXit1) ZK’+K1 ZKZ (x0,x1) < (e—K)~'KP(e+ Ki)d(x0,%1);
i=2p
(3.10)
2g—1
d(x2p,x2g) <Y, d(xi,Xig1) ZKZ+K1 ZK (x0,x1) < (e —K)'KP(e+K1)d (x0,x1);
i=2p
(3.11)
2g—1
d(X2p11,%24) < Z d(xi,xiv1) < K1 Z K'+ Z K’ d(xp,x1) < (e K)_IKP(KI + K)d(xp,x1).
i=2p+1 i=p+1
(3.12)
Since r(K) < 1, || K" ||— 0 as n — o0 by Lemma 2.4, hence
| (e —K)'KP(K{ + K)d(x0,x1) || = 0 as p — oo (3.13)
and
| (e —K)'KP(e+K1)d(x0,x1) | = 0 as p — oo. (3.14)
Therefore by Lemma 2.3, for any 0 < ¢ there exists N such that
(e —K)'KP(Ky 4+ K)d(xo,x;) < ¢, ¥p>N (3.15)

and

(e—K) 'KP(e+K;)d(xp,x1) < ¢, Vp>N. (3.16)
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Combining (3.9)-(3.12) and (3.15)-(3.16), we can show that there is a nyp € N such that
d(xm,x,) < c for all n > m > ny. Hence {x,} is a Cauchy sequence.

Since X is complete, there is z € X such that x, — z as n — o. And since S and T are
surjective, there exist x,y € X such that z = Tx = Sy.

For x2,,4+1 and x, we have
ad(SXZn-H ) T.X) + Bd(XZn—H ) T.X) + yd(xv S-XZFH—] ) > d(x2n+1 ,.X)

that is,
OCd()Qn, Tx) + ﬁd()@n_H , Tx) + ’)/d(x,x2n) > d(x2n+1 ,x)

hence

od(x2p, Tx) + Bd(x2n41, Tx) + ¥[d (x20,%2041) +d (X2n+1,%)] > d (X241, X)

which implies that

(e — y)d(x2n+1,x) < ad(xpy, Tx) + Bd(x2p+1, TX) + vd (X200, X2n+1)- (3.17)

Since r(y) < 1 implies (e —y)~! > 0, we obtain

d(x2n41,%) < (e —Y) " ad(x20, Tx) + (e = V)~ Bd(x2n 11, T) + (e = ¥) ' ¥ (¥20, %20 11).
(3.18)
Since x, — Tx as n — o and {x,} is Cauchy, the right-hand side of (3.18) is a c-sequence
by Proposition 2.2 and Proposition 2.4 and Proposition 2.7, hence for each ¢ > 0 there exists N

such that

(e - ’Y)ilad<x2n7Tx) + (e - Y)ilﬁd(xZn—HaTx) + (e - Y)il’yd(XZnaxZn-i-l) < ¢, Vn>N.
(3.19)

Combining (3.18), we have for each ¢ > 0 there exists N such that
d(xop+1,%) < ¢, Vn> N, (3.20)

hence x;,+1 — x as n — oo. But x,+1 — z as n — oo, hence z = x by Lemma 2.10. Similarly,

we can obtain z = y. Therefore z = Tz = Sz, that is, z is a common fixed point of S and T'.
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If z; is also a common fixed point of S and 7', i.e., z1 = Sz; = Tz, then by (3.3),
ad(Sz,Tz1) + Bd(z,Tz1) + yd(z1,8z) > d(z,z1)

hence

d(z,z1) < (¢ +B+7y)d(z,21).

Since r(a+ B +7) <r(a)+r(B)+r(y) <r(co)+2max{r(B),r(y)} < 1, so z=z; by the

proof process in Theorem 3.1. Hence z is the unique common fixed point of S and 7'.

Remark 3.2. Using Theorem 3.6, we can give many fixed point theorems, but we omit those

here.
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