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Abstract. In this paper, we construct an inertial algorithm that approximates a common fixed point of a countable

family of multi-valued total asymptotically strict quasi-φ -pseudocontractive maps in real Banach spaces and prove

strong convergence of the sequence generated by this algorithm. We provide a numerical example to illustrate the

implementability of the proposed algorithm and also show that our algorithm converges faster than some algorithms

recently proposed by other authors for solving this class of problem. Furthermore, we present some applications

of our theorems. Finally, our theorems are significant improvement on several important recent results.
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1. Introduction
Let E be a smooth real Banach space. Define the Lyapunov functional φ : E×E→ R by

φ(u,y) = ‖u‖2−2〈u,Jy〉+‖y‖2 ∀, u,y ∈ E.
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From the definition of φ it is easy to verify that

(‖u‖−‖y‖)2 ≤ φ(u,y)≤ (‖u‖+‖y‖)2 ∀, u,y ∈ E,(1)

and

φ(u,v) = φ(u,z)+φ(z,v)+2〈u− z,Jz− Jv〉 ∀, u,v,z ∈ E.(2)

Definition 0.1. (See e.g., Zhang et al. [3], Chidume et al. [11]) A map T : C→ 2C is called

(1) totally quasi-φ -asymptotically nonexpansive if F(T ) 6= /0 and there exist nonnegative

real sequences {γn},{δn} with γn → 0,δn → 0 (n→ ∞) and a strictly increasing and

continuous function ρ : R+→ R+ with ρ(0) = 0 such that

φ(u∗,ηn)≤ φ(u∗,u)+ γnρ
[
φ(u∗,u)

]
+δn, ∀, u ∈C,u∗ ∈ F(T ),ηn ∈ T nu, n≥ 1.

(2) asymptotically strict quasi-φ -pseudocontraction if F(T ) 6= /0 and there exist nonnegative

real sequence {γn} ⊂ [0,∞) with γn→ 0 as n→ ∞ and a constant k ∈ [0,1) such that

φ(u∗,ηn)≤ (1− γn)φ(u∗,u)+ kφ(u,ηn) ∀, u ∈C,u∗ ∈ F(T ),ηn ∈ T nu, n≥ 1.

(3) total asymptotically strict quasi-φ -pseudocontraction if F(T ) 6= /0 and there exist non-

negative real sequences {γn} ⊂ [0,∞),{δn} ⊂ [0,∞) with γn→ 0,δn→ 0 (n→ ∞) and

a constant k ∈ [0,1) such that

φ(u∗,ηn)≤ φ(u∗,u)+ kφ(u,ηn)+ γnρ
[
φ(u∗,u)

]
+δn ∀, u ∈C,u∗ ∈ F(T ),ηn ∈ T nu, n≥ 1,

where ρ : R+→ R+ is a strictly increasing and continuous function with ρ(0) = 0.

Remark 1. We remark that the class of total asymptotically strict quasi-φ -pseudocontractions

contains as subclasses the class of totally quasi-φ -asymptotically nonexpansive maps, the class

of asymptotically strict quasi-φ -pseudocontractions, the class of strict quasi-φ -pseudocontractions,

and the class of asymptotically strict quasi-φ -pseudocontractions in the intermediate sense (see

e.g., [2], [3], [5] for definitions and comparison).

Remark 2. We remark also that the class of totally quasi-φ -asymptotically nonexpansive multi-

valued maps contains as proper subclasses the class of relatively nonexpansive multi-valued
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maps, the class of quasi-φ -nonexpansive multi-valued maps, and the class of quasi-φ -asymptotically

nonexpansive multi-valued maps (see e.g., [15], [16], [20] for definitions and comparison).

Iterative methods have been utilized to approximate fixed points of totally quasi-φ -asymptotically

nonexpansive multi-valued maps (see e.g., [15], [16], [11], [20]), strict quasi-φ -pseudocontractions

(see e.g., [6]), asymptotically strict quasi-φ -pseudocontractions in the intermediate sense (see

e.g., [5]).

In 2011, Qin et al. [1] considered in uniformly convex and smooth real Banach spaces the

following hybrid projection algorithm:
u0 ∈ E chosen arbitrary, C1 =C, u1 = ΠC1u0,

Cn+1 = {v ∈Cn : φ(un,T nun)≤ 2
1−k〈un− v,Jun− JT nun〉+µn

Mn
1−k},

un+1 = ΠCn+1u0, n≥ 1,

where Mn = sup{φ(u∗,un) : u∗ ∈ F(T )}. The authors prove that the sequence generated by the

above algorithm converges strongly to ΠF(T )u0 under the following assumptions:

(C1) T is a closed and asymptotically strict quasi-φ -pseudocontraction;

(C2) T is asymptotically regular on C;

(C3) F(T ) is nonempty and bounded.

Zhang [4] established the results in [1] in the frame work of reflexive, smooth and strictly convex

real Banach spaces in which both the space and its dual space have the Kadec-Klee property.

In 2015, Wang and Yang [2] enlarged the class of operators for which the results in the paper

of Qin et al. [1] are applicable, by proving for the class of total asymptotically strict quasi-φ -

pseudocontraction that the sequence generated by the following algorithm:
u0 ∈ E chosen arbitrary, C1 =C, u1 = ΠC1u0,

Cn+1 = {v ∈Cn : φ(un,T nun)≤ 2
1−k〈un− v,Jun− JT nun〉+θn},

un+1 = ΠCn+1u0, n≥ 1,

where θn = µn
Mn
1−k +

vn
1−k , Mn = sup{ρ(φ(u∗,un)) : u∗ ∈ F(T )}, converges strongly to ΠF(T )u0

under conditions (C2) and (C3) with condition (C1) replaced by condition:
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(C1∗) T is a closed and (k,µn,vn,ρ)-total asymptotically strict quasi-φ -pseudocontraction.

Recently, Zhang et al. [3] proposed the following hybrid projection algorithm for approxi-

mating common fixed points of a finite family of closed total asymptotically strict quasi-φ -

pseudocontractions:



u0 ∈ E chosen arbitrary, Ci
0 =C, i = 1,2, ...,N, C0 = ∩N

i=1Ci
0,

yi
n = J−1[αnJun +(1−αn)JT n

i un
]
,

Ci
n+1 = {v ∈Cn : φ(un,yi

n)≤ φ(v,un)+
2

1−k〈un− v,Jun− JT n
i un〉+θn},

Cn+1 = ∩N
i=1Ci

n+1,

un+1 = ΠCn+1u0,

(3)

where θn = µn
Mn
1−k +

vn
1−k , Mn = sup{ρ(φ(u∗,un)) : u∗ ∈Ω}, {Ti}N

i=1 is a finite family of closed

(k,µn,vn,ρ)-total asymptotically strict quasi-φ -pseudocontractions, Ω :=∩N
i=1F(Ti) is nonempty

and bounded subset of C. Assuming each Ti is asymptotically regular on C, the authors prove

that the sequence generated by the above algorithm converges strongly to ΠΩu0. It is important

to observe that the authors assumed the uniformity of the parameters k,µn,vn and ρ for the

family of maps they considered. This condition is restrictive and as shall been seen later, we

dispense with this condition in this paper.

Methods of speeding up the rate of convergence of iterative algorithms have attracted the atten-

tion of numerous researchers since iterative algorithms that converge faster are more desirable

in any possible applications. This is probably because such algorithms minimize computational

cost. One of such methods was introduced by Polyak [27] who studied the heavy ball method,

a two step iterative method for minimizing a smooth convex function, g. The algorithm takes

the following form:


x0,x1 ∈ E,

yn = xn +αn(xn− xn−1)

xn+1 = yn−λn∆g(xn),n≥ 1,

(4)
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where αn ∈ [0,1) is an extrapolation term and λn is a step-size parameter to be chosen suf-

ficiently small. The difference compared to a standard gradient method is that in each itera-

tion, the extrapolated term yn is used instead of xn. It is remarkable that this minor change

greatly improves the performance of the scheme, by speeding up convergence property. The

term αn(xn− xn−1) is called inertial; hence algorithm (4) is called inertial algorithm. Since

then, the study of inertial-type algorithm have become of great interest to several researchers,

see for example, inertial forward-backward splitting methods (see e.g., [23], [24], [25]), iner-

tial Douglas-Rachford splitting method [28], inertial ADMM (see e.g., [7], [8]), and inertial

forward-backward-forward method [26].

Very recently, Chidume et al. [10] considered the following inertial algorithm for approximating

fixed point of relatively nonexpansive maps in uniformly convex and uniformly smooth real

Banach spaces: 

u0,u1 ∈ E chosen arbitrary, C0 = E,

wn = un +αn(un−un−1),

vn = J−1[(1−β )Jwn +βJTwn
]

Cn+1 = {v ∈Cn : φ(v,vn)≤ φ(v,wn)},

un+1 = ΠCn+1u0,n≥ 1,

(5)

Our contribution in this paper, is to construct in certain Banach spaces an inertial iter-

ative algorithm that approximates common fixed points of an infinite family of multi-valued

(ki,γ
i
n,δ

i
n,ψi)-total asymptotically strict quasi-φ -pseudocontractive maps. Using some numeri-

cal illustration, we show that our algorithm converges much more faster than some algorithms

proposed by other authors. Furthermore, we apply our theorem to solve a system of generalized

mixed equilibrium problem and a system of convex minimization problem. Corollaries of our

theorems are significant improvement on several important recent results announced by other

authors, in particular, the results of Chidume et. al [10], Zhang et al. [3], Wang and Yang [2],

Zhang [4], and Qin et al. [1] (see concluding remark below).

2. Preliminaries
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Definition 0.2. (See e.g., Feng et al. [14], Wang and Yang [2], Chidume et al. [11]) A map

T : C→ 2C is said to be

• uniformly L-Lipschitz continuous if there exists a constant L > 0 such that

‖ηu−ηy‖ ≤ L‖u− y‖ ∀ ηu ∈ T nu,ηy ∈ T ny, n≥ 1;

• uniformly continuous if for un,yn ∈C we have that

lim
n→∞
‖un− yn‖= 0 =⇒ lim

n→∞
‖ηnu−ηny‖= 0 ∀ ηnu ∈ Tun,ηny ∈ Tyn;

• equally continuous if for un,yn ∈C we have that

lim
n→∞
‖un− yn‖= 0 =⇒ lim

n→∞
‖ηnu−ηny‖= 0 ∀ ηnu ∈ T nun,ηny ∈ T nyn.

• asymptotically regular on C if for any bounded subset D of C,

lim
n→∞

sup
x∈D
{‖ηn+1−η

n‖}= 0, η
n ∈ T nx,ηn+1 ∈ T n+1x.

Remark 3. It is easy to see that the class of uniformly L-Lipschitz multi-valued maps is a proper

subclass of the class of uniformly continuous multi-valued maps and the class of uniformly

continuous multi-valued maps is a proper subclass of the class of equally continuous multi-

valued maps.

Definition 0.3. A map G : D→ 2D is said to be closed if for any un ∈D such that un→ u, wn→

y, wn ∈ Gun, we have that y ∈ Gu.

We now present some lemmas that will be used in the sequel.

Lemma 0.4 (Kamimura and Takahashi, [22]). Let X be a real smooth and uniformly convex

Banach space, and let {xn} and {yn} be two sequences of X. If either {xn} or {yn} is bounded

and φ(xn,yn)→ 0 as n→ ∞, then ‖xn− yn‖→ 0 as n→ ∞.

Lemma 0.5 (see Chang et al. [15]). Let X be a uniformly smooth and strictly convex real

Banach space with Kadec-Klee property, and D be a nonempty closed convex subset of X. Let

{un} and {yn} be two sequences in D such that un → u∗ and φ(un,yn)→ 0, where φ is the

function defined by (1), then, yn→ u∗.
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Lemma 0.6. Let X be a uniformly smooth and strictly convex real Banach space with Kadec-

Klee property, and D be a nonempty closed convex subset of X. Let G : D→ 2D be a closed and

(k,{γn},{δn},ψ)-total asymptotically strict quasi-φ -pseudocontractive multi-valued map, then

the fixed point set F(G) of G is a closed and convex subset of D.

Proof. Let {µn} be a sequence in F(G) such that µn → µ . Then, µn ∈ Gµn. By closedness

of G we have that µ ∈ Gµ . Hence, F(G) is closed. Let µ,υ ∈ F(G), λ ∈ (0,1). Set w =

λ µ +(1−λ )υ . We want to show that w ∈ F(G). Let {zn} be a sequence generated by

z1 ∈ Gw,z2 ∈ Gz1 ⊂ G2w,z3 ∈ Gz2 ⊂ G3w, ... ,zn ∈ Gzn−1 ⊂ Gnw, ....(6)

Then,

φ(w,zn) = ‖w‖2−2〈w,Jzn〉+‖zn‖2

= ‖w‖2−2λ 〈µ,Jzn〉+(1−λ )〈υ ,Jzn〉+‖zn‖2

= ‖w‖2 +λφ(µ,zn)+(1−λ )φ(υ ,zn)−λ‖µ‖2− (1−λ )‖υ‖2.(7)

Since, G is (k,{γn},{δn},ψ)-total asymptotically strict quasi-φ -pseudocontractive, we have that

λφ(µ,zn)+(1−λ )φ(υ ,zn)

≤ λ
[
φ(µ,w)+ kφ(w,zn)+ γnψ

(
φ(µ,w)

)
+δn

]
+(1−λ )

[
φ(υ ,w)+ kφ(w,zn)

+γnψ
(
φ(υ ,w)

)
+δn

]
= λ [‖µ‖2−2〈µ,Jw〉+‖w‖2]+ (1−λ )[‖υ‖2−〈υ ,Jw〉+‖w‖2]+ kφ(w,zn)+λγnψ

(
φ(µ,w)

)
+(1−λ )γnψ

(
φ(υ ,w)

)
+δn

= λ‖µ‖2 +(1−λ )‖υ‖2 +‖w‖2−2〈w,Jw〉+ kφ(w,zn)+λγnψ
(
φ(µ,w)

)
+(1−λ )γnψ

(
φ(υ ,w)

)
+δn

= λ‖µ‖2 +(1−λ )‖υ‖2−‖w‖2 + kφ(w,zn)+λγnψ
(
φ(µ,w)

)
+(1−λ )γnψ

(
φ(υ ,w)

)
+δn.(8)

Substituting inequality (8) into inequality (7), we have that

φ(w,zn)≤ kφ(w,zn)+λγnψ
(
φ(µ,w)

)
+(1−λ )γnψ

(
φ(υ ,w)

)
+δn,
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which implies that

φ(w,zn)≤
λγn

1− k
ψ
(
φ(µ,w)

)
+

(1−λ )γn

1− k
ψ
(
φ(υ ,w)

)
+

δn

1− k
.

Thus, φ(w,zn)→ 0 as n→∞. By Lemma 0.5, we obtain that zn→ w as n→∞. Also, zn+1→ w

as n→ ∞. Since zn+1 ∈ Gzn, closedness of G implies that w ∈ Gw. Thus, w ∈ F(G). Hence,

F(G) is convex. �

Lemma 0.7. Let X be a uniformly convex and smooth real Banach space, and D be a nonempty

closed convex subset of X. Let G : D→ 2D be a closed and (k,{γn},{δn},ψ)-total asymptoti-

cally strict quasi-φ -pseudocontractive multi-valued map, then the fixed point set F(G) of G is a

closed and convex subset of D.

Proof. The proof follows the same pattern as in the proof of Lemma 28. By using the same

argument as in the proof of Lemma 28, we obtain that F(G) is closed. Let µ,υ ∈ F(G), λ ∈

(0,1). Set w = λ µ +(1−λ )υ . Let {zn} be a sequence generated by

z1 ∈ Gw,z2 ∈ Gz1 ⊂ G2w,z3 ∈ Gz2 ⊂ G3w, ... ,zn ∈ Gzn−1 ⊂ Gnw, ....(9)

Then, following the same argument as in the proof of Lemma 28, we obtain that φ(w,zn)→ 0

as n→ ∞. By Lemma 0.4, we obtain that zn→ w as n→ ∞. Also, zn+1→ w as n→ ∞. Since

zn+1 ∈Gzn, closedness of G implies that w∈Gw. Thus, w∈ F(G). Hence, F(G) is convex. �

Lemma 0.8. Let X be a smooth, strictly convex and reflexive real Banach space with dual

space X∗ such that both X and X∗ have the Kadec-Klee property and let D be a nonempty,

closed, convex subset of X. Let G : D→ 2D be a closed {k,γn,δn,ρ}-total asymptotically strict

quasi-φ -pseudocontractive multi-valued map. Then, F(G) is a closed and convex subset of D.

Proof. By using the same argument as in the proof of Lemma 28, we obtain that F(G) is closed.

Let µ,υ ∈ F(G), λ ∈ (0,1). Set w = λ µ +(1−λ )υ . Let {zn} be a sequence generated by

z1 ∈ Gw,z2 ∈ Gz1 ⊂ G2w,z3 ∈ Gz2 ⊂ G3w, ... ,zn ∈ Gzn−1 ⊂ Gnw, ....(10)

Then, following the same argument as in the proof of Lemma 28, we obtain that φ(w,zn)→ 0

as n→ ∞. Consequently, it follows from (1) that

‖zn‖→ ‖w‖,(11)
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hence,

‖Jzn‖→ ‖Jw‖.(12)

By reflexivity of X∗ we have without loss of generality that Jzn ⇀ y ∈ X∗. Again, by reflexivity

of X , we have that J(X) = X∗. Therefore, there exists a point z ∈ X such that Jz = y. Since

φ(w,zn) = ‖w‖2−2〈w,Jzn〉+‖zn‖2 = ‖w‖2−2〈w,Jzn〉+‖Jzn‖2,

by taking liminf in the last equation and using the weak lower semi-continuity of norm, we have

that

0≥ ‖w‖2−2〈w,Jz〉+‖Jz‖2 = ‖w‖2−2〈w,Jz〉+‖z‖2 = φ(w,z),

which implies that w = z. Thus, Jzn ⇀ Jw. By (12) and the Kadec-Klee property of X∗, we

have that Jzn → Jw. By norm-to-weak continuity of J−1, we have that, zn ⇀ w. Combining

this with (11) and the Kadec-Klee property X , we have that zn → w (as n→ ∞). Therefore,

zn+1→ w (as n→ ∞). Since zn+1 ∈ Gzn, then by closedness of G, we have that w ∈ Gw. Thus,

w ∈ F(G). Hence, F(G) is convex. This completes the proof. �

Lemma 0.9 (see Alber [29]). Let D be a nonempty closed and convex subset of a be a reflexive

strictly convex and smooth Banach space X. Then,

φ

(
u,ΠDy

)
+φ

(
ΠDy,y

)
≤ φ(u,y),∀u ∈ D, y ∈ X .(13)

Lemma 0.10 (Wei and Zhou, [21]). Let E be a real reflexive, strictly convex and smooth Banach

space, A : E → 2E∗ be a maximal monotone operator with A−10 6= /0, then for any x ∈ E. y ∈

A−10 and r > 0, we have

φ(y,QA
r x)+φ(QA

r x,x)≤ φ(y,x),

where QA
r : E→ E is defined by QA

r x := (J+ rA)−1Jx.

Lemma 0.11 (Deng and Bai [9]). The unique solutions to the positive integer equation

n = in +
(mn−1)mn

2
, mn ≥ in, n = 1,2,3, ...(14)
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are

in = n− (mn−1)mn

2
, mn =−

[
1
2
−
√

2n+
1
4

]
, n = 1,2,3, ...,(15)

where [x] denotes the maximal integer that is not larger than x.

3. Main results

1. INERTIAL ALGORITHM

In what follows, in and mn are the unique solutions to the positive integer equation: n = i+
(m−1)m

2
(m≥ i,n = 1,2, ...). That is, for each n≥ 1, there exist unique in and mn such that

i1 = 1, i2 = 1, i3 = 2, i4 = 1, i5 = 2, i6 = 3, i7 = 1, i8 = 2, ...;

m1 = 1, m2 = 2, m3 = 2, m4 = 3, m5 = 3, m6 = 3, m7 = 4, m8 = 4, ....

See Deng and Bai [9].

Theorem 1.1. Let E be a uniformly convex and smooth real Banach space and {Ti}∞
i=1, Ti :

E → 2E be an infinite family of equally continuous and totally asymptotically strict quasi-φ -

pseudocontractive multi-valued maps with nonnegative real sequences {γ i
n},{δ i

n}, a constant

ki ∈ [0,1) and a sequence of strictly increasing and continuous functions {ψi}, ψi : R+→ R+

such that γ
(i)
n → 0,δ (i)

n → 0 and ψi(0) = 0. Suppose Ω := ∩∞
i=1F(Ti) is nonempty, then the

sequence {un} generated by the algorithm

u0,u1 ∈ E chosen arbitrary, C1 = E,

wn = un +αn(un−un−1)

Cn+1 = {v ∈Cn : φ(wn,η
mn
in )≤ 2

1−kin
〈wn− v,Jwn− Jη

mn
in 〉+ζn}, η

mn
in ∈ T mn

in wn,

un+1 = ΠCn+1u0, n≥ 1,

(16)

converges strongly to ΠΩu0, where ζn =
γ

in
mn

1−kin
ψin(φ(w,wn))+

δ
in
mn

1−kin
, w ∈Ω and {αn} is a non-

decreasing sequence of real numbers in [0,1).



STRONG CONVERGENCE THEOREMS 411

Proof. We present the proof in a number of steps.

Step 1: {un}∞
n=1 is well defined.

It suffices to show that Cn is closed and convex for all n ≥ 1. From the definition of Cn, it is

easy to see that Cn is closed for each n≥ 1. Clearly, C1 = E is convex. Assume Cn is convex for

some n≥ 1. Let v1,v2 ∈Cn+1, λ ∈ (0,1), and set w = λv1 +(1−λ )v2 ∈Cn. Then,

φ(wn,η
mn
in )≤ 2

1− kin
〈wn− v1,Jwn− Jη

mn
in 〉+ζn,(17)

φ(wn,η
mn
in )≤ 2

1− kin
〈wn− v2,Jwn− Jη

mn
in 〉+ζn.(18)

Multiplying inequalities (17) and (18) by λ and (1−λ ), respectively, and adding the resulting

inequalities we obtain that

φ(wn,η
mn
in )≤ 2

1− kin
〈wn−w,Jwn− Jη

mn
in 〉+ζn,(19)

which implies that w ∈Cn+1. Thus, Cn+1 is convex. Therefore, Cn is closed and convex for all

n≥ 1. Hence, {un}∞
n=0 is well defined.

Step 2: ΠΩu0 is well define.

It suffices to show that Ω is nonempty, closed and convex. This follows from Lemma 0.7 and

the assumption that Ω 6= /0.

Step 3: Ω⊂Cn for all n≥ 1.

We proceed by induction. Clearly, Ω ⊂C1 = E. Suppose Ω ⊂Cn for some n ≥ 1. Let w ∈ Ω.

Since for each i = 1,2,3..., Ti is totally asymptotically strict quasi-φ -pseudocontractive, we

have that

φ(w,ηmn
in )≤ φ(w,wn)+ kinφ(wn,η

mn
in )+ γ

in
mn

ψin
(
φ(w,wn)

)
+δ

in
mn
.(20)

Using inequality (2) we obtain that

φ(w,ηmn
in ) = φ(w,wn)+φ(wn,η

mn
in )+2〈w−wn,Jwn− Jη

mn
in 〉.(21)
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From inequalities (20) and (21), we obtain that

φ(wn,η
mn
in ) ≤

γ in
mn

1− kin
ψin
(
φ(w,wn)

)
+

δ in
mn

1− kin
+

2
1− kin

〈wn−w,Jwn− Jη
mn
in 〉

=
2

1− kin
〈wn−w,Jwn− Jη

mn
in 〉+ζn,

which implies that w ∈Cn+1. Hence, Ω⊂Cn, ∀ n≥ 1.

Step 4: lim
n→∞

ζn = 0 and lim
n→∞

un = u∗ ∈ E.

Using Lemma 0.9, we have that

φ(un,u0) = φ(ΠCnu0,u0)≤ φ(w,u0)−φ(w,un)≤ φ(w,u0) ∀ w ∈Ω,(22)

which implies that {φ(un,u0)} is bounded. Thus, by inequality (1) we obtain that {un} is

bounded. Now, for each i≥ 1, define Mi := {k≥ 1 : k = i+ (m−1)m
2 ,m≥ i,m∈N}. Observe that

if for each i≥ 1, k∈Mi, then γ
ik
mk = γ i

mk
, δ

ik
mk = δ i

mk
and ψik =ψi. Also, mk→∞ as k→∞, k∈Mi.

Therefore, lim
n→∞

ζn = 0.

Since un = ΠCnu0 ∈Cn and Cn+1 ⊂Cn, we have that

φ(un,u0)≤ φ(un+1,u0) ∀ n≥ 1.

Thus, {φ(un,u0)} is monotone nondecreasing. Consequently, limit of {φ(un,u0)} exists. Let

m > n. Then, using Lemma 0.9, we obtain that

φ(um,un) = φ(um,ΠCnu0)≤ φ(um,u0)−φ(ΠCnu0,u0) = φ(um,u0)−φ(un,u0),

which implies that φ(um,un) → 0 as n,m → ∞. Therefore, by Lemma 0.4, we obtain that

‖um−un‖→ 0 as n,m→ ∞. Hence, un→ u∗ ∈ E as n→ ∞. Consequently, wn→ u∗ as n→ ∞.

Step 5: u∗ ∈Ω

Since un+1 = ΠCn+1u0 ∈Cn+1, we have that

φ(wn,η
mn
in )≤ 2

1− kin
〈wn−un+1,Jun−η

mn
in 〉+ζn.(23)

Using the fact that limn→∞ ‖wn−un+1‖= 0 and limn→∞ ζn = 0, we obtain from inequality (23)

that limn→∞ φ(wn,η
mn
i ) = 0. Thus, by Lemma 0.4, we have that

lim
n→∞
‖wn−η

mn
i ‖= 0.(24)
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Therefore, for each i,

lim
n→∞

η
mn
i = u∗.(25)

Now, for each i≥ 1 consider the sequence {z(i)mk}k∈Ki generated by

zi
mk+1
∈ Tiη

mk
i ⊂ T mk+1

i uk, k ∈ Ki.

By continuity of Ti we have from (25) that for each i≥ 1, lim
k→∞

zi
mk+1

= z∗, z∗ ∈ Tiu∗. Using (24)

and equally continuity of Ti, we obtain that for each i≥ 1,

∥∥zi
mk+1
−η

mk
i

∥∥ ≤ ∥∥zi
mk+1
−η

mk+1
i

∥∥+∥∥η
mk+1
i −wk+1

∥∥+‖wk+1−wk‖

+
∥∥wk−η

mk
i

∥∥→ 0, k→ ∞.

Therefore, for each i ≥ 1, limk→∞ zi
mk+1

= u∗. Hence, by uniqueness of limit we have that

u∗ = z∗. Thus, u∗ ∈Ω.

Step 6: u∗ = ΠΩu0.

Let k = ΠΩu0. Since u∗ ∈Ω, we have that

φ(k,u0)≤ φ(u∗,u0).(26)

Also, since un = ΠCnu0 and k ∈ Ω ⊂Cn, we have that φ(un,u0)≤ φ(k,u0). Since un→ u∗, we

have that

φ(u∗,u0)≤ φ(k,u0).(27)

From inequalities (26) and (27) we obtain that

φ(u∗,u0) = φ(k,u0).

Thus, u∗ = k = ΠΩu0. This completes the proof. �

Theorem 1.2. Let E be a uniformly smooth and strictly convex real Banach space with Kadec-

Klee property and let {Ti}∞
i=1, Ti : E → 2E be an infinite family of equally continuous and

totally asymptotically strict quasi-φ -pseudocontractive multi-valued maps with nonnegative

real sequences {γ i
n},{δ i

n}, a constant ki ∈ [0,1) and a sequence of strictly increasing and
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continuous functions {ψi}, ψi : R+ → R+ such that γ
(i)
n → 0,δ (i)

n → 0 and ψi(0) = 0. Sup-

pose Ω := ∩∞
i=1F(Ti) is nonempty, then the sequence {un} generated by algorithm (16) con-

verges strongly to ΠΩu0, where {αn} is a nondecreasing sequence of real numbers in [0,1),

ζn =
γ

in
mn

1−kin
ψin(φ(w,un))+

δ
in
mn

1−kin
, and w ∈Ω.

Proof. Just as in the proof of Theorem 1.1, we shall present the proof of this theorem in a

number of steps.

Step 1: {un}∞
n=0 is well defined.

This step is the same as Step 1 of the proof of Theorem 1.1.

Step 2: ΠΩu0 is well define.

This follows from Lemma 28 and the assumption that Ω is nonempty.

Step 3: Ω⊂Cn for all n≥ 1.

This step is the same as Step 3 in the proof of Theorem 1.1.

Step 4: lim
n→∞

ζn = 0 and lim
n→∞

un = u∗ ∈ E.

Following the same argument as in Step 4 of the proof of Theorem 1.1, we obtain that lim
n→∞

ζn =

0 and that {un} is bounded. Therefore, there exists a subsequence {unk} of {un} such that

unk ⇀ u∗ as k→ ∞. Since Cnk is weakly closed, u∗ ∈ Cnk . Thus, unk = ΠCnk
u0 implies that

φ(unk ,u0)≤ φ(u∗,u0) ∀ k ≥ 1. By weak lower-semi continuity of ‖.‖, we have that

liminf
k→∞

φ(unk ,u0) = liminf
k→∞

{
‖unk‖

2−2〈unk ,Ju0〉+‖u0‖2}
≥ ‖u∗‖2−2〈u∗,Ju0〉+‖u0‖2 = φ(u∗,u0),

which implies that φ(u∗,u0)≤ liminfk→∞ φ(unk ,u0)≤ limsupk→∞ φ(unk ,u0)≤ φ(u∗,u0). Hence,

lim
k→∞

φ(unk ,u0) = φ(u∗,u0). Therefore, lim
k→∞
‖unk‖ = ‖u∗‖. By Kadec-Klee property of E, we

have that lim
k→∞

unk = u∗. Since {φ(un,u0)} is convergent and lim
k→∞

φ(unk ,u0) = φ(u∗,u0), we

have that lim
n→∞

φ(un,u0) = φ(u∗,u0).

Claim: un→ u∗.

Suppose not. Then, there exists a subsequence {un j} of {un} such that un j → p as j→ ∞. By



STRONG CONVERGENCE THEOREMS 415

applying Lemma 0.9, we have that

φ(u∗, p) = lim
j,k→∞

φ(unk ,un j) = lim
j,k→∞

φ

(
unk ,ΠCn j

u0

)
≤ lim

j,k→∞

(
φ(unk ,u0)−φ

(
ΠCn j

u0,u0

))
= lim

j,k→∞

(
φ(unk ,u0)−φ(uni,u0)

)
= φ(u∗,u0)−φ(u∗,u0) = 0,

which implies u∗ = p. Hence, the claim holds.

Step 5: u∗ ∈Ω

Following the same argument as in Step 5 of the proof of Theorem 1.1, we obtain that limn→∞ φ(wn,η
mn
i )=

0. Thus, by Lemma 0.5, we have that

lim
n→∞
‖ηmn

i −u∗‖= 0,

which implies that limn→∞ ‖wn−η
mn
i ‖= 0. The rest of the verification of this step follows the

same pattern as in Step 5 of the proof of Theorem 1.1.

Step 6: u∗ ∈Ω

This step is the same as Step 6 of the proof of Theorem 1.1. Hence, this completes the proof of

this theorem. �

Theorem 1.3. Let E be a reflexive, smooth and strictly convex real Banach space with dual

space E∗ such that both E and E∗ have the Kadec-Klee property and let {Ti}∞
i=1, Ti : E→ 2E be

an infinite family of equally continuous and totally asymptotically strict quasi-φ -pseudocontractive

multi-valued maps with nonnegative real sequences {γ i
n},{δ i

n}, a constant ki ∈ [0,1) and a se-

quence of strictly increasing and continuous functions {ψi}, ψi : R+ → R+ such that γ
(i)
n →

0,δ (i)
n → 0 and ψi(0) = 0. Suppose Ω := ∩∞

i=1F(Ti) is nonempty, then the sequence {un} gen-

erated by algorithm (16) converges strongly to ΠΩu0, where {αn} is a nondecreasing sequence

of real numbers in [0,1), ζn =
γ

in
mn

1−kin
ψin(φ(w,un))+

δ
in
mn

1−kin
, and w ∈Ω.

Proof. Just as in the proof of Theorem 1.1, we shall present the proof of this theorem in a

number of steps.

Step 1: {un}∞
n=0 is well defined.

This step is the same as Step 1 of the proof of Theorem 1.1.
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Step 2: ΠΩu0 is well define.

This follows from Lemma 0.8 and the assumption that Ω is nonempty.

Step 3: Ω⊂Cn for all n≥ 1.

This step is the same as Step 3 in the proof of Theorem 1.1.

Step 4: lim
n→∞

ζn = 0 and lim
n→∞

un = u∗ ∈ E.

The verification of this step follows the same pattern as in the verification of Step 4 of the proof

of Theorem 1.2. The rest of the proof of this theorem follows the same pattern as in the proof

of Theorem 1.2. �

By setting αn = 0 in algorithm (16), we obtain the following corollaries which are extentions

and generalizations of the works discussed in this paper (see concluding remarks below).

Corollary 1.4. Let E be a uniformly convex and smooth real Banach space and C be a nonempty

closed and convex subset of E. Let {Ti}∞
i=1, Ti : C→ 2C be an infinite family of equally contin-

uous and totally asymptotically strict quasi-φ -pseudocontractive multi-valued maps with non-

negative real sequences {γ i
n},{δ i

n}, a constant ki ∈ [0,1) and a sequence of strictly increasing

and continuous functions {ψi}, ψi : R+ → R+ such that γ
(i)
n → 0,δ (i)

n → 0 and ψi(0) = 0.

Suppose Ω := ∩∞
i=1F(Ti) is nonempty, then the sequence {un} generated by the algorithm

u1 ∈ E chosen arbitrary, C1 =C,

Cn+1 = {v ∈Cn : φ(un,η
mn
in )≤ 2

1−kin
〈un− v,Jun− Jη

mn
in 〉+ζn}, η

mn
in ∈ T mn

in un,

un+1 = ΠCn+1u0, n≥ 1,

(28)

converges strongly to ΠΩu0, where ζn =
γ

in
mn

1−kin
ψin(φ(w,un))+

δ
in
mn

1−kin
, w ∈ Ω and {αn} is a non-

decreasing sequence of real numbers in [0,1).

Corollary 1.5. Let E be a uniformly smooth and strictly convex real Banach space with Kadec-

Klee property and let C be a nonempty closed and convex subset of E. Let {Ti}∞
i=1, Ti :

C→ 2C be an infinite family of equally continuous and totally asymptotically strict quasi-φ -

pseudocontractive multi-valued maps with nonnegative real sequences {γ i
n},{δ i

n}, a constant
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ki ∈ [0,1) and a sequence of strictly increasing and continuous functions {ψi}, ψi : R+→ R+

such that γ
(i)
n → 0,δ (i)

n → 0 and ψi(0) = 0. Suppose Ω := ∩∞
i=1F(Ti) is nonempty, then the

sequence {un} generated by algorithm (28) converges strongly to ΠΩu0, where {αn} is a non-

decreasing sequence of real numbers in [0,1), ζn =
γ

in
mn

1−kin
ψin(φ(w,un))+

δ
in
mn

1−kin
, and w ∈Ω.

Corollary 1.6. Let E be a reflexive, smooth and strictly convex real Banach space with dual

space E∗ such that both E and E∗ have the Kadec-Klee property. Let C be a nonempty, closed

and convex subset of E and let {Ti}∞
i=1, Ti : C→ 2C be an infinite family of equally continuous

and totally asymptotically strict quasi-φ -pseudocontractive multi-valued maps with nonnega-

tive real sequences {γ i
n},{δ i

n}, a constant ki ∈ [0,1) and a sequence of strictly increasing and

continuous functions {ψi}, ψi : R+ → R+ such that γ
(i)
n → 0,δ (i)

n → 0 and ψi(0) = 0. Sup-

pose Ω := ∩∞
i=1F(Ti) is nonempty, then the sequence {un} generated by algorithm (28) con-

verges strongly to ΠΩu0, where {αn} is a nondecreasing sequence of real numbers in [0,1),

ζn =
γ

in
mn

1−kin
ψin(φ(w,un))+

δ
in
mn

1−kin
, and w ∈Ω.

2. APPLICATIONS

2.1. System of generalized mixed equilibrium problem. Let C be a nonempty, closed and

convex subset of a real Banach space E, ζ : C→ R be a real-valued function, A : C→ X∗ be a

nonlinear map and h : C×C→ R be a bifunction. The generalized mixed equilibrium problem

is to find u∗ ∈C such that

h(u∗,y)+ζ (y)−ζ (u∗)+ 〈y−u∗,Au∗〉 ≥ 0 ∀ y ∈C.(29)

The set of solutions of the generalized mixed equilibrium problem is denoted by GMEP(h,ζ ,A).

The class of generalized mixed equilibrium problem includes, as special cases, the class of

mixed equilibrium problem (A ≡ 0, see e.g., Ceng and Yao [22] and the references contained

therein); the class of generalized equilibrium problem (ζ ≡ 0, see e.g., Takahashi and Takahashi

[13]); the class of equilibrium problem (A≡ 0, ζ ≡ 0, see e.g., Fan [18], Blum and Oettli [19]

and the references contained in them); the class of variational inequality problem (h≡ 0, ζ ≡ 0,

see e.g., Stampacchia [12]) and the class of convex minimization problem (A≡ 0, h≡ 0).
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In the sequel, we shall assume that f : C×C → R is a bifunction satisfying the following

conditions:

(B1) f (u,u) = 0, ∀u ∈C,

(B2) f is monotone, that is, f (u,y)+ f (y,u)≤ 0, ∀u,y ∈C,

(B3) for all u,y,z ∈ E, limsupt↓0 f (tz+(1− t)u,y)≤ f (u,y),

(B4) for all u ∈C, y 7−→ f (u,y) is convex and lower semicontinuous.

The following lemma will be needed in what follows.

Lemma 2.1 (see Zhang [17]). Let E be a smooth, strictly convex and reflexive Banach space,

and C be a nonempty closed convex subset of E. Let A : C→ X∗ be a continuous and monotone

mapping, ζ : C→ R be a lower semi-continuous and convex function, and h : C×C→ R be a

bifunction satisfying the conditions (B1)− (B4). Let r > 0 be any given number and u ∈ E be

any given point. Then, the followings hold:

(1) There exists z ∈C such that

h(z,y)+ζ (y)−ζ (z)+ 〈y− z,Az〉+ 1
r
〈y− z,Jz− Ju〉 ≥ 0, ∀ y ∈C

(2) If we define a mapping Gr : C→C by

Gr(u) =
{

z ∈C : h(z,y)+ζ (y)−ζ (z)+ 〈y− z,Az〉+ 1
r
〈y− z,Jz− Ju〉 ≥ 0, ∀ y ∈C

}
, u ∈C,

the mapping Gr has the following properties:

(a) Gr is single-valued;

(b) Gr is a firmly nonexpansive-type mapping, that is, for all u,y ∈ E,

〈Gru−Gry,JGru− JGry〉 ≤ 〈Gru−Gry,Ju− Jy〉;

(c) F(Gr) =GMEP(h,A,ζ ) = F̂(Gr);

(d) GMEP(h,A,ζ ) a is closed convex set of C;

(e) φ(q,Gru)+φ(Gru,u)≤ φ(q,u) ∀q ∈ F(Gr),u ∈ E.

We now prove the following important theorem.
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Theorem 2.2. Let E be a reflexive, smooth and strictly convex real Banach space with dual

space E∗ such that both E and E∗ have the Kadec-Klee property. Let C be a nonempty, closed

and convex subset of E and let { fi}∞
i=1, fi : C×C → R be an infinite family of bifunctions

satisfying condition B1−B2. Let {Ai}∞
i=1, Ai : C→ X∗ be a sequence of continuous monotone

maps and {ζi}∞
i=1, ζi : C→ R be a sequence of convex and lower-semi continuous functions.

Suppose Λ := ∩∞
i=1GMEP( fi,Ai,ζi) is nonempty, then the sequence {un} generated by

u0,u1 ∈ E chosen arbitrary, C1 =C,

wn = un +αn(un−un−1)

Cn+1 = {v ∈Cn : φ(wn,Grin
wn)≤ 2

1−kin
〈wn− v,Jwn− JGrin

wn〉},

un+1 = ΠCn+1u0, n≥ 1,

converges strongly to ΠΛu0, where Gr is as defined in Lemma 2.1 and {αn} is a nondecreasing

sequence of real numbers.

Proof. From Lemma 2.1 (c), (e) and the assumption that Λ is nonempty, we obtain that Gri

is quasi-φ -nonexpansive for each i = 1,2, .... Observe that every quasi-φ -nonexpansive map is

totally asymptotically strict quasi-φ -pseudocontractive. Hence, by Theorem 1.3 and Lemma

2.1 (c) we have that {un} converges strongly to ΠΛu0. �

2.2. System of convex minimization problem. Let E be a real Banach space with dual space

E∗ and let f : E → R∪ {∞} be a proper, lower semicontinuous and convex function. The

subdifferential of f , ∂ f : E→ 2E∗ is defined by

∂ f (u) = {u∗ ∈ E∗ : f (y)− f (u)≥ 〈y−u,u∗〉, ∀ y ∈ E}.

It is well known that ∂ f is maximal monotone and that 0∈ ∂ f (u) if and only if u is a minimizer

of f .

Suppose E is a reflexive, smooth and strictly convex real Banach space with dual space E∗ and

Tru := (J + r∂ f )−1Ju. Then, from Lemma 0.10, we obtain that Tr is quasi-φ -nonexpansive if

F(Tr) is nonempty. Also observe that u is a fixed point of Tr if and only if 0 ∈ ∂ f (u). Hence,

the following theorem is an immediate application of Theorem 1.3.
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Theorem 2.3. Let E be a reflexive, smooth and strictly convex real Banach space with dual

space E∗ such that both E and E∗ have the Kadec-Klee property. Let C be a nonempty, closed

and convex subset of E and let { fi}∞
i=1, fi : C→ R∪{∞} be an infinite family of proper, lower

semicontinuous and convex functions such that Λ := {u∈C : fi(u) = minv∈C fi(v),∀ i = 1,2, ...}

is nonempty. Then the sequence {un} generated by

u0,u1 ∈ E chosen arbitrary, C1 =C,

wn = un +αn(un−un−1)

Cn+1 = {v ∈Cn : φ(wn,Trin
wn)≤ 2

1−kin
〈wn− v,Jwn− JGrin

wn〉},

un+1 = ΠCn+1u0, n≥ 1,

converges strongly to ΠΛu0, where {αn} is a nondecreasing sequence of real numbers.

3. NUMERICAL ILLUSTRATION

In this section, we give an examlpe to show that algorithm (16) converges faster than both

algorithm (5) proposed by Chidume et al. [10] and the standard algorithms studied by other

authors for solving the problem considered in this paper.

Example 1. Let E = R, C = [−1,1] and Tu = sinu. It is easy to see that T is relatively nonex-

pansive with F(T ) = {0} and thus, totally asymptotically strict quasi-φ -pseudocontractive. By

taking αn =
n

n+α−1 in algorithm (16) and algorithm (5), where α = 7
8 . Then under the above

setting for E, C and T , by Theorem (1.1) and Corollary (1.4) {un} converges to 0. Furthermore,

the graph of |un| against number of iterations for algorithm (16), algorithm (5) and algorithm

(28) is shown below.
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fig 1.

From the graph, we see that algorithm (16) labelled inertia alg. converges in less than 150

iterations whereas, algorithm (5) and algorithm (28) labelled Chidume et al alg. and Non-

inertia alg., respectively, are yet to converge even after 200 iterations. Hence, algorithm (16)

studied in this paper converges faster than algorithm (5) and algorithm (28).

Remark 4. All the computations and graph in Example 1 were done using Python 2.7 on hp

Desktop Corei5-6500CPU@3.20GHz×4 with 64-bit OS.

4. CONCLUDING REMARKS

Remark 5. From Example 1, one will observe that algorithm 16 studied in Theorem 1.1 is

more efficient than algorithm 5 of Chidume et al. [10]. Moreover, in Theorem 1.1 an infinite

family of multi-valued total asymptotically strict quasi-φ -pseudocontractions which contain as

a proper subclass, the class of relatively nonexpansive maps is considered. Hence, Theorem 1.1

improved and generalized the result of Chidume et al. [10].

Remark 6. In Corollary 1.4, the finite family of single-valued closed (k,γn,δn,ψ)-total asymp-

totically strict quasi-φ -pseudocontractions studied by Zhang et al. [3] is extended to an infinite

family of multi-valued total asymptotically strict quasi-φ -pseudocontractions. Furthermore, in

the paper of Zhang et al. [3], it is required that the contractive parameters k,γn,δn, and ψ must

work for each of the maps, however, in Corollary 1.4, using a special way of choosing integers

this condition is dispensed with. In Corollary 1.4, we also dispense with the boundedness of the
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set of common fixed points of the maps considered, as required in their paper. As in algorithm

(3) studied in the paper of Zhang et al. [3], algorithm (28) studied in Corollary 1.4, does not

involve yi
n, which in turn involves a control parameter, αn to be computed at each iteration pro-

cess. Thus from computational point of view, algorithm (28) is more efficient than algorithm 3.

Hence, Corollary 1.4 improved, extend and generalized the results of Zhang et al. [3].

Remark 7. Corollary 1.4 improves the results of Wang and Yang [2] in the following ways.

• The closedness condition imposed on the map studied in Wang and Yang [2] is dispensed

with in Corollary 1.4.

• The class of maps considered in the paper of Wang and Yang [2] is extended from the

class of single-valued (k,γn,δn,ψ)-total asymptotically strict quasi-φ -pseudocontraction

to the class of infinite family of multi-valued (ki,γ
i
n,δ

i
n,ψi)-total asymptotically strict

quasi-φ -pseudocontractions.

• The boundedness condition imposed on the set of common fixed points of the maps

considered in the paper of Wang and Yang [2] is dispensed with in Corollary 1.4.

Remark 8. Corollary 1.6 improves the results in the paper of Zhang [4] in several ways.
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