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Abstract. In this paper, we establish some common fixed point results for weakly compatible mappings satisfied

generalized contraction under rational expressions in complex valued metric spaces. Our results generalize and

extend some of the known results in the literature. Finally, we use our results to obtain the unique common

solution of Ursohn integral equation.
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1. Introduction
Fixed point theory is one of the famous and traditional theories in mathematics and has a

broad set of applications. In this theory, contraction is one of the main tools to prove the

existence and uniqueness of a fixed point. Banach,s contraction principle gives the existence

and uniqueness of a solution of an operator equation and considered as the most widely used

fixed point theorem in all analysis. The principle is constructive in nature and is one of the
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most useful tools in the study of nonlinear equations. There are many generalizations of the

Banach,s contraction mapping principle in the literature. These extension were made either by

using contractive conditions on an ambient space. There are been a number of generalizations

of metric space such as rectangular metric spaces, pseudo metric spaces, probabilistic metric

spaces, D-metric spaces, fuzzy metric spaces, cone metric spaces, 2-metric spaces and G-metric

spaces, etc (see [1,12,13]).

Recently, Azam et al. [2] introduced the concept of complex valued metric spaces which is

more general than ordinary metric spaces and obtained fixed point theorems of contractive type

in the context of complex valued metric spaces (see [3,4,5,7,9,10,14,15,16,17,18,19 ,20]).

2. Preliminaries
In this section, we recall some notations and definitions due to Azam and et al. [2], that will be

used in our subsequent discussion.

Let C be the set of complex numbers and z1,z2 ∈ C. Define a partial order - on C as follows:

z1 - z2 iff Re(z1)≤ Re(z2) and Im(z1)≤ Im(z2).

It follows that z1 - z2 if one of the following conditions is satisfied:

(C1) Re(z1) = Re(z2) and Im(z1)< Im(z2),

(C2) Re(z1)< Re(z2) and Im(z1) = Im(z2),

(C3) Re(z1)< Re(z2) and Im(z1)< Im(z2),

(C4) Re(z1) = Re(z2) and Im(z1) = Im(z2).

In particular, we write z1 � z2 if z1 6= z2 and one of (C1), (C2) and (C3) is satisfied and we

write z1 ≺ z2 if only (C3) is satisfied.

Definition 2.1 [2] Let X be a nonempty set. A mapping d : X ×X → C is called a complex

valued metric on X if the following conditions are satisfied:

(CM1) 0 - d(x,y) for all x,y ∈ X and d(x,y) = 0 ⇔ x = y,

(CM2) d(x,y) = d(y,x) for all x,y ∈ X ,

(CM3) d(x,y)- d(x,z)+d(z,y) for all x,y,z ∈ X .

In this case, we say that (X ,d) is called a complex valued metric space.
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Example 2.1 [15] Let X =C be a set of complex numbers. Define d : X×X→

C by

d(z1,z2) = |x1− x2|+ i |y1− y2| ,

where z1 = x1 + iy1 and z2 = x2 + iy2. Then (X ,d) is called a complex valued

metric space.

Example 2.2 [11] Let X = R. Define the mapping d : X×X → C by

d(x,y) = log z |x− y| ∀ x,y ∈ R,

where z is a fixed complex number such that 0 < arg(z)<
π

2
and |z|> 1 (Here

logarithm takes only the principle value). Then (X ,d) is called a complex val-

ued metric space.

Example 2.3 [4] Let X = C. Define a mapping d : C×C→ C by

d(z1,z2) = eik |z1− z2| ∀ z1,z2 ∈ C,

where k ∈ [0,π/2]. Then (X ,d) is called a complex valued metric space.

Definition 2.2 [3] Let X be non-empty set and (S,T ) be a pair of self-mappings

on X . Then (S,T ) is said to be weakly compatible if

Sx = T x ⇒ ST x = T Sx ∀ x ∈ X .

Definition 2.3 [2] Let {xr} be a sequence in a complex valued metric space

(X ,d) and x ∈ X . Then

(i) x is called the limit of {xr} if for every ε > 0 there exist r0 ∈ N such that

d(xr,x)≺ ε for all r > r0 and we can write limr→∞ xr = x.

(ii) {xr} is called a Cauchy sequence if for every ε > 0 there exist r0 ∈ N such

that d(xr,xr+s)≺ ε for all r > r0, where s ∈ N.



442 R. A. RASHWAN AND M. G. MAHMOUD

(iii) (X ,d) is said to be a complete complex valued metric space if every Cauchy

sequence is convergent in (X ,d).

Lemma 2.1 [2] Let (X ,d) be a complex valued metric space and {xr} be a

sequence in X . Then {xr} converges to x if and only if |d(xr,x)| → 0 as r→∞.

Lemma 2.2 [2] Let (X ,d) be a complex valued metric space. Then a sequence

{xr} in X is a Cauchy sequence if and only if |d(xr,xr+s)|→ 0 as r→∞, where

s ∈ N.

The aim of this paper is to obtain some common fixed point theorems for four

weakly compatible mappings satisfying rational type contractive conditions in

the framework of complex valued metric space. The obtained results are gen-

erations of recent results proved by S. U. Khan [8], A. K. Dubey [6] and Azam

et al. [2]. Finally, we use our results to obtain the unique common solution of

Ursohn integral equation

j(t) = fi(t)+
∫ b

a
Ki(t,s, j(s))ds.

3. Main Results

We start to this section with the following theorem.

Theorem 3.1 Let (X ,d) be a complete complex valued metric space and S,T,P,

Q : X → X are four mappings satisfy:

d(S j,T k) - a1 d(P j,Qk) + a2
d(P j,S j)d(Qk,T k)

1+d(P j,Qk)
+ a3

d(P j,T k)d(Qk,S j)
1+d(P j,Qk)

+ a4 [d(P j,S j)+d(Qk,T k) ], (1)

for all j,k ∈ X , where a1,a2,a3 and a4 are non-negative reals with 0 ≤ a1 +

a2+a3+2a4 < 1. If S(X)⊆Q(X) and T (X)⊆ P(X), then S,P,T and Q have a
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coincidence point. Moreover, if the pairs (S,P) and (T,Q) are weakly compati-

ble, then there exists a unique common fixed point of the four mappings.

Proof. Let j0 be arbitrary point in X . Since S(X) ⊆ Q(X) and T (X) ⊆ P(X),

we can construct the sequence { jn} such that,

(2)

 j2n+1 = S j2n = Q j2n+1

j2n+2 = T j2n+1 = P j2n+2,

for all n ∈ N. From (1) and (2), we have

d( j2n+1, j2n+2) = d(S j2n,T j2n+1)

- a1 d(P j2n,Q j2n+1)+ a2
d(P j2n,S j2n)d(Q j2n+1,T j2n+1)

1+d(P j2n,Q j2n+1)

+a3
d(P j2n,T j2n+1)d(Q j2n+1,S j2n)

1+d(P j2n,Q j2n+1)

+ a4 [d(P j2n,S j2n) + d(Q j2n+1,T j2n+1) ]

= a1 d( j2n, j2n+1)+ a2
d( j2n, j2n+1)d( j2n+1, j2n+2)

1+d( j2n, j2n+1)

+ a3
d( j2n, j2n+2)d( j2n+1, j2n+1)

1+d( j2n, j2n+1)
+ a4 [d( j2n, j2n+1) + d( j2n+1, j2n+2) ].

For all n ∈ N, we find

|d( j2n+1, j2n+2)| ≤ a1 |d( j2n, j2n+1)|+ a2
|d( j2n+1, j2n+2)| |d( j2n, j2n+1)|

|1+d( j2n, j2n+1)|
+ a4 [ |d( j2n, j2n+1)| + |d( j2n+1, j2n+2)| ],

since |d( j2n, j2n+1)| ≤ |1+d( j2n, j2n+1)|, we have

|d( j2n+1, j2n+2)| ≤ a1 |d( j2n, j2n+1)|+ a2 |d( j2n+1, j2n+2)|+ a4 [|d( j2n, j2n+1)|

+ |d( j2n+1, j2n+2)| ].

This implies that

(1−a2−a4) |d( j2n+1, j2n+2)| ≤ (a1 +a4) |d( j2n, j2n+1)| ,
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or

|d( j2n+1, j2n+2)| ≤
(

a1 +a4

1−a2−a4

)
|d( j2n, j2n+1)| ,

that is,

|d( j2n+1, j2n+2)| ≤ λ |d( j2n, j2n+1)| ,

where λ =
(

a1+a4
1−a2−a4

)
. Similarly,

d( j2n, j2n+1) = d(T j2n−1,S j2n)

- a1 d(P j2n,Q j2n−1)+ a2
d(P j2n,S j2n)d(Q j2n−1,T j2n−1)

1+d(P j2n,Q j2n−1)

+ a3
d(P j2n,T j2n−1)d(Q j2n−1,S j2n)

1+d(P j2n,Q j2n−1)

+ a4 [d(P j2n,S j2n) + d(Q j2n−1,T j2n−1) ]

= a1 d( j2n, j2n−1)+ a2
d( j2n, j2n+1)d( j2n−1, j2n)

1+d( j2n, j2n−1)

+ a3
d( j2n, j2n)d( j2n−1, j2n+1)

1+d( j2n, j2n−1)

+ a4 [d( j2n, j2n+1) + d( j2n−1, j2n) ].

For all n ∈ N, we find

|d( j2n, j2n+1)| ≤ a1 |d( j2n, j2n−1)|+ a2
|d( j2n, j2n+1)| |d( j2n, j2n−1)|

|1+d( j2n, j2n−1)|

+ a4 [ |d( j2n, j2n+1)| + |d( j2n, j2n−1)| ],

since |d( j2n, j2n−1)| ≤ |1+d( j2n, j2n−1)|, we have

|d( j2n, j2n+1)| ≤ a1 |d( j2n, j2n−1)| + a2 |d( j2n, j2n+1)| + a4 [ |d( j2n, j2n+1)|

+ |d( j2n, j2n−1)| ].

This implies that

(1−a2−a4) |d( j2n, j2n+1)| ≤ (a1 +a4) |d( j2n, j2n−1)| ,
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or

|d( j2n, j2n+1)| ≤
(

a1 +a4

1−a2−a4

)
|d( j2n, j2n−1)| ,

that is,

|d( j2n, j2n+1)| ≤ λ |d( j2n, j2n−1)| .

Therefore, for all n ∈ N,

|d( j2n+1, j2n+2)| ≤ λ
2 |d( j2n, j2n−1)| ,

on continuing this process, we have

|d( j2n+1, j2n+2)| ≤ λ 2n+1 |d( j0, j1)| . (3)

Also, for any n > m, we get

|d( jn, jm)| ≤ |d( jn, jn−1)|+ |d( jn−1, jn−2)|+ ...+ |d( jm+1, jm)|

≤ (λ n−1 +λ n−2 + ...+λ m ) |d( j0, j1)|

≤ λ m

1−λ
|d( j0, j1)| −→ 0, as n,m−→ ∞.

This show that { jn} is a Cauchy sequence in X . Since (X ,d) is complete, then

there exists u ∈ X such that jn −→ u as n−→ ∞. Then from (2), we can write

lim
n−→∞

S j2n = lim
n−→∞

T j2n+1 = u

and lim
n−→∞

P j2n = lim
n−→∞

Q j2n+1 = u,

Therefore,

lim
n−→∞

S j2n = lim
n−→∞

T j2n+1 = lim
n−→∞

P j2n = lim
n−→∞

Q j2n+1 = u. (4)

Since S(X)⊆ Q(X), there exists v ∈ X such that

Qv= u. (5)

We will show that T v = Q v, therefore from (1) we obtain
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d(u,T v) - d(u,S j2n)+d(S j2n,T v)

- d(u,S j2n)+a1 d(P j2n,Qv) + a2
d(P j2n,S j2n)d(Qv,T v)

1+d(P j2n,Qv)

+ a3
d(P j2n,T v)d(Qv,S j2n)

1+d(P j2n,Qv)
+ a4 [d(P j2n,S j2n)+d(Qv,T v) ]

- d(u, j2n+1)+a1 d( j2n,u) + a2
d( j2n, j2n+1)d(u,T v)

1+d( j2n,u)

+ a3
d( j2n,T v)d(u, j2n+1)

1+d( j2n,u)
+ a4 [d( j2n, j2n+1)+d(u,T v) ].

This implies that

|d(u,T v)| ≤ |d(u, j2n+1)|+a1 |d( j2n,u)| + a2
|d( j2n, j2n+1)| |d(u,T v)|

|1+d( j2n,u)|

+ a3
|d( j2n,T v)| |d(u, j2n+1)|

|1+d( j2n,u)|
+ a4 [|d( j2n, j2n+1)|+ |d(u,T v)|]. (6)

Taking the limit as n−→ ∞ in (6) and using (4) and (5), we have

(1−a4) |d(u,T v)| ≤ 0,

hence |d(u,T v)|= 0, thus T v = u and

u = T v = Qv. (7)

Hence v is a coincidence point of T and Q.

By a similar way, since T (X)⊆ P(X), we can show that

Sw = Pw = u, (8)

for all w ∈ X . Then, w is a coincidence point of S and P.

Since the pairs (T,Q) and (S,P) are weakly compatible, then

T Qv = QT v and SPw = PSw. (9)

Applying (7) and (8) in (9), we can write
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Tu = Qu and Su = Pu, (10)

with meaning u ∈ X is a coincidence point for the four mappings.

Next, we show that u is a common fixed point of T,Q,S and P. We have from

(1) that

d(Su,T v) - a1 d(Pu,Qv) + a2
d(Pu,Su)d(Qv,T v)

1+d(Pu,Qv)

+ a3
d(Pu,T v)d(Qv,Su)

1+d(Pu,Qv)
+ a4 [d(Pu,Su)+d(Qv,T v) ].

Using (7), (8) and (10), we deduce

d(Su,u) - a1 d(Su,u) + a2
d(Su,Su)d(u,u)

1+d(Su,u)

+ a3
d(Su,u)d(u,Su)

1+d(Su,u)
+ a4 [d(Su,Su)+d(u,u) ].

Consequently,

|d(Su,u)| ≤ a1 |d(Su,u)| + a3
|d(Su,u)| |d(Su,u)|
|1+d(Su,u)|

.

Since |d(Su,u)| ≤ |1+d(Su,u)| , then we get (1−a1−a3) |d(Su,u)| ≤ 0, hence

|d(Su,u)|= 0 i.e., Su = u, then according to (10), we obtain that

u = Su = Pu. (11)

By a similar way and using (11), we can prove that

u = Tu = Qu. (12)

i.e., the equations (11) and (12) show that u is a common fixed point for our

mappings.

To prove the uniqueness: Suppose that u∗ 6= u be another common fixed point

of the four mappings, then from (1), one can write

d(u,u∗) = d(Su,T u∗)

- a1 d(Pu,Qu∗) + a2
d(Pu,Su)d(Qu∗,T u∗)

1+d(Pu,Qu∗)
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+ a3
d(Pu,T u∗)d(Qu∗,Su)

1+d(Pu,Qu∗)
+ a4 [d(Pu,Su)+d(Qu∗,T u∗) ]

- a1 d(u,u∗) + a2
d(u,u)d(u∗,u∗)

1+d(u,u∗)

+ a3
d(u,u∗)d(u∗,u)

1+d(u,u∗)
+ a4 [d(u,u)+d(u∗,u∗) ].

Consequently,

|d(u,u∗)| ≤ a1 |d(u,u∗)| + a3
|d(u,u∗)| |d(u,u∗)|
|1+d(u,u∗)|

,

hence

(1−a1−a3) |d(u,u∗)| ≤ 0.

Therefore |d(u,u∗)|= 0. i.e., u = u∗ and so u is a unique common fixed point

of S,T,P and Q. Consequently, the proof is completed.

If we take a3 = a4 = 0 in Theorem 3.1, we obtain the following result:

Corollary 3.1 Let (X ,d) be a complete complex valued metric space and S,T,P,

Q : X → X be four mappings satisfy:

d(S j,T k) - a1 d(P j,Qk) + a2
d(P j,S j)d(Qk,T k)

1+d(P j,Qk)
,

for all j,k ∈ X , where a1 and a2 are non-negative reals with 0≤ a1+a2 < 1.

If S(X)⊆Q(X) and T (X)⊆ P(X), then S,P,T and Q have a coincidence point.

Moreover, if the pairs (S,P) and (T,Q) are weakly compatible, then there exists

a unique common fixed point of S,T,P and Q.

Taking P = Q = I, where I is the identity mapping in Corollary 3.1, we get the

following corollary:
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Corollary 3.2 [[3],Theorem 4] Let (X ,d) be a complete complex valued metric

space and S,T : X → X be two mappings. If S and T satisfy:

d(S j,T k) - a1 d( j,k) + a2
d( j,S j)d(k,T k)

1+d( j,k)
,

for all j,k ∈ X , where a1 and a2 are non-negative reals with 0 ≤ a1 + a2 < 1.

Then S and T have a unique common fixed point.

By taking S = T in Corollary 3.2, we have the following result:

Corollary 3.3 [[3],Corollary 5] Let (X ,d) be a complete complex valued metric

space and the mappings T : X → X satisfy:

d(T j,T k) - a1 d( j,k) + a2
d( j,T j)d(k,T k)

1+d( j,k)
,

for all j,k ∈ X , where a1 and a2 are non-negative reals with 0 ≤ a1 + a2 < 1.

Then T has a unique common fixed point.

The following theorem is a new version of Theorem 3.1 with various contractive

condition.

Theorem 3.2 Let (X ,d) be a complete complex valued metric space and S,T,P,

Q : X → X are four mappings satisfy:

d(S j,T k) - a1 d(P j,Qk) + a2
d(P j,S j)d(Qk,T k)

1+d(P j,Qk)

+a3
d2(P j,T k) + d2(Qk,S j)
d(P j,T k) + d(Qk,S j)

, (13)

for all j,k ∈X , where a1,a2,a3 are non-negative reals with 0≤ a1+a2+a3 < 1.

If S(X)⊆Q(X) and T (X)⊆ P(X), then S,P,T and Q have a coincidence point.

Moreover, if the pairs (S,P) and (T,Q) are weakly compatible, then there exists

a unique common fixed point of the four mappings.
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Proof. Let j0 be arbitrary point in X . Since S(X) ⊆ Q(X) and T (X) ⊆ P(X),

we can construct the sequence { jn} as (2). From (13) and (2), for all n ∈ N, we

have

d( j2n+1, j2n+2) = d(S j2n,T j2n+1)

- a1 d(P j2n,Q j2n+1) + a2
d(P j2n,S j2n)d(Q j2n+1,T j2n+1)

1+d(P j2n,Q j2n+1)

+ a3
d2(P j2n,T j2n+1) + d2(Q j2n+1,S j2n)

d(P j2n,T j2n+1) + d(Q j2n+1,S j2n)

= a1 d( j2n, j2n+1) + a2
d( j2n, j2n+1)d( j2n+1, j2n+2)

1+d( j2n, j2n+1)

+ a3
d2( j2n, j2n+2) + d2( j2n+1, j2n+1)

d( j2n, j2n+2) + d( j2n+1, j2n+1)
.

For all n ∈ N, we find

|d( j2n+1, j2n+2)| ≤ a1 |d( j2n, j2n+1)| + a2
|d( j2n, j2n+1)| |d( j2n+1, j2n+2)|

|1+d( j2n, j2n+1)|
+ a3 [ |d( j2n, j2n+1)|+ |d( j2n+1, j2n+2)| ]

≤ a1 |d( j2n, j2n+1)|+ a2 |d( j2n+1, j2n+2)|+ a3 [|d( j2n, j2n+1)|

+ |d( j2n+1, j2n+2)| ].

This implies that

|d( j2n+1, j2n+2)| ≤
(

a1 +a3

1−a2−a3

)
|d( j2n, j2n+1)| ,

that is,

|d( j2n+1, j2n+2)| ≤ λ |d( j2n, j2n+1)| .

where λ =
(

a1+a3
1−a2−a3

)
. Therefore, for all n ∈ N,

|d( j2n+1, j2n+2)| ≤ λ
2 |d( j2n, j2n−1)| ,

on continuing this process, we have (3).

Also, for any n > m, we get
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|d( jn, jm)| ≤ |d( jn, jn−1)|+ |d( jn−1, jn−2)|+ ...+ |d( jm+1, jm)|

≤ (λ n−1 +λ n−2 + ...+λ m ) |d( j0, j1)|

≤ λ m

1−λ
|d( j0, j1)| −→ 0, as n,m−→ ∞.

This shows that { jn} is a Cauchy sequence in X . Since (X ,d) is complete, then

there exists u ∈ X such that jn −→ u as n−→ ∞. Then from (2), we can write

lim
n−→∞

S j2n = lim
n−→∞

T j2n+1 = u

and lim
n−→∞

P j2n = lim
n−→∞

Q j2n+1 = u.

Therefore, we obtain (4).

Since S(X)⊆ Q(X), there exists v ∈ X such that (5) is satisfied.

Now, we will show that T v = Qv, therefore from (13), we obtain

d(u,T v) - d(u,S j2n)+d(S j2n,T v)

- d(u,S j2n) + a1 d(P j2n,Qv) + a2
d(P j2n,S j2n)d(Qv,T v)

1+d(P j2n,Qv)

+ a3
d2(P j2n,T v) + d2(Qv,S j2n)

d(P j2n,T v) + d(Qv,S j2n)

- d(u, j2n+1) + a1 d( j2n,u) + a2
d( j2n, j2n+1)d(u,T v)

1+d( j2n,u)

+ a3
d2( j2n,T v)+d2(u, j2n+1)

d( j2n,T v)+d(u, j2n+1)
.

This implies that

|d(u,T v)| ≤ |d(u, j2n+1)|+a1 |d( j2n,u)| + a2
|d( j2n, j2n+1)| |d(u,T v)|

|1+d( j2n,u)|

+ a3

∣∣∣∣d2( j2n,T v) + d2(u, j2n+1)

d( j2n,T v) + d(u, j2n+1)

∣∣∣∣ . (14)

Taking the limit as n−→ ∞ in (14) and using (4) and (5), we have



452 R. A. RASHWAN AND M. G. MAHMOUD

(1−a3) |d(u,T v)| ≤ 0,

hence |d(u,T v)|= 0, thus T v = u and (7) is given.

By a similar way, since T (X)⊆ P(X), we can show the equation (8).

Since the pairs (T,Q) and (S,P) are weakly compatible, then the equations (8)

and (10) are satisfied. Therefore, u ∈ X is a coincidence point for the four

mappings.

Next, we show that u is a common fixed point of T,Q,S and P. We have from

(13) that

d(Su,T v) - a1 d(Pu,Qv)+ a2
d(Pu,Su)d(Qv,T v)

1+d(Pu,Qv)
+ a3

d2(Pu,T v) + d2(Qv,Su)
d(Pu,T v) + d(Qv,Su)

.

Using (7), (8) and (10), we deduce that

d(Su,u) - a1 d(Su,u) + a2
d(Su,Su)d(u,u)

1+d(Su,u)
+ a3

d2(Su,u) + d2(u,Su)
d(Su,u) + d(u,Su)

.

Consequently,

|d(Su,u)| ≤ a1 |d(Su,u)| + a3 |d(Su,u)| .

Therefore, we get (1−a1−a3) |d(Su,u)| ≤ 0, hence |d(Su,u)|= 0. i.e., Su= u,

then according to (10), we obtain (11). By a similar way and using (11), we can

prove that (12) are verified. This shows that u is a common fixed point for our

mappings.

For the uniqueness. Suppose that u∗ 6= u be another common fixed point of the

four mappings, then from (13), one can write

d(u,u∗) = d(Su,T u∗)

- a1 d(Pu,Qu∗)+ a2
d(Pu,Su)d(Qu∗,T u∗)

1+d(Pu,Qu∗)
+ a3

d2(Pu,T u∗) + d2(Qu∗,Su)
d(Pu,T u∗) + d(Qu∗,Su)

- a1 d(u,u∗) + a2
d(u,u)d(u∗,u∗)

1+d(u,u∗)
+ a3

d2(u,u∗) + d2(u∗,u)
d(u,u∗) + d(u∗,u)

.
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Consequently,

|d(u,u∗)| ≤ a1 |d(u,u∗)| + a3 |d(u,u∗)| ,

it follows that

(1−a1−a3) |d(u,u∗)| ≤ 0.

Therefore |d(u,u∗)|= 0 . i.e., u = u∗ and so u is a unique common fixed point

of S,T,P and Q. This completes the proof.

For another rational expression, we state and prove the following theorem.

Theorem 3.3 Let (X ,d) be a complete complex valued metric space and S,T,P,Q :

X → X are four mappings satisfy:

d(S j,T k) - a1 d(P j,Qk) + a2
d(P j,S j)d(Qk,T k)

1+d(P j,Qk)
+ a3

d(P j,T k)d(Qk,S j)
1+d(P j,Qk)

+ a4
d(P j,S j)d(Qk,T k)

d(P j,Qk)+d(P j,T k)+d(Qk,S j)
, (15)

for all j,k ∈ X , where a1,a2,a3 and a4 are nonnegative reals with 0 ≤

a1 + a2 + a3 + a4 < 1. If S(X) ⊆ Q(X) and T (X) ⊆ P(X), and then S,P,T

and Q have a coincidence point. Moreover, if the pairs (S,P) and (T,Q) are

weakly compatible, then there exists a unique common fixed point of the four

mappings.

Proof. Let j0 be arbitrary point in X . Since S(X) ⊆ Q(X) and T (X) ⊆ P(X),

we can construct the sequence { jn} as (2). From (15) and (2), for all n ∈N, we

have

d( j2n+1, j2n+2) = d(S j2n,T j2n+1)

- a1 d(P j2n,Q j2n+1) + a2
d(P j2n,S j2n)d(Q j2n+1,T j2n+1)

1+d(P j2n,Q j2n+1)
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+ a3
d(P j2n,T j2n+1)d(Q j2n+1,S j2n)

1+d(P j2n,Q j2n+1)

+ a4
d(P j2n,S j2n)d(Q j2n+1,T j2n+1)

d(P j2n,Q j2n+1)+d(P j2n,T j2n+1)+d(Q j2n+1,S j2n)
,

= a1 d( j2n, j2n+1) + a2
d( j2n, j2n+1)d( j2n+1, j2n+2)

1+d( j2n, j2n+1)

+ a3
d( j2n, j2n+2)d( j2n+1, j2n+1)

1+d( j2n, j2n+1)

+ a4
d( j2n, j2n+1)d( j2n+1, j2n+2)

d( j2n, j2n+1)+d( j2n, j2n+2)+d( j2n+1, j2n+1)
.

For all n ∈ N, we find

|d( j2n+1, j2n+2)| ≤ a1 |d( j2n, j2n+1)| + a2
|d( j2n, j2n+1)| |d( j2n+1, j2n+2)|

|1+d( j2n, j2n+1)|

+ a4
|d( j2n, j2n+1)| |d( j2n+1, j2n+2)|
|d( j2n, j2n+1)|+ |d( j2n, j2n+2)|

≤ a1 |d( j2n, j2n+1)| + a2
|d( j2n, j2n+1)| |d( j2n+1, j2n+2)|

|1+d( j2n, j2n+1)|

+ a4
|d( j2n, j2n+1)| |d( j2n+1, j2n+2)|

|d( j2n+1, j2n+2)|
,

≤ a1 |d( j2n, j2n+1)|+a2 |d( j2n+1, j2n+2)|+a4 |d( j2n, j2n+1)| .

This implies that

|d( j2n+1, j2n+2)| ≤
(

a1 +a4

1−a2

)
|d( j2n, j2n+1)| ,

that is,

|d( j2n+1, j2n+2)| ≤ λ |d( j2n, j2n+1)| ,

where λ =
(

a1+a4
1−a2

)
. Therefore, for all n ∈ N,

|d( j2n+1, j2n+2)| ≤ λ
2 |d( j2n, j2n−1)| ,
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on repeating this process, we obtain (3).

Also, for any n > m, we get

|d( jn, jm)| ≤ |d( jn, jn−1)|+ |d( jn−1, jn−2)|+ ...+ |d( jm+1, jm)| ,

≤ (λ n−1 +λ n−2 + ...+λ m ) |d( j0, j1)| ,

≤ λ m

1 − λ
|d( j0, j1)| −→ 0, as m,n−→ ∞.

This shows that { jn} is a Cauchy sequence in X . Since (X ,d) is complete, then

there exists u ∈ X such that jn −→ u as n−→ ∞. Then from (2), we can write

lim
n−→∞

S j2n = lim
n−→∞

T j2n+1 = u

and lim
n−→∞

P j2n = lim
n−→∞

Q j2n+1 = u.

Therefore, we have (4). Since S(X)⊆Q(X), there exists v ∈ X such that (5) is

verified.

Now, we will show that T v = Q v, therefore from (15) we obtain

d(u,T v) - d(u,S j2n)+d(S j2n,T v)

- d(u,S j2n) + a1 d(P j2n,Qv) + a2
d(P j2n,S j2n)d(Qv,T v)

1+d(P j2n,Qv)

+ a3
d(P j2n,T v)d(Qv,S j2n)

1+d(P j2n,Qv)
+ a4

d(P j2n,S j2n)d(Qv,T v)
d(P j2n,Qv)+d(P j2n,T v)+d(Qv,S j2n)

- d(u, j2n+1) + a1 d( j2n,u) + a2
d( j2n, j2n+1)d(u,T v)

1+d( j2n,u)

+ a3
d( j2n,T v)d(u, j2n+1)

1+d( j2n,u)
+ a4

d( j2n, j2n+1)d(u,T v)
d( j2n,u)+d( j2n,T v)+d(u, j2n+1)

.

This implies that

|d(u,T v)| ≤ |d(u, j2n+1)|+a1 |d( j2n,u)| + a2
|d( j2n, j2n+1)| |d(u,T v)|

|1+d( j2n,u)|

+ a3
|d( j2n,T v)| |d(u, j2n+1)|

|1+d( j2n,u)|
+ a4

|d( j2n, j2n+1)| |d(u,T v)|
|d( j2n,u)|+ |d( j2n,T v)|+ |d(u, j2n+1)|

.
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(16)

Taking the limit as n−→ ∞ in (16) and using (4) and (5), we have

|d(u,T v)| ≤ 0,

hence |d(u,T v)|= 0, thus T v = u and we get (7).

By a similar way, since T (X)⊆ P(X), we can show the equation (8). Since the

pairs (T,Q) and (S,P) are weakly compatible, then the equations (8) and (10)

are satisfied. Then, u ∈ X is a coincidence point for the four mappings.

Next, we show that u is a common fixed point of T,Q,S and P. We have from

(15) that

d(Su,T v) - a1 d(Pu,Qv) + a2
d(Pu,Su)d(Qv,T v)

1+d(Pu,Qv)
+ a3

d(Pu,T v)d(Qv,Su)
1+d(Pu,Qv)

+ a4
d(Pu,Su)d(Qv,T v)

d(Pu,Qv)+d(Pu,T v)+d(Qv,Su)
.

Using (7), (8) and (10), we deduce that

d(Su,u) - a1 d(Su,u) + a2
d(Su,Su)d(u,u)

1+d(Su,u)
+ a3

d(Su,u)d(u,Su)
1+d(Su,u)

+ a4
d(Su,Su)d(u,u)

d(Su,u)+d(Su,u)+d(u,Su)
.

Consequently,

|d(Su,u)| ≤ a1 |d(Su,u)| + a2
|d(Su,Su)| |d(u,u)|
|1+d(Su,u)|

+ a3
|d(Su,u)| |d(Su,u)|
|1+d(Su,u)|

+ a4
|d(Su,Su)| |d(u,u)|

|d(Su,u)|+ |d(Su,u)|+ |d(u,Su)|
.

Therefore we get (1−a1−a3) |d(Su,u)| ≤ 0, hence |d(Su,u)|= 0. i.e., Su = u,

then according to (10), we obtain (11). Similarly, by using (11), we can prove

that (12) are satisfied. This shows that u is a common fixed point for our

mappings.
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To prove the uniqueness, Suppose that u∗ 6= u be another common fixed point

of the four mappings, then from (15), one can write

d(u,u∗) = d(Su,T u∗)

- a1 d(Pu,Qu∗)+ a2
d(Pu,Su)d(Qu∗,T u∗)

1+d(Pu,Qu∗)
+ a3

d(Pu,T u∗)d(Qu∗,Su)
1+d(Pu,Qu∗)

+ a4
d(Pu,Su)d(Qu∗,T u∗)

d(Pu,Qu∗)+d(Pu,T u∗)+d(Qu∗,Su)

- a1 d(u,u∗) + a2
d(u,u)d(u∗,u∗)

1+d(u,u∗)
+ a3

d(u,u∗)d(u∗,u)
1+d(u,u∗)

+ a4
d(u,u)d(u∗,u∗)

d(u,u∗) + d(u,u∗) + d(u∗,u)
.

Consequently,

|d(u,u∗)| ≤ a1 |d(u,u∗)| + a3
|d(u,u∗)| |d(u,u∗)|
|1+d(u,u∗)|

,

it follows that

(1−a1−a3) |d(u,u∗)| ≤ 0.

Therefore |d(u,u∗)|= 0. i.e., u = u∗ and so u is a unique common fixed point

of S,T,P and Q. Consequently, this completes the proof.

4. Application

This section deals with the applications of result proved in the previous section.

Here we will investigate the solution for the following system of Ursohn integral

equations using Theorem 3.1.

j(t)= fi(t)+
∫ b

a Ki(t,s, j(s))ds, (17)

where i= 1,2,3,4, a,b∈R, a≤ b, t ∈ [a,b], j, fi ∈C([a,b],Rn) and Ki : [a,b]×

[a,b]×Rn −→ Rn is a given mapping for each i = 1,2,3,4.
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Throughout this section, for each i = 1,2,3,4 and Ki in (17) we shall use the

following symbol

δi( j(t)) =
∫ b

a
Ki(t,s, j(s))ds.

Theorem 4.1 Consider the Ursohn integral equations (17). Suppose the follow-

ing assumption hold for each t ∈ [a,b].

(C1) f1(t)+ f4(t)+δ1 j(t)−δ4

(
f1(t)+ f4(t)+δ1 j(t)

)
= 0

and f2(t)+ f3(t)+δ2 j(t)−δ3

(
f2(t)+ f3(t)+δ2 j(t)

)
= 0,

(C2) f1(t)+4 f3(t)+6δ3 j(t)+2δ3

(
3 j(t)−2δ3 j(t)− f3(t)

)
+δ1

(
3 j(t)−2δ3 j(t)− f3(t)

)
= 9 j(t)

and f2(t)+4 f4(t)+6δ4 j(t)+2δ4

(
3 j(t)−2δ4 j(t)− f4(t)

)
+δ2

(
3 j(t)−2δ4 j(t)− f4(t)

)
= 9 j(t).

For all j,k ∈ X and a≤ t ≤ b, we have

A jk

√
1+a2 eicot−1 a - a1 B jk(t)+a2 C jk(t)+a3 D jk +a4 E jk(t),

where a1,a2,a3 and a4 are non-negative reals with 0≤ a1 +a2 +a3 +2a4 ≤ 1

and

A jk(t) = ‖ f1(t)+δ1 j(t)− f2(t)−δ2k(t)‖
∞
,

B jk(t) = ‖3 j(t)−2δ3 j(t)− f3(t)−3k(t)+2δ4k(t)+ f4(t)‖∞

√
1+a2 eicot−1 a,

C jk(t) =
(
‖ f1(t)+δ1 j(t)−3 j(t)+2δ3 j(t)+ f3(t)‖∞

1+maxa≤t≤b B jk(t)

)
×‖ f2(t)+δ2k(t)−3k(t)+2δ4k(t)+ f4(t)‖∞

√
1+a2 eicot−1 a,
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D jk(t) =
(
‖ f1(t)+δ1 j(t)−3k(t)+2δ4k(t)+ f4(t)‖∞

1+maxa≤t≤b B jk(t)

)
×‖ f2(t)+δ2k(t)−3 j(t)+2δ3 j(t)+ f3(t)‖∞

√
1+a2 eicot−1 a,

E jk(t) =
(
‖ f1(t)+δ1 j(t)−3 j(t)+2δ3 j(t)+ f3(t)‖∞

+ ‖ f2(t)+δ2k(t)−3k(t)+2δ4k(t)+ f4(t)‖∞

)√
1+a2 eicot−1 a.

Then the system (17) has a unique common solution.

Proof. Suppose X = C([a,b],Rn) and the mapping d : X ×X −→ C is defined

by

d( j,k) = max
a≤t≤b

‖ j(t)− k(t)‖
∞

√
1+a2 eicot−1 a,

where (X ,d) is a complete valued metric space.

Also, let S,T,P,Q : X −→ X be four mappings that can be defined as

S j(t) = f1(t)+δ1 j(t) = f1(t)+
∫ b

a K1(t,s, j(s))ds,

T j(t) = f2(t)+δ2 j(t) = f2(t)+
∫ b

a K2(t,s, j(s))ds,

P j(t) = 3 j(t)−2δ3 j(t)− f3(t) = 3 j(t)− f3(t)−2
∫ b

a K3(t,s, j(s))ds,

Q j(t) = 3 j(t)−2δ4 j(t)− f4(t) = 3 j(t)− f4(t)−2
∫ b

a K4(t,s, j(s))ds.

For all j,k ∈ X , we find that

d(S j,T k) = maxa≤t≤b ‖ f1(t)+δ1 j(t)− f2(t)−δ2k(t)‖
∞

√
1+a2 eicot−1 a,

d(P j,Qk) = maxa≤t≤b ‖3 j(t)−2δ3 j(t)− f3(t)−3k(t)+2δ4k(t)+ f4(t)‖∞

√
1+a2 eicot−1 a,

d(P j,S j) = maxa≤t≤b ‖ f1(t)+δ1 j(t)−3 j(t)+2δ3 j(t)+ f3(t)‖∞

√
1+a2 eicot−1 a,

d(Qk,T k) = maxa≤t≤b ‖ f2(t)+δ2k(t)−3k(t)+2δ4k(t)+ f4(t)‖∞

√
1+a2 eicot−1 a,

d(P j,T k) = maxa≤t≤b ‖ f2(t)+δ2k(t)−3 j(t)+2δ3 j(t)+ f3(t)‖∞

√
1+a2 eicot−1 a,

d(Qk,S j) = maxa≤t≤b ‖ f1(t)+δ1 j(t)−3k(t)+2δ4k(t)+ f4(t)‖∞

√
1+a2 eicot−1 a.


(18)
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Since

A jk

√
1+a2 eicot−1 a - a1 B jk(t)+a2 C jk(t)+a3 D jk(t)+a4 E jk(t).

This implies that

maxa≤t≤b A jk
√

1+a2 eicot−1 a - a1 maxa≤t≤b B jk(t)+a2 maxa≤t≤bC jk(t)

+a3 maxa≤t≤b D jk(t)+a4 maxa≤t≤b E jk(t).

From (18), we obtain that

d(S j,T k) - a1 d(P j,Qk) + a2
d(P j,S j)d(Qk,T k)

1+d(P j,Qk)
+ a3

d(P j,T k)d(Qk,S j)
1+d(P j,Qk)

+ a4 [d(P j,S j)+d(Qk,T k) ].

Next, we show that S(X)⊆ Q(X), therefore we find that

Q
(

S j(t)+ f4(t)
)
= 3
(

S j(t)+ f4(t)
)
−2δ4

(
S j(t)+ f4(t)

)
− f4(t)

= S j(t)+2
{

S j(t)+ f4(t)−δ4

(
S j(t)+ f4(t)

)}
= S j(t)+2

{
f1(t)+δ1 j(t)+ f4(t)−δ4

(
f1(t)+δ1 j(t)+ f4(t)

)}
= S j(t)+2

{
f1(t)+ f4(t)+δ1 j(t)−δ4

(
f1(t)+ f4(t)+δ1 j(t)

)}
.

From (C1), we obtain that Q
(

S j(t)+ f4(t)
)
= S j(t). This implies that S(X) ⊆

Q(X). By a similar way, we can show that T (X)⊆ P(X).

Also, we show that (S,P) and (T,Q) are weakly compatible. Then, for all

j,k ∈ X , we have∥∥∥∥PS j(t)−SP j(t)
∥∥∥∥= ∥∥∥∥P

(
f1(t)+δ1 j(t)

)
−S
(

3 j(t)−2δ3 j(t)− f3(t)
)∥∥∥∥

=

∥∥∥∥3
(

f1(t)+δ1 j(t)
)
−2δ3

(
f1(t)+δ1 j(t)

)
− f3(t)

− f1(t)−δ1

(
3 j(t)−2δ3 j(t)− f3(t)

)∥∥∥∥ . (19)
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If S j(t) = P j(t), then we deduce that

f1(t)+δ1 j(t) = 3 j(t)−2δ3 j(t)− f3(t).

Therefore, we can write (19) as∥∥∥∥PS j(t)−SP j(t)
∥∥∥∥=∥∥∥∥3

(
3 j(t)−2δ3 j(t)− f3(t)

)
−2δ3

(
3 j(t)−2δ3 j(t)− f3(t)

)
− f3(t)− f1(t)−δ1

(
3 j(t)−2δ3 j(t)− f3(t)

)∥∥∥∥.

=

∥∥∥∥9 j(t)− f1(t)−4 f3(t)−6δ3 j(t)−2δ3

(
3 j(t)−2δ3 j(t)− f3(t)

)
−δ1

(
3 j(t)−2δ3 j(t)− f3(t)

)∥∥∥∥.

Using (C2), we get ‖PS j(t)−SP j(t)‖= 0. So, PS j(t) = SP j(t) whenever S j =

P j. Thus, (S,P) is weakly compatible. By a similar way, we can show that

(T,Q) is weakly compatible.
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