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Abstract. In this paper, we introduce the concept of generalized β -admissible contraction for a pair of L-fuzzy

mappings. By using the new idea, some common fixed point theorems are established. A few examples to illustrate

the validity of the main result are also provided.
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1. INTRODUCTION AND PRELIMINARY

A number of practical problems in economics, management sciences, engineering, envi-

ronment sciences, medical sciences, robotics, computer science, meteorology and a large num-

ber of other fields involve vagueness and the difficulty of modeling uncertain data. Classical

mathematical techniques are not usually successful because the imprecisions in these domains

may be of various kinds. Dating back to about five decades, researchers have been proposing

a number of theories for handling imprecise environments. One of these is the theory of fuzzy

sets introduced by Zadeh[23]. Fuzzy set theory does not only have applications in physical and
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applied sciences but also in mathematical analysis, decision making, clustering, data mining

and in almost all the soft sciences. As a result, more than a handful of generalizations of fuzzy

sets have so far appeared in the literature, see, for example, [2, 13, 15]. The theory of fuzzy sets

provides a firm mathematical framework in which vague conceptual phenomena can be rigor-

ously studied. For some applications of fuzzy sets, the interested reader may see, for example,

[7, 21]) and the reference therein. More than a few authors have extended the concepts of fuzzy

sets in different directions. Heilpern [10] introduced the idea of fuzzy contraction mapping and

consequently proved the existence of fuzzy fixed point theorem which is a fuzzy generalization

of Banach contraction theorem ([5]) and Nadler’s [14] fixed point theorem for multivalued map-

pings. As an extension of the notion of fuzzy sets, Goguen introduced the concept of L-Fuzzy

sets in [9], which is a real generalization of fuzzy sets by replacing the range set [0,1] of the

membership function by a lattice L. The ideas behind L-fuzzy sets are basically two. First is

when L is taken as a complete lattice endowed with a multiplication operator satisfying certain

postulates and the second point is when L is viewed as a complete distributive lattice (see, for

example, [22, 24]). Along the lane, the concepts of β -admissible mappings was introduced by

Samet et al. [19]; the idea of which is used to establish fixed point theorems in partially ordered

spaces and coupled fixed point theorems.

Thereafter, Asl et al. [1] refined the notion of β -admissible for single-valued mappings to

multi-valued mappings. Along the lane, Azam et al [4], obtained common fixed theorems for

Chatterjea type fuzzy mappings on closed ball in a complete metric space. The result hinges

on the fact that fuzzy fixed point can be obtained via fixed point theory of mappings defined

on closed balls. As a further extension of the work of [3, 19], Maliha et al. [18] presented

the notion of βFL-admissible for a pair of L-fuzzy mappings and established the existence of

common L-fuzzy fixed point.

In this paper, encouraged by the work of Maliha et al [18], we introduce the concept of

generalized β -admissible contraction for L-fuzzy mappings. Our result is an extension of [18,

Theorem 14] into integral version. An example is provided to support the main result .
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2. NOTATIONS AND PRELIMINARIES

In this section, we recall some basic concepts/definitions relevant to the next sections as

follows:

Let (X ,d) = X be a metric space and

CB(X) = {A : A is a nonempty closed and bounded subset of }X .

For A,B ∈CB(X), define

d(x,B) = inf
y∈B

d(x,y) andd(A,B) = inf
x∈A,y∈B

d(x,y).

For any closed and bounded subsets A and B of a metric space X , their Hausdorff distance is

defined as :

H(A,B) =


max{supx∈A d(x,B), supy∈B d(A,y)}, if it exists

∞, otherwise.

Definition 2.1. A relation R on a set L is called a partial order if it is

(i) Reflexive

(ii) Antisymmetric

(iii) Transitive.

A set L together with a partial ordering R is called a partially ordered set (poset, for short) and

is denoted by (L,R) or (L,�L) . Recall that partial orderings are used to give an order to sets

that may not have a natural one.

Definition 2.2. Let X be a nonempty set and (X ,�) be a partially ordered set. Then any two

elements x,y ∈ X are said to be comparable if either x� y or y� x.

Definition 2.3. [9] A partially ordered set (L,�L) is called

(i) a lattice , if x∨ y ∈ L, x∧ y ∈ L for any x,y ∈ L;

(ii ) a complete lattice, if
∨

A ∈ L,
∧

A ∈ L for any A⊆ L;

(iii) distributive lattice if x∨ (y∧ z) = (x∨ y)∧ (x∨ z), x∧ (y∨ z) = (x∧ y)∨ (x∧ z) for any

x,y,z ∈ L.
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Definition 2.4. [9] Let L be a lattice with top element 1L and bottom element 0L and let x,y∈ L.

Then y is called a complement of x , if x∨ y = 1L and x∧ y = 0L.

Definition 2.5. [9] An L-fuzzy set M on a nonempty set X is a function with domain X and

whose range lies in a complete distributive lattice L with top and bottom elements 1L and 0L

respectively.

Denote the class of all L-fuzzy sets on a nonempty set X by FL(X). The characteristic function

χLM of an L-fuzzy set M is defined by :

χLM(x) =


0L, if x /∈M

1L otherwise x ∈M.

Remark 2.6. Setting L = [0,1], reduces an L-fuzzy set to a fuzzy sets.

Example 2.7. Let L = {p,q,r,s} be such that for all {x,y} ⊆ L, with x ≤ y, we have x
∧

y = 0

and x
∨

y = 1; then L is a complete distributive lattice with bottom and to elements 0L and 1L

respectively. Let X = {a1,a2,a3,a4,a5,a6} and define M : X −→ L by

M(a1) = p,M(a2) = r,M(a3) = 0,M(a4) = p,M(a5) = s,M(a6) = 0.

Then M is an L-fuzzy set in X and may be denoted by

M = {(a1, p),(a2,r),(a3,1),(a4, p),(a5,s),(a6,0)} .

Definition 2.8. The αL-level set of an L-fuzzy set M is denoted by MαL and is defined as follows:

MαL = {x : αL �L M(x), if αL ∈ L\{0L}},

and

M0L = cl({x : 0L �L M(x)}), where cl(Y ) is the closure of a crisp set Y .

Definition 2.9. [17] Let X be an arbitrary set and Y a metric space. A mapping S : X −→ FL(Y )

is called an L-fuzzy mapping. An L-fuzzy mapping S from X into FL(Y ), is an L-fuzzy subset of

X ×Y with membership function S(x)(y). The function S(x)(y) is the degree of belongingness

of y in S(x) with respect to the lattice L.



ON β -ADMISSIBLE CONTRACTION AND COMMON FIXED POINT THEOREMS 277

Definition 2.10. [17] Let (X ,d) be a metric space and S,T : X −→ FL(X) be L-fuzzy mappings.

A point p ∈ X is called an L-fuzzy fixed point of S if p ∈ [Sp]αL, where αL ∈ L\{0L}. The point

p is a common L-fuzzy fixed point of S and T if p ∈ [Sp]αL∩ [T p]αL.

Lemma 2.11. [14] Let (X ,d) be a metric space and A,B ∈ X. Then for each x ∈ A,

d(x,B)≤ H(A,B).

Lemma 2.12. [14] Let (X ,d) be a metric space and A,B ∈ X. Then for each x ∈ A and any

ε > 0, there exists an element y ∈ B such that

d(x,y)≤ H(A,B)+ ε.

Let ψ = {ϕ : ϕ : [0,∞) −→ R} be such that ϕ is nonnegative , Lebesgue integrable and

integrably subadditive.

3. MAIN RESULTS

In this section, we present the new concepts of generalized β -admissible pair and generalized

β -admissible contraction for L-fuzzy mappings.

Definition 3.1. Let (X ,d) be a metric space, g : X −→ X, β : X×X −→ [0,∞) and S,T : X −→

FL(X) be L-fuzzy mappings. The ordered pair (S,T ) is called a generalized β -admissible pair

if the following axioms hold:

(i) for each g(x) ∈ X and g(y) ∈ [Sg(x)]αL(x), where αL(x) ∈ L\{0L}, with β (g(x),g(y)) =

k ≥ 1,, we have β (g(y),g(z))≥ 1 for all g(z) ∈ [Ty]αL(y), where αL(y) ∈ L\{0L};

(ii) for each g(x) ∈ X and g(y) ∈ [T g(x)]αL(x), where αL(x) ∈ L\{0L}, with β (g(x),g(y)) =

k ≥ 1, we have β (g(y),g(z))≥ 1, for all g(z) ∈ [Sg(y)]αL(y), where αL(y) ∈ L\{0L}.

Remark 3.2. Notice that if (S,T ) is βFL-admissible in the sense of Maliha et al [18], then (S,T )

is a generalized β -admissible pair , where g≡ I, the identity mapping.

Remark 3.3. If S = T , then S is called generalized β -admissible. Also, it is clear that if (S,T )

is a generalized β -admissible pair, then (T,S) is also a generalized β -admissible pair.
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Definition 3.4. Let (X ,d) be a complete metric space, β : X ×X −→ [0,∞) , ϕ ∈ ψ and S,T

be L-Fuzzy mappings from X into FL(X). The ordered pair (S,T ) is said to be a generalized β -

admissible contraction if there exists an arbitrary function g : X −→ X such that for all x,y ∈ X

and any ζ ≥ 0, the following axioms hold:

(a) For each g(x) ∈ X, there exists αL(x) \ {0L} such that [Sg(x)]αL(x), [T g(x)]αL(x) are

nonempty closed and bounded subsets of X, and for any g(x0) ∈ X, there exists g(x1) ∈

[Sg(x0)]αL(x0) such that β (g(x0),g(x1))≥ 1,

(b) For all g(x),g(y) ∈ X, we have∫
δ

0
ϕ(t)dt ≤ p1

∫ d(g(x),[Sg(x)]αL(x)
)

0
ϕ(t)dt + p2

∫ d(g(y),[T g(y)]αL(y)
)

0
ϕ(t)dt

+p3

∫ d(g(x),[T g(y)]αL(y)
)

0
ϕ(t)dt + p4

∫ d(g(y),[Sg(x)]αL(x)
)

0
ϕ(t)dt

p5

∫ d(g(x),g(y))

0
ϕ(t)dt +ζ ,(3.1)

where

δ = max{β (g(x),g(y)),β (g(y),g(x))}H
(
[Sg(x)]αL(x), [T g(y)]αL(y)

)
+ζ ; p j(1≤ j≤ 5)

are nonnegative reals satisfying ∑
5
j=1 p j < 1 and either p1 = p2 or p3 = p4,

(c) (S,T ) is a generalized β -admissible pair,

(d) if {g(xn)}n∈N is a sequence in X such that β (g(xn),g(xn+1))≥ 1, and g(xn)−→ g(x)(n−→

∞), then β (g(xn),g(x))≥ 1.

Definition 3.5. Let (X ,d) be a metric space, ϕ ∈ ψ and S,T be L-Fuzzy mapping from X

into FL(X). A point u ∈ X is called a g-fixed point of T if there exists an arbitrary function

g : X −→ X such that for any λ ∈ (0,1) there exists ζ ≥ 0, such that

(3.2)
∫ d(g(u),[T g(u)]αL(u)

)

0
ϕ(t)dt ≤ λ

∫ d(g(u),[T g(u)]αL(u)
)

0
ϕ(t)dt +ζ .

We say u ∈ [T g(u)]αL(u), where αL(u) ∈ L \ {0L}, and hence call u a g-fixed point of the L-

fuzzy mapping T if (3.2) holds. u is said to be a common g-fixed point of S and T if u ∈

[Sg(u)]αL(u) ∩ [T g(u)]αL(u). Clearly, if u is a common g-fixed point of S and T , then g(u) is a
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common coincidence point of S and T . In particular, if g ≡ I, the identity mapping and ζ = 0,

then every g- fixed point of T reduces to a fixed point of an L-fuzzy mapping T .

Next, we give an example in line with the above definitions .

Example 3.6. Let X = {1,2,3} and g : X −→ X be defined by

g(x) =


1, if x = 2

2, if x = 3

3, if x = 1.

Also, for any x,y ∈ X, define d : g(X)×g(X)−→ R by

d(g(x),g(y)) =



0, if g(x) = g(y)

1, if g(x) 6= g(y) and g(x),g(y) ∈ {1,3}

2, if g(x) 6= g(y) and g(x),g(y) ∈ {1,2}

3, if g(x) 6= g(y) and g(x),g(y) ∈ {2,3}.

Obviously, (X ,d) is a complete metric space.

Further, let L = {p,q,r,u} with p �L q �L u, p �L r �L u, q and r are not comparable.

Moreover, define L-fuzzy mappings S,T : X −→ FL(X) by

(T g(1))(t) = (T 3)(t) =


q, if t = 1,3

u, if t = 2.

(T g(2))(t) = (T 1)(t) =


u, if t = 1

p, if t = 2,3.

(T g(3))(t) = (T 2)(t) =


r, if t = 1,2

u, if t = 3.

and

(Sg(1))(t) = (Sg(2))(t) = (Sg(3))(t) =


u, if t = 3

q, if t = 1,2.
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Let α = u. Then, we get

[T g(x)]α =


{2}, if g(x) = g(1)

{1}, if g(x) = g(2)

{3}, if g(x) = g(3).

and [Sg(x)]α = {3}, for all g(x) ∈ X .

Again, define β : g(X)×g(X)−→ [0,∞) by

β (g(x),g(y)) =


k ≥ 1, if g(x),g(y) ∈ {2,3}

0, otherwise.

Now, using the above constructions, we show that (S,T ) is a generalized β -admissible pair.

Now, for g(x) ∈ X, g(y) ∈ [Sg(x)]α = [3] with β (g(x),g(y)) = k≥ 1, we have either g(x) = 3,

g(y) = 3 or g(x) = 2, g(y) = 3. If g(x) = 3,g(y) = 3, then β (g(x),g(z)) ≥ 1 for all g(z) ∈

[T g(y)]α = {2}.

If g(x) = 3,g(y) = 2, then β (g(y),g(z))≥ 1, for all g(z) ∈ [T g(y)]α = {2}.

Next, for g(x) ∈ X and g(y) ∈ [T g(x)]α with β (g(x),g(y)) = k ≥ 1, we get g(x) = g(y) = 3

so that β (g(y),g(z))≥ 1 for all g(z) ∈ [Sg(x)]α .

Therefore, (S,T ) is a general β -admissible pair.

With direct calculation, we obtain

H ([Sg(x)]α , [T g(y)]α) =


1, if g(y) = 1 and for all g(x) ∈ X

0, if g(y) = 2 and for all g(x) ∈ X

3, if g(y) = 3 and for all g(x) ∈ X .

Now, letting p1 = p2 =
1
10 , p3 = p5 = 0, p4 =

1
8 and

ϕ(t) =


sin(nt)

t , if t > 0, and n ∈ N

n, if t = 0,and n ∈ N

it is immediate that the contractive condition in (b) of definition (3.4) holds. Also, there exists

g(x0) = 2 ∈ X and g(x1) = 3 ∈ [Sg(x0)]α = {3} such that β (g(x0),g(x1)) = k ≥ 1.
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In what follows, we provide a common g-fixed point theorem for generalized β -admissible

contraction.

Theorem 3.7. Let (X ,d) be a complete metric space, ϕ ∈ψ and S,T be L-fuzzy mappings from

X into FL(X) such that (S,T ) is a generalized β -admissible contraction. Then S and T have a

common g-fixed point in X.

Proof. We consider the following three possible cases:

(i) p1 + p3 + p5 = 0;

(ii) p2 + p4 + p5 = 0;

(iii) p1 + p3 + p5 6= 0, p2 + p4 + p5 6= 0

Case(i): p1 + p3 + p5 = 0.

For g(x0) ∈ X in condition (b), there exists αL(x) ∈ L \ {0L} and g(x1) ∈ [Sg(x0)]αL(x0)

such that β (g(x0),g(x1)) ≥ 1. Also, there exists αL(x1) ∈ L \ {0L} such that [Sg(x0)]αL(x0) and

[T g(x1)]αL(x1) are nonempty closed and bounded subsets of X . Therefore, from Lemma 2.11,

we have

d(g(x1), [T g(x1)]αL(x1)
) ≤ H

(
[Sg(x0)]αL(x0)

, [T g(x1)]αL(x1)

)
≤ β (g(x0),g(x1))

[
H
(
[Sg(x0)]αL(x0)

, [T g(x1)]αL(x1)

)]
≤ max{β (g(x0),g(x1)),β (g(x1),g(x0))}

×
[
H
(
[Sg(x0)]αL(x0)

, [T g(x1)]αL(x1)

)]
+ζ

By ineq. (3.18), we have∫ d(g(x1),[T (g(x1))]αL(x1)
)

0
ϕ(t)dt ≤ p1

∫ d(g(x0),[Sg(x0)]αL(x0)
)

0
ϕ(t)dt

+p2

∫ d(g(x1),[T g(x1)]αL(x1)
)

0
ϕ(t)dt

+p3

∫ d(g(x0),[T g(x1)]αL(x1)
)

0
ϕ(t)dt

+p4

∫ d(g(x1),[Sg(x0)αL(x0)
])

0
ϕ(t)dt

+p5

∫ d(g(x0),g(x1))

0
ϕ(t)dt +ζ .
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Using p1 + p3 + p5 = 0, couple with the fact d(g(x1), [Sg(x0)]αL(x0)
) = 0, we obtain

(3.3)
∫ d(g(x1),[T g(x1)]αL(x1)

)

0
ϕ(t)dt ≤ p2

∫ d(g(x1),[T g(x1)]αL(x1)
)

0
ϕ(t)dt +ζ .

Ineq. (3.3) implies x1 is a g-fixed point of T and so, g(x1) ∈ [T g(x1)]αL(x1)
. Again, by Lemma

2.11, it follows that

d(g(x1), [Sg(x1)]αL(x1)
)≤ H

(
[T g(x1)]αL(x1)

, [Sg(x1)]αL(x1)
.
)

By condition (c), for g(x0) ∈ X and g(x1) ∈ [Sg(x0)]αL(x0)
such that β (g(x0),g(x1)) ≥ 1, we

have β (g(x1),g(z)) ≥ 1 for all g(z) ∈ [T g(x1)]αL(x1)
. Since g(x1) ∈ [T g(x1)]αL(x1)

, it follows

β (g(x1),g(x1))≥ 1. Therefore,

d(g(x1), [Sg(x1)]αL(x1)
)≤ β (g(x1),g(x1))

[
H
(
[Sg(x1)]αL(x1)

, [T g(x1)]αL(x1)

)]
+ζ .

Again, from ineq. 3.18 and above expression, we get

∫ d(g(x1),[Sg(x1)]αL(x1)
)

0
ϕ(t)dt ≤ p1

∫ d(g(x1),[Sg(x1)]αL(x1)
)

0
ϕ(t)dt

+p2

∫ d(g(x1),[T g(x1)]αL(x1)
)

0
ϕ(t)dt

+p3

∫ d(g(x1),[T g(x1)]αL(x1)
)

0
ϕ(t)dt

+p4

∫ d(g(x1),[Sg(x1)]αL(x1)
)

0
ϕ(t)dt

+p5

∫ d(g(x1),g(x1))

0
ϕ(t)dt +ζ .

Since p1 + p3 + p5 = 0, and d(g(x1), [T g(x1)]αL(x1)
) = 0, the above ineq. becomes

(3.4)
∫ d(g(x1)),[Sg(x1)]αL(x1)

0
ϕ(t)dt ≤

∫ d(g(x1)),[Sg(x1)]αL(x1)

0
ϕ(t)dt +ζ .

Ineq. (3.4) implies x1 is a g-fixed point of S, and so g(x1) ∈ [Sg(x1)]αL(x1)
. Hence, g(x1) ∈

[Sg(x1)]αL(x1)
∩ [T g(x1)]αL(x1)

.

Case (ii): p2 + p4 + p5 = 0.
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For g(x0) ∈ X in condition (a), there exists αL(x0) ∈ L \ {0L} and g(x1) ∈ [Sg(x0)]αL(x0)

such that β (g(x0),g(x1)) ≥ 1. Also, there exists αL(x1) ∈ L \ {0L} such that [Sg(x0)]αL(x0)

and [T g(x0)]αL(x0)
are nonempty closed and bounded subsets of X . By condition (c), we have

β (g(x1),g(x2))≥ 1 for all x2 ∈ X and g(x2) ∈ [T g(x1)]αL(x1)
. From Lemma 2.11, it follows that

d(g(x2), [Sg(x2)]αL(x2)
) ≤ H

(
[T g(x1)]αL(x1)

, [Sg(x2)]αL(x2)

)
≤ β (g(x1),g(x2))H

(
[T g(x1)]αL(x1)

, [Sg(x2)]αL(x2)

)
≤ max{β (g(x1),g(x2))}

×H
(
[T g(x1)]αL(x1)

, [Sg(x2)]αL(x2)

)
+ζ .(3.5)

From condition (b) and ineq. (3.5),∫ d(g(x1),[Sg(x2)]αL(x1)
)

0
ϕ(t)dt ≤ p1

∫ d(g(x2),[Sg(x2)]αL(x2)
)

0
ϕ(t)dt

+p2

∫ d(g(x1),[T g(x1)]αL(x1)
)

0
ϕ(t)dt

+p3

∫ d(g(x2),[T g(x1)]αL(x1)
)

0
ϕ(t)dt

+p4

∫ d(g(x1),[Sg(x2)]αL(x2)
)

0
ϕ(t)dt

+p5

∫ d(g(x2),g(x1))

0
ϕ(t)dt +ζ .

Using p2 + p4 + p5 = 0 together with the fact that d(g(x2), [T g(x1)]αL(x1)
) = 0, we obtain

(3.6)
∫ d(g(x2),[Sg(x2)]αL(x2)

)

0
ϕ(t)dt ≤ p1

∫ d(g(x2),[Sg(x2)]αL(x2)
)

0
ϕ(t)dt +ζ .

Ineq. (3.6) implies x2 is a g-fixed point of S. It follows that g(x2) ∈ [Sg(x2)]αL(x2)
. Thus, by

Lemma 2.11 ,

d(g(x2), [T g(x2)]αL(x2)
)≤ H

(
[Sg(x2)]αL(x2)

, [T g(x2)]αL(x2)

)
.

By condition (c), β (g(x2),g(x2))≥ 1. Hence,

d(g(x2), [T g(x2)]αL(x2)
)≤ β (g(x2),g(x2))H

(
[Sg(x2)]αL(x2)

, [T g(x2)]αL(x2)

)
.
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Again, using ineq.(3.18), we have

∫ d(g(x2),[T g(x2)]αL(x2)
)

0
ϕ(t)dt ≤ p1

∫ d(g(x2),[Sg(x2)]αL(x2)
)

0
ϕ(t)dt

+p2

∫ d(g(x2),[T g(x2)]αL(x2)
)

0
ϕ(t)dt

+p3

∫ d(g(x2),[T g(x2)]αL(x2)
)

0
ϕ(t)dt

+p4

∫ d(g(x2),[Sg(x2)]αL(x2)
)

0
ϕ(t)dt

+p5

∫ d(g(x2),g(x2))

0
ϕ(t)dt +ζ .

Since p2 + p4 + p5 = 0 and d(g(x2), [Sg(x2)]αL(x2)
) = 0, we have

(3.7)
∫ d(g(x2),[T g(x2)]αL(x2)

)

0
ϕ(t)dt ≤ p3

∫ d(g(x2),[T g(x2)]αL(x2)
)

0
ϕ(t)dt +ζ .

Ineq.(3.7) implies x2 is a g-fixed point of T and hence, g(x2) ∈ [T g(x2)]αL(x2)
. Consequently,

g(x2) ∈ [Sg(x2)]αL(x2)
∩ [T g(x2)]αL(x2)

.

Case (iii): p1 + p3 + p5 6= 0, p2 + p4 + p5 6= 0.

Let τ =
(

p1+p3+p5
1−p2−p3

)
, θ =

(
p2+p4+p5
1−p1−p4

)
, and σ = max{τ,θ}.

Notice that if σ = 0, then p1 = p2 = p3 = p4 = p5 = 0, and so the proof holds trivially. So

assume σ 6= 0.

Next, we show that if p1 = p2 or p3 = p4, then 0 < τθ < 1.

If p3 = p4, then

τ =

(
p1 + p3 + p5

1− p2− p3

)
=

(
p1 + p3 + p5

1− p2− p4

)
< 1,

and

θ =

(
p2 + p4 + p5

1− p1− p4

)
=

(
p2 + p4 + p5

1− p1− p3
< 1
)

;

therefore, 0 < τθ < 1.

If p1 = p2, then
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0 < τθ =

(
p1 + p3 + p5

1− p2− p3

)(
p2 + p4 + p5

1− p1− p4

)
=

(
p1 + p3 + p5

1− p1− p3

)(
p1 + p4 + p5

1− p1− p4

)
=

(
p1 + p3 + p5

1− p1− p4

)(
p1 + p4 + p5

1− p1− p3

)
< 1.

Now, by condition (a), for g(x1) ∈ X , there exists αL(x1) ∈ L\{0L} such that [T g(x1)]αL(x1)
is a

nonempty closed and bounded subset of X . Since p1 + p3 + p5 > 0, therefore, by Lemma 2.12,

there exists g(x2) ∈ [T g(x1)]αL(x1)
such that

d(g(x1),g(x2)) ≤ H
(
[Sg(x0)]αL(x0)

, [T g(x1)]αL(x1)

)
+σ

≤ β (g(x0),g(x1))H
[
[Sg(x0)]αL(x0)

, [T g(x1)]αL(x1)

]
+σ(p1 + p3 + p5)

≤ max{β (g(x0),g(x1),β (g(x1),g(x0))}

×H
[
[Sg(x0)]αL(x0)

, [T g(x1)]αL(x1)

]
+σ(p1 + p3 + p5).

Therefore, by condition (b), it follows that

∫ d(g(x1),g(x2))

0
ϕ(t)dt ≤ p1

∫ d(g(x0),[Sg(x0)]αL(x0)
)

0
ϕ(t)dt + p2

∫ d(g(x1),[T g(x1)]αL(x1)
)

0
ϕ(t)dt

+p3

∫ d(g(x0),[T g(x1)]αL(x1)
)

0
ϕ(t)dt + p4

∫ d(g(x1),[Sg(x0)]αL(x0)
)

0
ϕ(t)dt

+p5

∫ d(g(x0),g(x1))

0
ϕ(t)dt +σ(p1 + p3 + p5)

≤ p1

∫ d(g(x0),g(x1))

0
ϕ(t)dt + p2

∫ d(g(x1),g(x2))

0
ϕ(t)dt

+p3

∫ d(g(x0),g(x2))

0
ϕ(t)dt + p4

∫ d(g(x1),g(x1))

0
ϕ(t)dt

≤ (p1 + p5)
∫ d(g(x0),g(x1))

0
ϕ(t)dt + p2

∫ d(g(x1),g(x2))

0
ϕ(t)dt

+p5

∫ d(g(x0),g(x2))

0
ϕ(t)dt +σ(p1 + p3 + p5).
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Using the subadditivity of the integral, we get

∫ d(g(x1),g(x2))

0
ϕ(t)dt ≤ (p1 + p5)

∫ d(g(x0,g(x1)))

0
ϕ(t)dt + p2

∫ d(g(x1),g(x2))

0
ϕ(t)dt

+p3

[∫ d(g(x0),g(x1))

0
ϕ(t)dt +

∫ d(g(x1),g(x2))

0
ϕ(t)dt

]
+σ(p1 + p3 + p5)

≤ (p1 + p3 + p5)
∫ d(g(x0),g(x1))

0
ϕ(t)dt

+(p2 + p3)
∫ d(g(x1),g(x2))

0
ϕ(t)dt +σ(p1 + p3 + p5).

From which we have

∫ d(g(x1),g(x2))

0
ϕ(t)dt ≤

(
p1 + p3 + p5

1− p2− p3

)∫ d(g(x0),g(x1))

0
ϕ(t)dt +σ

(
p1 + p3 + p5

1− p2− p3

)
≤ σ

∫ d(g(x0),g(x1))

0
ϕ(t)dt +σ

2.(3.8)

On similar arguments, for g(x2)∈ X , there exists αL(x2) ∈ L\{0L} such that [Sg(x2)]αL(x2)
is a

nonempty closed and bounded subset of X . Since p2 + p4 + p5 > 0, therefore, by Lemma 2.12,

we can find g(x3) ∈ [Sg(x2)]αL(x2)
such that

(3.9) d(g(x2),g(x3))≤ H
(
[T g(x1)]αL(x1)

, [Sg(x2)]αL(x2)

)
+σ

2(p2 + p4 + p5).

By condition (c), for g(x0)∈ X and g(x1)∈ [Sg(x0)]αL(x1)
such that β (g(x0),g(x1))≥ 1, we have

β (g(x1),g(x2))≥ 1 for g(x2) ∈ [T g(x1)]αL(x1)
. Therefore, (3.9) becomes

d(g(x2),g(x3)) ≤ H
(
[T g(x1)]αL(x1)

, [Sg(x2)]αL(x2)

)
+σ

2(p2 + p4 + p5).

≤ β (g(x1),g(x2))H
(
[T g(x1)]αL(x1)

, [Sg(x2)]αL(x2)

)
+σ

2(p2 + p4 + p5)

≤ max{β (g(x1),g(x2)),β (g(x2),g(x1))}

×H
(
[T g(x1)]αL(x1)

, [Sg(x2)]αL(x2)

)
+σ

2(p2 + p4 + p5).
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Therefore, by condition (b), we have∫ d(g(x2),g(x3))

0
ϕ(t)dt ≤ p1

∫ d(g(x2),[Sg(x2)]αL(x2)
)

0
ϕ(t)dt + p2

∫ d(g(x1),[T g(x1)]αL(x1)
)

0

+p3

∫ d(g(x2),[T g(x1)]αL(x1)
)

0
ϕ(t)dt + p4

∫ d(g(x1),[Sg(x2)]αL(x2)
)

0
ϕ(t)dt

+p5

∫ d(g(x2),g(x1))

0
ϕ(t)dt +σ

2(p2 + p4 + p5).

≤ p1

∫ d(g(x2),g(x3))

0
ϕ(t)dt + p2

∫ d(g(x1),g(x2))

0
ϕ(t)dt

+p3

∫ d(g(x2),g(x2))

0
ϕ(t)dt + p4

∫ d(g(x1),g(x3))

0
ϕ(t)dt

+p5

∫ d(g(x1),g(x2))

0
ϕ(t)dt +σ

2(p2 + p4 + p5).

= p1

∫ d(g(x2),[Sg(x2)]αL(x2)
)

0
ϕ(t)dt + p2

∫ d(g(x1),[T g(x1)]αL(x1)
)

0

+p4

∫ d(g(x1),g(x3))

0
ϕ(t)dt

+p5

∫ d(g(x1),g(x2))

0
ϕ(t)dt +σ

2(p2 + p4 + p5).

Using the subadditivity of the integral, we have∫ d(g(x2),g(x3))

0
ϕ(t)dt ≤ p1

∫ d(g(x2),g(x3))

0
ϕ(t)dt + p2

∫ d(g(x1),g(x2))

0
ϕ(t)dt

+p4

[∫ d(g(x1),g(x2))

0
ϕ(t)dt +

∫ d(g(x2),g(x3))

0
ϕ(t)dt

]
+p5

∫ d(g(x1),g(x2))

0
ϕ(t)dt +σ

2(p2 + p4 + p5)

≤ (p2 + p4 + p5)
∫ d(g(x1),g(x2))

0
ϕ(t)dt

+(p1 + p4)
∫ d(g(x2),g(x3))

0
ϕ(t)dt +σ

2(p2 + p4 + p5).

Simplifying, we get

∫ d(g(x2),g(x3))

0
ϕ(t)dt ≤

(
p2 + p4 + p5

1− p1− p4

)∫ d(g(x1),g(x2))

0
ϕ(t)dt +σ

2
(

p2 + p4 + p5

1− p1− p4

)
≤ σ

∫ d(g(x1),g(x2))

0
ϕ(t)dt +σ

3.(3.10)
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By repeating the above steps, for g(x3)∈X , there exists αL(x3) ∈L{0L} such that [T g(x3)]αL(x3)

is a nonempty closed and bounded subset of X . Hence, by lemma 2.12, we can find g(x4) ∈

[T g(x3)]αL(x3)
such that

d(g(x3),g(x4))≤ H
(
[Sg(x2)]αL(x2)

, [T g(x3)]αL(x3)

)
+σ

3(p1 + p3 + p5).

By condition (c), for g(x1) ∈ X and g(x2) ∈ [T g(x1)]αL(x1)
such that β (g(x1),g(x2)) ≥ 1, we

have β (g(x2),g(x3))≥ 1 for g(x3) ∈ [Sg(x2)]αL(x2)
. Thus,

d(g(x3),g(x4)) ≤ H
(
[Sg(x2)]αL(x2)

, [T g(x3)]αL(x3)

)
+σ

3(p1 + p3 + p5)

≤ β (g(x2),g(x3))H
(
[Sg(x2)]αL(x2)

, [T g(x3)]αL(x3)

)
+σ

3(p1 + p3 + p5)

≤ max{β (g(x2),g(x3)),β (g(x3),g(x2))}

×H
(
[Sg(x2)]αL(x2)

, [T g(x3)]αL(x3)

)
+σ

3(p1 + p3 + p5).

Therefore, conditon (c) yields

∫ d(g(x3),g(x4))

0
ϕ(t)dt ≤ p1

∫ d(g(x2),[Sg(x2)]αL(x2)
)

0
ϕ(t)dt + p2

∫ d(g(x3),g(x4))

0
ϕ(t)dt

+p3

∫ d(g(x2),[T g(x2)]αL(x2)
)

0
ϕ(t)dt + p4

∫ d(g(x3),[Sg(x2)])

0
ϕ(t)dt

+p5

∫ d(g(x2),g(x3))

0
ϕ(t)dt +σ

3(p1 + p3 + p5).

≤ p1

∫ d(g(x2),g(x3))

0
ϕ(t)dt + p2

∫ d(g(x3),g(x4))

0
ϕϕ(t)dt

+p3

∫ d(g(x2),g(x4))

0
ϕ(t)dt + p4

∫ d(g(x3),g(x3))

0
ϕ(t)dt

+p5

∫ d(g(x2),g(x3))

0
ϕ(t)dt +σ

3(p1 + p3 + p5).

= p1

∫ d(g(x2),g(x3))

0
ϕ(t)dt + p2

∫ d(g(x3),g(x4))

0
ϕ(t)dt

+p3

∫ d(g(x2),g(x4))

0
ϕ(t)dt

+p5

∫ d(g(x2),g(x3))

0
ϕ(t)dt +σ

3(p1 + p3 + p5).
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Using the subadditivity of the integral, we have

∫ d(g(x3),g(x4))

0
ϕ(t)dt ≤ p1

∫ d(g(x2),g(x3))

0
ϕ(t)dt + p2

∫ d(g(x3),g(x4))

0
ϕ(t)dt

+p3

[∫ d(g(x2),g(x3))

0
ϕ(t)dt +

∫ d(g(x3),g(x4))

0
ϕ(t)dt

]
+p5

∫ d(g(x2),g(x3))

0
ϕ(t)dt +σ

3(p1 + p3 + p5).

= (p1 + p3 + p5)
∫ d(g(x2),g(x3))

0
ϕ(t)dt

+(p2 + p3)
∫ d(g(x3),g(x4))

0
ϕ(t)dt +σ

3(p1 + p3 + p5).

The above expression gives

∫ d(g(x3),g(x4))

0
ϕ(t)dt ≤

(
p1 + p3 + p5

1− p2− p3

)∫ d(g(x2),g(x3)

0
ϕ(t)dt +σ

3
(

p1 + p3 + p5

1− p2− p3

)
≤ σ

∫ d(g(x2),g(x3)

0
ϕ(t)dt +σ

4.(3.11)

Continuing this process inductively, we can find a sequence {xn} in X such that

x2k+1 ∈ [Sg(x2k)]αL(x2k)
, x2k+2 ∈ [T g(x2k+1)]αL(x2k+1)

, k ∈ N,

and β (g(xn−1),g(xn))≥ 1, for all n ∈ N. Therefore, we have

d(g(x2k+1),g(x2k+2)) ≤ H
(
[Sg(x2k+1)]αL(x2k+1)

, [T g(x2k+1)]αL(x2k+1)

)
+σ

2k+1(p1 + p3 + p5)

≤ β (g(x2k),g(x2k+1))

×H
(
[Sg(x2k+1)]αL(x2k+1)

, [T g(x2k+1)]αL(x2k+1)

)
+σ

2k+1(p1 + p3 + p5)

≤ max{β (g(x2k),g(x2k+1)),β (g(x2k+1),g(x2k))}

×H
(
[Sg(x2k+1)]αL(x2k+1)

, [T g(x2k+1)]αL(x2k+1)

)
+σ

2k+1(p1 + p3 + p5)
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Hence, by condition (c), we get

∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt ≤ p1

∫ d(g(x2k),[Sg(x2k)]αL(x2k)
)

0
ϕ(t)dt

+p2

∫ d(g(x2k+1),[T g(x2k+1)]αL(x2k+1)
)

0
ϕ(t)dt

+p3

∫ d(g(x2k),[T g(x2k+1)]αL(x2k+1)
)

0
ϕ(t)dt

+p4

∫ d(g(x2k+1),[Sg(x2k)]αL(x2k)
)

0
ϕ(t)dt

+p5

∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt +σ

2k+1(p1 + p3 + p5)

≤ p1

∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt + p2

∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt

+p3

∫ d(g(x2k),g(x2k+2))

0
ϕ(t)dt + p4

∫ d(g(x2k+1),g(x2k+1))

0
ϕ(t)dt

+p5

∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt +σ

2k+1(p1 + p3 + p5)

= p1

∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt + p2

∫ d(g(x2k+1),g(g(x2k+2)))

0
ϕ(t)dt

+p3

∫ d(g(x2k),g(x2k+2))

0
ϕ(t)dt

+p5

∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt +σ

2k+1(p1 + p3 + p5)

The subadditivity of the integral yields

∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt ≤ p1

∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt + p2

∫ d(g(x2k+1),g(x2k+2)

0
ϕ(t)dt

+p3

[∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt +

∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt

]
+p5

∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt +σ

2k+1(p1 + p3 + p5)

≤ (p1 + p3 + p5)
∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt

+(p2 + p3)
∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt +σ

2k+1(p1 + p3 + p5).

Factorizing the above inequality, gives
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∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt ≤

(
p1 + p3 + p5

1− p2− p3

)∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt(3.12)

+σ
2k+1

(
p1 + p3 + p5

1− p2− p3

)
≤ σ

∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt +σ

2k+2.(3.13)

Similarly, we get

d(g(x2k+2),g(x2k+3)) ≤ H
(
[Sg(x2k+2)]αL(x2k+2)

, [T g(x2k+1)]αL(x2k+1)

)
+σ

2k+2(p2 + p4 + p5)

≤ β (g(x2k+1),g(x2k+2))

×H
(
[Sg(x2k+2)]αL(x2k+2)

, [T g(x2k+1)]αL(x2k+1)

)
+σ

2k+2(p2 + p4 + p5)

≤ max{β (g(x2k+1),g(x2k+2)),β (g(x2k+2),g(x2k+1))}

×H
(
[Sg(x2k+2)]αL(x2k+2)

, [T g(x2k+1)]αL(x2k+1)

)
+σ

2k+2(p2 + p4 + p5).

By condition (b), we have

∫ d(g(x2k+2),g(x2k+3))

0
ϕ(t)dt ≤ p1

∫ d(g(x2k+2),[Sg(x2k+2)]αL(x2k+2)
)

0
ϕ(t)dt

+p2

∫ d(g(x2k+1),[T g(x2k+1)]αL(x2k+1)
)

0
ϕ(t)dt

+p3

∫ d(g(x2k+2),[T g(x2k+1)]αL(x2k+1)
)

0
ϕ(t)dt

+p4

∫ d(g(x2k+1),[Sg(x2k+2)]αL(x2k+2)
)

0
ϕ(t)dt

+p5

∫ d(g(x2k+2),g(x2k+1))

0
ϕ(t)dt +σ

2k+2(p2 + p4 + p5).

≤ p1

∫ d(g(x2k+2),g(x2k+3))

0
ϕ(t)dt + p2

∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt
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+p3

∫ d(g(x2k+2),g(x2k+2))

0
ϕ(t)dt + p4

∫ d(g(x2k+1),g(x2k+3))

0
ϕ(t)dt

+p5

∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt +σ

2k+2(p2 + p4 + p5).

= p1

∫ d(g(x2k+2),g(x2k+3))

0
ϕ(t)dt + p2

∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt

+p4

∫ d(g(x2k+1),g(x2k+3))

0
ϕ(t)dt

+p5

∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt +σ

2k+2(p2 + p4 + p5).

Since the integral is subadditive, we have∫ d(g(x2k+2),g(x2k+3))

0
ϕ(t)dt ≤ p1

∫ d(g(x2k+2),g(x2k+3))

0
ϕ(t)dt + p2

∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt

+p4

[∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt +

∫ d(g(x2k+2),g(x2k+3))

0
ϕ(t)dt

]
+p5

∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt +σ

2k+2(p2 + p4 + p5).

≤ (p1 + p4)
∫ d(g(x2k+2),g(x2k+3))

0
ϕ(t)dt

+(p2 + p4 + p5)
∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt +σ

2k+2(p2 + p4 + p5).

Simplifying the above expression, results in∫ d(g(x2k+2),g(x2k+3))

0
ϕ(t)dt ≤

(
p2 + p4 + p5

1− p1− p4

)∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt

+σ
2k+2

(
p2 + p4 + p5

1− p1− p4

)
≤ σ

∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt +σ

2k+3.(3.14)

Now, from (3.14) and (3.12), we obtain∫ d(g(x2k+2),g(x2k+3))

0
ϕ(t)dt ≤ σ

∫ d(g(x2k+1),g(x2k+2))

0
ϕ(t)dt +σ

2k+3

≤ σ

[
σ

∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt +σ

2k+2
]
+σ

2k+3

≤ σ
2
∫ d(g(x2k),g(x2k+1))

0
ϕ(t)dt +2σ

2k+3

≤ σ
2
[

σ

∫ d(g(x2k−1),g(x2k))

0
ϕ(t)dt +σ

2k+1
]
+2σ

2k+3

≤ σ
3
∫ d(g(x2k−1),g(x2k))

0
ϕ(t)+3σ

2k+3.(3.15)
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Similarly, from ineqs. (3.10) and and (3.8), we have

∫ d(g(x2),g(x3))

0
ϕ(t)dt ≤ σ

∫ d(g(x1),g(x2))

0
ϕ(t)dt +σ

3

≤ σ

[
σ

∫ d(g(x0),g(x1))

0
ϕ(t)dt +σ

2
]
+σ

3

≤ σ
2
∫ d(g(x0),g(x1))

0
ϕ(t)dt +2σ

3.(3.16)

Therefore, from (3.15) and (3.16), we see that for n1,2,3, · · · ,

∫ d(g(xn),g(xn+1))

0
ϕ(t)dt ≤ σ

n
∫ d(g(x0),g(x1))

0
ϕ(t)dt +nσ

n+1.(3.17)

Thus, for each positive integer m,n(n > m), it follows that

∫ d(g(xm),g(xn))

0
ϕ(t)dt ≤

∫ d(g(xm),g(xm+1))

0
ϕ(t)dt +

∫ d(g(xm+1),g(xm+2))

0
ϕ(t)dt

+ · · ·+
∫ d(xn−1,g(xn))

0
ϕ(t)dt

≤ σ
m
∫ d(g(x0),g(x1))

0
ϕ(t)dt +mσ

m+1

+σ
m+1

∫ d(g(x0),g(x1))

0
ϕ(t)dt +(m+1)σm+2

+ · · ·+σ
n−1

∫ d(g(x0),g(x1))

0
ϕ(t)dt +(n−1)σn

≤ (σm +σ
m+1 + · · ·+σ

n−1)
∫ d(g(x0),g(x1))

0
ϕ(t)dt

+(mσ
m+1 +(m+1)σm+2 + · · ·+(n−1)σn)

≤
n−1

∑
i=m

σ
i
∫ d(g(x0),g(x1))

0
ϕ(t)dt +

n−1

∑
i=m

iσ i+1

≤ σm

1−σ

∫ d(g(x0),g(x1))

0
ϕ(t)dt +

n−1

∑
i=m

iσ i+1.

Observe that (un)
1
n = (nσn+1)

1
n = σ < 1 as n−→∞. Hence, by Cauchy’s root test, ∑

n−1
i=m iσ i+1

is convergent. Therefore, {g(xn)} is a Cauchy sequence of elements of X . Since X is com-

plete, there exists g(z) ∈ X for some z ∈ X such that g(xn)−→ g(z) as n−→. By condition (d),

β (g(xn−1),g(z))≥ 1, ∀n ∈ N.



294 MOHAMMED SHEHU SHAGARI

Now, consider

d(g(xn), [Sg(z)]αL(z)) ≤ H
(
[T g(xn−1)]αL(xn−1)

, [Sg(z)]αL(z)

)
≤ β (g(xn−1),g(z))

×H
(
[T g(xn−1)]αL(xn−1)

, [Sg(z)]αL(z)

)
+σ

n

≤ max{β (g(xn−1),g(z)),β (g(z),g(xn−1)}

×H
(
[T g(xn−1)]αL(xn−1)

, [Sg(z)]αL(z)

)
+σ

n.

Therefore, condition (a) gives

∫ d(g(xn),[Sg(z)]αL(z)
)

0
ϕ(t)dt ≤ p1

∫ d(g(z),[Sg(z)]αL(z)
)

0
ϕ(t)dt + p2

∫ d(g(xn−1),[T g(xn−1)])

0
ϕ(t)dt

+p3

∫ d(g(z),[T g(xn−1)]αL(xn−1)
)

0
ϕ(t)dt + p4

∫ d(g(xn−1),[Sg(z)]αL(z)
)

0
ϕ(t)dt

+p5

∫ d(g(z),g(xn−1))

0
ϕ(t)dt +σ

n.

Since

d(g(z), [Sg(z)]αL(z))≤ d(g(z),g(xn))+d(g(xn), [Sg(z)]αL(z)),

we have

∫ g(z),[Sg(z)]αL(z)

0
ϕ(t)dt ≤

∫ d(g(z),g(xn))

0
ϕ(t)dt +

∫ d(g(xn),[Sg(z)]αL(z)
)

0
ϕ(t)dt

≤
∫ d(g(z),g(xn))

0
ϕ(t)d + p1

∫ d(g(z),[Sg(z)]αL(z)
)

0
ϕ(t)dt

+p2

∫ d(g(xn−1),[T g(xn−1)]αL(xn−1)
)

0
ϕ(t)dt

+p3

∫ d(g(z),[T g(xn−1)]αL(xn−1)
)

0
ϕ(t)dt + p4

∫ g(xn−1,[Sg(z)]αL(z)
)

0
ϕ(t)dt

+p5

∫ d(g(z),g(xn−1))

0
ϕ(t)dt +σ

n
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≤
∫ d(g(z),g(xn))

0
ϕ(t)dt + p1

∫ d(g(z),[Sg(z)]αL(z)
)

0
ϕ(t)dt

+p3

∫ d(g(z),g(xn))

0
ϕ(t)dt + p4

∫ d(g(xn−1),[Sg(z)]αL(z)
)

0
ϕ(t)dt

+p5

∫ d(g(z),g(xn−1))

0
ϕ(t)dt +σ

n

≤ (1+ p3)
∫ d(g(z),g(xn))

0
ϕ(t)dt + p1

∫ d(g(z),[Sg(z)]αL(z)
)

0
ϕ(t)dt

+p2

∫ d(g(xn−1),g(xn)

0
ϕ(t)dt

+p4

[∫ d(g(z),[Sg(z)]αL(z)
)

0
ϕ(t)dt +

∫ d(g(z),g(xn−1))

0
ϕ(t)dt

]
+p5

∫ d(g(z),g(xn−1))

0
ϕ(t)dt +σ

n

≤ (1+ p3)
∫ d(g(z),g(xn))

0
ϕ(t)dt +(p4 + p5)

∫ d(g(z),g(xn−1))

0
ϕ(t)dt

+p2

∫ d(g(xn−1),g(xn))

0
ϕ(t)dt +(p1 + p4)

∫ d(g(z),[Sg(z)]αL(z)
)

0
ϕ(t)dt +σ

n.

Factorizing the above expression, produces∫ d(g(z),[Sg(z)]αL(z)
)

0
ϕ(t)dt ≤

(
1+ p3

1− p1− p4

)∫ d(g(z),g(xn))

0
ϕ(t)dt

+

(
p4 + p5

1− p1− p4

)∫ d(g(z),g(xn−1))

0
ϕ(t)dt

+

(
p2

1− p1− p4

)∫ d(g(xn−1),g(xn))

0
ϕ(t)dt +

σn

1− p1− p4
.

As n−→∞, we have
∫ d(g(z),[Sg(z)]αL(z)

)

0 ϕ(t)dt ≤ 0. Hence, z is a g-fixed point of S. This implies

g(z) ∈ [Sg(z)]αL(z) .

On similar steps, one can show that g(z) ∈ [T g(z)]αL(z) , by using

d(g(z), [T g(z)]αL(z))≤ d(g(z),g(xn1))+d(g(xn), [T g(z)]αL(z)).

Consequently, z ∈ X is a common g-fixed point of S and T ,

which means g(z) ∈ [Sg(z)]αL(z) ∩ [T g(z)]αL(z) . �
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Remark 3.8. If we set g≡ I ≡ ϕ , the identity mapping, then using Theorem 3.7, all the results

of [18] are obtained as corollaries.

Example 3.9. In continuation of Example 3.6, if g(xn) is a sequence in X and g(x)∈X such that

β (g(xn),g(x))≥ 1, for all n ∈N, then g(xn) ∈ {2,3} for all n ∈N, which implies g(x) ∈ {2,3}.

Therefore, β (g(xn),g(x))≥ 1 for all n∈N. Thus, all the hypothesis of Theorem 3.7 are satisfied

to have g(3) ∈ X such that

g(3) ∈ [Sg(3)]αL(3) ∩ [T g(3)]αL(3) = {3}.

This means 3 ∈ X is a common g-fixed point of S and T ; which also implies that g(3) ∈ X is a

common coincidence point of S and T .

Since every fuzzy mapping is an L-fuzzy mapping, we deduce the following corollary.

Corollary 3.10. Let (X ,d) be a complete metric space, β : X × X −→ [0,∞), ϕ ∈ ψ and

S,T : X −→ IX be a pair of fuzzy mappings. If the pair (S,T ) is a generalized β -admissible

contraction, then S and T have a common g-fixed point in X.

As a direct consequence of Theorem 3.7, we have the next result.

Theorem 3.11. Let (X ,d) be a complete metric space, β : X×X −→ [0,∞), ϕ ∈ψ and g : X −→

X be an arbitrary function. Also, let S,T : X −→ CB(Y ) be a pair of multi-valued mappings

such that

(a) For each g(x0) ∈ X, there exists g(x1) ∈ Sg(x0) such that β (g(x0),g(x1))≥ 1,

(b) For all g(x),g(y) ∈ X, we have∫
δ

0
ϕ(t)dt ≤ p1

∫ d(g(x),Sg(x))

0
ϕ(t)dt + p2

∫ d(g(y),T g(y))

0
ϕ(t)dt

+p3

∫ d(g(x),T g(y))

0
ϕ(t)dt + p4

∫ d(g(y),Sg(x))

0
ϕ(t)dt

p5

∫ d(g(x),g(y))

0
ϕ(t)dt +ζ ,(3.18)

where

δ =max{β (g(x),g(y)),β (g(y),g(x))}H (Sg(x),T g(y))+ζ ; p j(1≤ j≤ 5) are nonneg-

ative reals satisfying ∑
5
j=1 p j < 1 and either p1 = p2 or p3 = p4,
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(c) (S,T ) is a generalized β -admissible pair,

(d) if {g(xn)}n∈N is a sequence in X such that β (g(xn),g(xn+1))≥ 1, and g(xn)−→ g(x)(n−→

∞), then β (g(xn),g(x))≥ 1.

Then S and T have a common g-fixed point in X.

Proof. Define A,B : X −→ IX by

A(g(x)) = χSg(x), B(g(x)) = χT g(x).

Then for α ∈ (0,1],

[Ag(x)]α = {t : A(g(x))(t)≥ α}

= {t : χSg(x) ≥ α}

= {t : χSg(x) = 1}

= {t : t ∈ Sg(x)}= Sg(x).

On similar steps, [Bg(x)]α = T g(x). Therefore,

H ([Ag(x)]α , [Bg(x)]α) = H (Sg(x),T g(y)) .

It follows consequently from Cor. 3.10 that S and T have a common g-fixed point in X . �

CONCLUSION

In this article, the concepts of generalized β -admissible contraction and g-fixed point theo-

rems are established. These ideas are used to obtain a common g-fixed point of a pair of L-fuzzy

mappings. we provided a few examples to support the validity of our concepts. Consequently,

our derivation improves some known results existing in the field of fuzzy fixed point theory.
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