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1. INTRODUCTION

Let H1, H2 and H3 be real Hilbert spaces, let C ⊆ H1 and Q ⊆ H2 be nonempty, closed and

convex sets. We denote the inner products and induced norms of H1, H2 and H3 by notations

〈·, ·〉 and ‖ · ‖, respectively.

The split feasibility problem (in short, SpFP) is to find:

(1) x∗ ∈C such that Ax∗ ∈ Q,

where A : H1 → H2 is a bounded linear operator. The SpFP(1) in finite dimensional Hilbert

spaces was introduced by Censor and Elfving [5] for modeling inverse problem which arises

from retrievals and in medical image reconstruction [4]. Since then various iterative methods

have been proposed to solve SpFP(1); see for instance [1, 3, 12, 21].

Censor et al. [7] proposed the following multiple-sets split feasibility problem (in short, MSSpFP),

which arises in applications such as intensity modulated radiation therapy [20]:

(2) x∗ ∈
N⋂

i=1

Ci such that Ax∗ ∈
M⋂

j=1

Q j,

where N and M are positive integers, for each i, j, Ci ⊂ H1 and Q j ⊂ H2 are nonempty, closed

and convex sets.

A mapping F1 : H1→ H1 is said to be firmly quasi-nonexpansive if Fix(F1) 6= /0 and

‖F1x− x∗‖2 ≤ ‖x− x∗‖2−‖x−F1x‖2, ∀x∗ ∈ Fix(F1), x ∈ H1,(3)

where Fix(F1) := {x ∈ H1 : x = F1x}, the set of fixed points of F1.

A mapping F1 : C → C is said to be k-demicontractive if Fix(F1) 6= /0 and there exists a

constant k ∈ (0,1) such that

‖F1x− x∗‖2 ≤ ‖x− x∗‖2 + k‖x−F1x‖2, ∀x∗ ∈ Fix(F1), x ∈C.(4)

Evidently, the class of demicontractive mappings properly includes the class of firmly quasi-

nonexpansive mappings.

Remark 1.1. [8] For negative values of k the class of demicontractive mappings is diminished

to a great extent. Such class with negative value of k was considered under the name of strongly
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attracting mapping. In particular, the mapping F1 which satisfies (4) with k = −1 is called

pseudo-contractive. Note that a mapping F1 satisfying (4) with k = 1 is usually called hemicon-

tractive and used in connection with the strong convergence of the implicit Mann-type iteration

method.

Example 1.1. [11] Let f be a real function defined by f (x) = −x2− x; it can be seen that

f : [−2,1]→ [−2,1]. This function is demicontractive on [−2,1] and continuous. It is not

quasi-nonexpansive and is not pseudo-contractive on [−2,1].

Rest of the paper, unless specified, let A : H1 → H2 and B : H2 → H3 be bounded linear

operators.

In 2013, Moudafi et al. [17] introduced and studied the following split equality fixed point

problem (in short, SpEFPP) which is a generalization of SpFP (1): Find x∗ ∈C and y∗ ∈Q such

that

(5) x∗ ∈ Fix(F1), y∗ ∈ Fix(F2) and Ax∗ = By∗,

where for each i = 1,2, Fi : Hi→ Hi is a quasi-nonexpansive mapping. Further, Chidume et al.

[9] studied SpEFPP (5) for demicontractive mappings F1, F2. For further related work, see [14].

We denote by CB(H1), the collection of all nonempty, closed and bounded subsets of H1. The

Hausdorff metric D on CB(H1) is defined by

D(P,Q) = max

{
sup
x∈P

d(x,Q),sup
y∈Q

d(y,P)

}
, ∀P,Q ∈CB(H1),

where d(x,P) := inf
y∈P

d(x,y) and d(·, ·) is a metric on H1.

Definition 1.1. Let T1 : H1 ⇒ CB(H1) be a multi-valued mapping. x∗ ∈ H1 is said to be fixed

point of T1 if x∗ ∈ T1x∗. We denote by Fix(T1), the set of fixed points of T1 defined by

Fix(T1) := {x ∈ H1 : x ∈ T1x}.

Definition 1.2. A multi-valued mapping T1 : D(T1)⊂ H1 ⇒CB(H1) is said to be:

(i) nonexpansive if

D(T1x,T1y)≤ ‖x− y‖, ∀x,y ∈D(T1);
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(ii) quasi-nonexpansive if Fix(T1) 6= /0 and

D(T1x,T1x∗)≤ ‖x− x∗‖, ∀x∗ ∈ Fix(T1), x ∈D(T1);(6)

(iii) k-demicontractive if Fix(T1) 6= /0 and there exists a constant k ∈ (0,1) such that

(D(T1x,T1x∗))2 ≤ ‖x− x∗‖2 + k (D(x,T1x))2 , ∀x∗ ∈ Fix(T1), x ∈D(T1),

where D(T1) denotes the domain of T1.

Evidently, the class of multi-valued demicontractive mappings properly includes the class of

multi-valued quasi-nonexpansive mappings. The class of demicontractive mappings is impor-

tant because several common types of operators arising in optimization problems belong to this

class, see for example, Chidume and Maruster [8], Maruster and Popirlan [16] and references

therein.

Example 1.2. Let H1 = R, the set of all real numbers, T1 : R→CB(R) be defined by T1(x) =

{−2x},∀x ∈ R. We have that Fix(T1) = {0} and T1 is a multi-valued demicontractive mapping

which is not quasi-nonexpansive. In fact, for each x ∈ R, we have

(D(T1x,T10))2 = 4|x−0|2,

which implies that T1 is not quasi-nonexpansive. Also we have

(D(T1x,T10))2 = |x−0|2 + 1
3
(d(x,T1x))2.

This implies that T1 is demicontractive with k = 1
3 .

In 2014, Wu et al. [23] introduced and studied the following multiple-sets split equality prob-

lem for finite families of multi-valued quasi-nonexpansive mappings:

(7) Find x∗ ∈
N⋂

i=1

Fix(Ti) and y∗ ∈
N⋂

i=1

Fix(Si) such that Ax∗ = By∗,

where N is a positive integer, and {Ti}N
i=1 : H1 ⇒CB(H1), {Si}N

i=1 : H2 ⇒CB(H2) are families

of multi-valued quasi-nonexpansive mappings.
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Very recently, Chidume [11] introduced and studied the following multiple-sets split equal-

ity fixed point problem (in short, MSSpEFPP) for countable families of multi-valued demi-

contractive mappings:

(8) Find x∗ ∈
∞⋂

i=1

Fix(Ti) and y∗ ∈
∞⋂

i=1

Fix(Si) such that Ax∗ = By∗,

where {Ti}∞
i=1 : H1 ⇒ CB(H1) and {Si}∞

i=1 : H2 ⇒ CB(H2) are countable families of multi-

valued demicontractive mappings.

We consider the following split equality variational inequality problem (in short, SpEVIP):

Find x∗ ∈C and y∗ ∈ Q such that

〈 f (x∗),x− x∗〉 ≥ 0,∀x ∈C(9)

〈g(y∗),y− y∗〉 ≥ 0,∀y ∈ Q(10)

and Ax∗ = By∗,

where f : C→ H1 and g : Q→ H2 be single-valued mappings. When looked separately, (9) is

called variational inequality problem (in short, VIP) and its solution set is denoted by Sol(VIP(9)).

The solution set of SpEVIP(9)-(10) is denoted by Sol(SpEVIP(9)-(10))= {(x∗,y∗)∈C×Q : x∗ ∈

Sol(VIP(9)),y∗ ∈ Sol(VIP(10)) and Ax∗ = By∗}. SpEVIP(9)-(10) generalizes split variational

inequality problem (in short, SpVIP) studied by Censor et al. [6].

In 1976, Korpelevich [13] introduced the following iterative method which is known as ex-

tragradient iterative method:

(11)


x0 ∈C,

yn = PC(xn−λ f xn),

xn+1 = PC(xn−λ f yn), n≥ 0,

where λ > 0 is a fixed number, f is a monotone and Lipschitz continuous mapping and PC is

the metric projection of H1 onto C; and proved that if the Sol(VIP(9)) is nonempty then, under

some suitable conditions, the sequence {xn} generated by algorithm (11) converges to a solution

of variational inequality (9). Since then a number of generalizations of extragradient iterative
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method has been studied for various important classes of problems, see for instance [15, 18, 22]

and the revelent references therein.

Motivated by the ongoing research work in this direction, we propose and analyze a simulta-

neous extragradient iterative method to approximate a common solution to SpEVIP(9)-(10) and

MSSpEFPP(8) for countable families of multi-valued demicontractive mappings in real Hilbert

spaces. Further, we give a numerical example to justify the main result. The method and results

presented in this paper extend and unify some recent known results in the literature; see for

instance [6, 9, 11, 17, 24].

2. PRELIMINARIES

We recall some definitions and results which are needed in sequel. Let→ and ⇀ denote the

strong and weak convergence, respectively and N denote the set of natural numbers.

For every point x ∈ H1, there exists a unique nearest point in C denoted by PCx such that

‖x−PCx‖ ≤ ‖x− y‖, ∀y ∈C.

The mapping PC is called the metric projection of H1 onto C. It is known that PC is nonexpansive

and satisfies

(12) 〈x− y,PCx−PCy〉 ≥ ‖PCx−PCy‖2, ∀x ∈ H1.

Moreover, PCx is characterized by the fact that PCx ∈C and

(13) 〈x−PCx,y−PCx〉 ≤ 0, ∀y ∈C

which implies that

(14) ‖x− y‖2 ≥ ‖x−PCx‖2 +‖y−PCx‖2, ∀x ∈ H1, y ∈C.

Definition 2.1. A mapping f : C→ H1 is said to be:

(i) monotone, if

〈 f x− f y,x− y〉 ≥ 0, ∀x,y ∈ H1;
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(ii) α-inverse strongly monotone, if there exists a constant α > 0 such that

〈 f x− f y,x− y〉 ≥ α‖ f x− f y‖2, ∀x,y ∈ H1;

(iii) β -Lipschitz continuous, if there exists a constant β > 0 such that

‖ f x− f y‖ ≤ β‖x− y‖, ∀x,y ∈ H1.

We note that if f is α-inverse strongly monotone mapping, then f is monotone and 1
α

-Lipschitz

continuous but converse need not be true. For α = 1, α-inverse strongly monotone mapping f

is called firmly nonexpansive mapping.

Definition 2.2. A mapping T1 : H1→ H1 is said to be:

(i) demiclosed at zero if for any sequence {xn} ⊂ H1, with xn ⇀ x∗ and ‖xn−T1xn‖ → 0,

we have x∗ = T1x∗.

(ii) semicompact if for any bounded sequence {xn}⊂H1, with ‖xn−T1xn‖→ 0, there exists

a subsequence {xnk} of {xn} such that {xnk} converges strongly to some x∗ ∈ H1.

Definition 2.3. [2]. A multi-valued mapping T1 : H1 ⇒ 2H1 is said to be:

(i) monotone if

〈u− v,x− y〉 ≥ 0, whenever u ∈ T1(x), v ∈ T1(y);

(ii) maximal monotone if T1 is monotone and the graph, graph(T1) := {(x,y) ∈ H1×H1 :

y ∈ T1(x)}, is not properly contained in the graph of any other monotone mapping.

It is well known that for each x∈H1 and λ > 0 there is a unique z∈H1 such that x∈ (I+λT1)z.

The mapping JT1
λ

:= (I +λT1)
−1 is called the resolvent of T1. It is a single-valued and firmly

nonexpansive mapping defined on H1.

Definition 2.4. A multi-valued mapping T1 : H1 ⇒CB(H1) is said to be:

(i) demiclosed at zero if for any sequence {xn} ⊂ H1, with xn ⇀ x∗ and d(xn,T1xn)→ 0,

we have x∗ ∈ T1x∗.

(ii) hemicompact if for any bounded sequence {xn} ⊂H1, with d(xn,T1xn)→ 0, there exists

a subsequence {xnk} of {xn} such that {xnk} converges strongly to some x∗ ∈ H1.
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Lemma 2.1.[11] Let C be a nonempty subset of a real Hilbert space H1 and let T1 : C ⇒CB(C)

be a multi-valued k-demicontractive mapping. Let for every z ∈ Fix(T1), T1z = {z}. Then there

exists L > 0 such that

D(T1x,T1z) ≤ L‖x− z‖, ∀x ∈C, z ∈ Fix(T1).

Lemma 2.2. For all x,y ∈ H1, we have

(i) ‖x− y‖2 = ‖x‖2−‖y‖2−2〈x− y,y〉;

(ii) 2〈x,y〉= ‖x‖2 +‖y‖2−‖x− y‖2 = ‖x+ y‖2−‖x‖2−‖y‖2.

Lemma 2.3.[19] (Opial’s lemma) Let {µn} be a sequence in Hilbert space H1, such that there

exists a nonempty set W ⊂ H1 satisfying:

(i) For every µ∗ ∈W, lim
n→∞
‖µn−µ∗‖ exists.

(ii) Any weak-cluster point of the sequence {µn} belongs to W ;

Then there exists µ∗ ∈W such that {µn} weakly converges to µ∗.

Lemma 2.4.[10] Let {xi}m
i=1 be a set in Hilbert space H1. For {αi}m

i=1⊂ (0,1) such that
m
∑

i=1
αi =

1. Then the following identity holds:

∥∥∥∥∥ m

∑
i=1

αixi

∥∥∥∥∥
2

=
m

∑
i=1

αi‖xi‖2− ∑
1≤i< j≤m

αiα j‖xi− x j‖2.

Remark 2.1. It follows from Lemma 2 that the following identity holds:

∥∥∥∥∥ ∞

∑
i=1

αixi

∥∥∥∥∥
2

=
∞

∑
i=1

αi‖xi‖2−
∞

∑
i, j=1,i6= j

αiα j‖xi− x j‖2.

for
∞

∑
i=1

αi = 1, provided that {xi} is bounded.

3. SIMULTANEOUS EXTRAGRADIENT ITERATIVE ALGORITHMS

We propose the following simultaneous extragradient iterative algorithm to approximate a

common solution of SpEVIP(9)− (10) and MSSpEFPP(8).
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Algorithm 3.1. Let (x1,y1)∈H1×H2 be given. The iteration sequences {(xn,yn)} be generated

by the schemes:

(15)



pn = PC(xn− γnA∗(Axn−Byn));

un = PC(I−λn f )pn;

cn = PC(pn−λn f un);

xn+1 = α0cn +
∞

∑
i=1

αiwi,n, wi,n ∈ Ticn;

qn = PQ(yn + γnB∗(Axn−Byn));

vn = PQ(I−λng)qn;

en = PQ(qn−λngvn);

yn+1 = α0en +
∞

∑
i=1

αizi,n, zi,n ∈ Sien,

where α0 ∈ (k,1), αi ∈ (0,1), for each i ∈ N such that
∞

∑
i=0

αi = 1 and the step size γn is chosen

in such a way that for some ε > 0,

(16) γn ∈ (ε,µn− ε) , n ∈ Λ,

otherwise γn = γ (γ ≥ 0), where µn :=
2‖Aun−Bvn‖2

‖A∗(Aun−Bvn)‖2 +‖B∗(Aun−Bvn)‖2 and the index set

Λ = {n : Axn−Byn 6= 0}.

Remark 3.1. [[24]] It follows from condition (16) that infn∈Λ{µn− γn}> 0. Since ‖A∗(Aun−

Bvn)‖ ≤ ‖A∗‖‖Aun−Bvn‖ and ‖B∗(Aun−Bvn)‖ ≤ ‖B∗‖‖Aun−Bvn‖, we observe that {µn} is

bounded below by 2
‖A‖2+‖B‖2 and so infn∈Λ µn <+∞. Consequently supn∈Λ γn <+∞ and hence

{γn} is bounded.

For each i ∈ N, if Ti and Si are single-valued demicontractive mappings then Algorithm 3.1

is reduced to the following simultaneous extragradient iterative algorithm to approximate a

common solution of SpEVIP(9)-(10) and SpEFPP (5):
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Algorithm 3.2. Let (x1,y1)∈H1×H2 be given. The iteration sequences {(xn,yn)} be generated

by the schemes:

(17)



pn = PC(xn− γnA∗(Axn−Byn));

un = PC(I−λn f )pn;

cn = PC(pn−λn f un);

xn+1 = α0cn +
∞

∑
i=1

αiTicn;

qn = PQ(yn + γnB∗(Axn−Byn));

vn = PQ(I−λg)qn;

en = PQ(qn−λngvn);

yn+1 = α0en +
∞

∑
i=1

αiSien,

where α0 ∈ (k,1), αi ∈ (0,1), for each i ∈ N such that
∞

∑
i=0

αi = 1 and the step size γn is chosen

in such a way that for some ε > 0,

(18) γn ∈ (ε,µn− ε) , n ∈ Λ,

otherwise γn = γ (γ ≥ 0), where µn :=
2‖Aun−Bvn‖2

‖A∗(Aun−Bvn)‖2 +‖B∗(Aun−Bvn)‖2 and the index set

Λ = {n : Axn−Byn 6= 0}.

4. MAIN RESULTS

We prove a strong convergence theorem to approximate a common solution to SpEVIP(9)-

(10) and MSSpEFPP(8) for countable families of multi-valued demicontractive mappings by

selecting the step size in such a way that the implementation of the algorithm does not require

the calculation or estimation of the operator norms.

Theorem 4.1. Let H1, H2 and H3 be real Hilbert spaces and C ⊂ H1, Q ⊂ H2 be nonempty,

closed and convex sets. Let A : H1→ H3, B : H2→ H3 be bounded linear operators with their

adjoint operators A∗ and B∗, respectively. Let f : C→ H1 be monotone and α-Lipschitz con-

tinuous mapping and let g : Q→ H2 be monotone and β -Lipschitz continuous mapping. Let

{Ti}∞
i=1 : H1 ⇒ CB(H1) and {Si}∞

i=1 : H2 ⇒ CB(H2) be families of multi-valued demicontrac-

tive mappings with demicontractive constants ki and si, respectively and let k1 = sup
i≥1
{ki}∈ (0,1)
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and k2 = sup
i≥1
{si} ∈ (0,1). For each i ∈ N, let Ti and Si be demiclosed at 0. Assume that

for x ∈
∞⋂

i=1
Fix(Ti), Tix = {x} and for y ∈

∞⋂
i=1

Fix(Si), Siy = {y}, for each i ∈ N. Assume that

Γ := Sol(SpEVIP(9)− (10)
⋂( ∞⋂

i=1
Fix(Ti)×

∞⋂
i=1

Fix(Si)

)
6= /0. If the sequence {λn}n∈N⊂ [a,b],

for some a and b with 0 < a < b < 1
min{α,β} and k ∈ (0,1) where k = max{k1,k2}, then the se-

quence {(xn,yn)} generated by Algorithm 3.1 converges weakly to (x̄, ȳ) ∈ Γ. In addition, if for

each i ∈ N, Ti and Si are hemicompact, then {(xn,yn)} converges strongly to (x̄, ȳ) ∈ Γ.

Proof.Let (x,y)∈ Γ, i.e., for each i∈N, x ∈ Ti(x), y∈ Si(y), x ∈ Sol(VIP(9)), y∈ Sol(VIP(10))

and Ax = By. First, we prove that {wi,n}∞
i=0 is bounded. Indeed, it follow from Lemma 2.1 that

‖wi,n− x‖ ≤ D(Ticn,Tix)

≤ 1+
√

k1

1−
√

k1
‖cn− x‖ := Mn.

This implies that {wi,n}∞
i=0 is bounded. Similarly, we obtain that {zi,n}∞

i=0 is bounded.

We estimate

‖pn− x‖2 = ‖PC(xn− γnA∗(Axn−Byn))− x‖2

≤ ‖xn− γnA∗(Axn−Byn))− x‖2

≤ ‖xn− x‖2−2γn〈xn− x,A∗(Axn−Byn)〉+ γ
2
n‖A∗(Axn−Byn)‖2

≤ ‖xn− x‖2−2γn〈Axn−Ax,Axn−Byn〉+ γ
2
n‖A∗(Axn−Byn)‖2(19)

≤ ‖xn− x‖2 +2γn‖Axn−Ax‖‖Axn−Byn‖+ γ
2
n‖A∗(Axn−Byn)‖2.(20)

Using Lemma 2.2 (ii) in (19), we get

‖pn− x‖2 ≤ ‖xn− x‖2− γn‖Axn−Ax‖2− γn‖Axn−Byn‖2 + γn‖Byn−Ax‖2

+ γ
2
n‖A∗(Axn−Byn)‖2.(21)

Similarly, we obtain

‖qn− y‖2 ≤ ‖yn− y‖2− γn‖Byn−By‖2− γn‖Axn−Byn‖2 + γn‖Axn−By‖2

+γ
2
n‖B∗(Axn−Byn)‖2.(22)
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Adding (21) and (22), and using the fact that Ax = By, we get

‖pn− x‖2 +‖qn− y‖2 ≤ ‖xn− x‖2 +‖yn− y‖2− γn[2‖Axn−Byn‖2

−γn(‖A∗(Axn−Byn)‖2 +‖B∗(Axn−Byn)‖2)].(23)

From condition (16) on γn, we obtain from (23) that

(24) ‖pn− x‖2 +‖qn− y‖2 ≤ ‖xn− x‖2 +‖yn− y‖2.

Since cn = PC(pn−λn f un), it follows from (14) that

‖cn− x‖2 = ‖PC(pn−λn f un)− x‖2

≤ ‖pn−λn f un− x‖2−‖pn−λn f un− cn‖2

≤ ‖pn− x‖2−‖pn− cn‖2 +2λn〈 f un,x− cn〉

≤ ‖pn− x‖2−‖pn− cn‖2 +2λn[〈 f un− f x,x−un〉

+〈 f x,x−un〉+ 〈 f un,un− cn〉](25)

Since f is monotone and the fact that x ∈ Sol(VIP(9)), we obtain from (25) that

‖cn− x‖2 ≤ ‖pn− x‖2−‖pn− cn‖2 +2λn〈 f un,un− cn〉

= ‖pn− x‖2−‖pn−un‖2−‖un− cn‖2−2〈pn−un,un− cn〉+2λn〈 f un,un− cn〉

= ‖pn− x‖2−‖pn−un‖2−‖un− cn‖2 +2λn〈pn−λn f un−un,cn−un〉(26)

From (13), we have

〈pn−λn f un−un,cn−un〉 = 〈pn−λn f pn−un,cn−un〉+λn〈 f pn− f un,cn−un〉

≤ λn〈 f pn− f un,cn−un〉(27)

Since f is α-Lipschitz-continuous, we obtain

2〈pn−λn f un−un,cn−un〉 ≤ 2λn‖ f pn− f un‖‖cn−un‖

≤ 2λnα‖pn−un‖‖cn−un‖(28)

≤ (λnα)2‖pn−un‖2 +‖cn−un‖2.(29)
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Hence, from (26) and (29), we obtain

‖cn− x‖2 ≤ ‖pn− x‖2− (1− (λnα)2)‖pn−un‖2(30)

Similarly, we obtain

‖en− y‖2 ≤ ‖qn− y‖2− (1− (λnβ )2)‖qn− vn‖2(31)

On adding (30) and (31), we get

(32) ‖cn−x‖2+‖en−y‖2 ≤ ‖pn−x‖2+‖qn−y‖2− (1− (λnη)2)(‖pn−un‖2+‖qn−vn‖2),

where η = min{α,β}. Next, we estimate

‖xn+1− x‖2 =

∥∥∥∥∥α0cn +
∞

∑
i=1

αiwi,n− x

∥∥∥∥∥
2

=

∥∥∥∥∥α0(cn− x)+
∞

∑
i=1

αi(wi,n− x)

∥∥∥∥∥
2

=

∥∥∥∥∥α0(cn− x)+(1−α0)
∞

∑
i=1

αi

1−α0
(wi,n− x)

∥∥∥∥∥
2

= α0‖cn− x‖2 +(1−α0)

∥∥∥∥∥ ∞

∑
i=1

αi

1−α0
(wi,n− x)

∥∥∥∥∥
2

−α0(1−α0)

∥∥∥∥∥ ∞

∑
i=1

αi

1−α0
(wi,n− cn)

∥∥∥∥∥
2

= α0‖cn− x‖2 +(1−α0)

[
∞

∑
i=1

αi

1−α0
‖wi,n− x‖2

−
∞

∑
i, j=1,i 6= j

αiα j

1−α0
‖wi,n−w j,n‖2

]
−α0(1−α0)

∞

∑
i=1

αi

1−α0
‖wi,n− cn‖2
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= α0‖cn− x‖2 +
∞

∑
i=1

αi‖wi,n− x‖2

−
∞

∑
i=1

α0αi‖cn−wi,n‖2−
∞

∑
i, j=1,i 6= j

αiα j‖wi,n−w j,n‖2

≤ α0‖cn− x‖2 +
∞

∑
i=1

αi‖wi,n− x‖2−
∞

∑
i=1

α0αid2(cn,Ticn)

≤ α0‖cn− x‖2 +
∞

∑
i=1

αiD2(Ticn,Tix)−
∞

∑
i=1

α0αid2(cn,Ticn)

≤ α0‖cn− x‖2 +
∞

∑
i=1

αi‖cn− x‖2

+
∞

∑
i=1

αikid2(cn,Ticn)−
∞

∑
i=1

α0αid2(cn,Ticn)

= ‖cn− x‖2−
∞

∑
i=1

αi(α0− ki)d2(cn,Ticn)(33)

≤ ‖cn− x‖2− (α0− k1)
∞

∑
i=1

αid2(cn,Ticn).(34)

Similarly, we obtain

‖yn+1− y‖2 ≤ ‖en− y‖2− (α0− k2)
∞

∑
i=1

αid2(en,Sien).(35)

On adding the inequalities (34), (35) and using k = max{k1,k2}, we get

‖xn+1− x‖2 +‖yn+1− y‖2 ≤ ‖cn− x‖2 +‖en− y‖2− (α0− k)
(

∞

∑
i=1

αid2(cn,Ticn)

+
∞

∑
i=1

αid2(en,Sien)

)
.(36)

On using (23) and (32) in (36), we obtain

‖xn+1− x‖2 + ‖yn+1− y‖2 ≤ ‖xn− x‖2 +‖yn− y‖2− (1− (λnη)2)(‖pn−un‖2 +‖qn− vn‖2)

−γn[2‖Axn−Byn‖2− γn(‖A∗(Axn−Byn)‖2 +‖B∗(Axn−Byn)‖2)]

−(α0− k)
(

∞

∑
i=1

αid2(cn,Ticn)+
∞

∑
i=1

αid2(en,Sien)

)
.(37)
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Now, setting ρn(x,y) := ‖xn− x‖2 +‖yn− y‖2 in (37), we obtain

ρn+1(x,y) ≤ ρn(x,y)− (1− (λnη)2)(‖pn−un‖2 +‖qn− vn‖2)

−γn[2‖Axn−Byn‖2− γn(‖A∗(Axn−Byn)‖2 +‖B∗(Axn−Byn)‖2)]

−(α0− k)
(

∞

∑
i=1

αid2(cn,Ticn)+
∞

∑
i=1

αid2(en,Sien)

)
.(38)

Since λn <
1
η

and α0 ∈ (k,1) then (α0− k)> 0 and hence it follows from condition (16) on γn

that

ρn+1(x,y) ≤ ρn(x,y).

This implies that the sequence {ρn(x,y)} is non-increasing and bounded below and hence it

converges to ρ(x,y) (say). Thus, condition (i) of Lemma 2.3 is satisfied with µn = (xn,yn),

µ∗ = (x,y) and W := Γ⊂ H = H1×H2 with norm ‖(x,y)‖=
(
‖x‖2 +‖y‖2) 1

2 .

Since ‖xn− x‖2 ≤ ρn(x,y), ‖yn− y‖2 ≤ ρn(x,y) and lim
n→∞

ρn(x,y) exists, we observe that {xn}

and {yn} are bounded and limsup
n→∞

‖xn− x‖ and limsup
n→∞

‖yn− y‖ exist. Also, limsup
n→∞

‖Axn−Ax‖

and limsup
n→∞

‖Byn−By‖ exist. Further, from (24) and (32), we easily observe that the sequences

{cn}, {en}, {pn} and {qn} are bounded.

Now, since {γn} is bounded, (1− (λnη)2) > 0 and (α0− k) > 0 then it follows from the

convergence of the sequence {ρn(x,y)} and (38) that

(39) lim
n→∞

(‖pn−un‖2 +‖qn− vn‖2) = 0,

(40) lim
n→∞

(
d2(cn,Ticn)+d2(en,Sien)

)
= 0, for each i ∈ N,

and

(41) lim
n→∞

(
‖A∗(Axn−Byn)‖2 +‖B∗(Axn−Byn)‖2)= 0.

Note that Axn−Byn = 0, if n /∈ Λ. Hence, we obtain

(42) lim
n→∞
‖pn−un‖= lim

n→∞
‖qn− vn‖= 0,

(43) lim
n→∞

d(cn,Ticn) = 0, for each i ∈ N,
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(44) lim
n→∞

d(en,Sien) = 0, for each i ∈ N,

and

(45) lim
n→∞
‖Axn−Byn‖= 0.

Let x̄, ȳ be weak cluster points of the bounded sequences {xn}, {yn}, respectively. It follows

from Lemma 2.2 (i) that

‖xn+1− xn‖2 = ‖xn+1− x− xn + x‖2

= ‖xn+1− x‖2−‖xn− x‖2−2〈xn+1− xn,xn− x〉

= ‖xn+1− x‖2−‖xn− x‖2−2〈xn+1− x̄,xn− x〉+2〈xn− x̄,xn− x〉.(46)

Since limsup
n→∞

‖xn− x‖ exists, it follows from (46) that

limsup
n→∞

‖xn+1− xn‖= 0.

Consequently,

(47) lim
n→∞
‖xn+1− xn‖= 0.

Similarly, we obtain

(48) lim
n→∞
‖yn+1− yn‖= 0.

Since PC is firmly nonexpansive, we have

‖pn− x‖2 = ‖PC(xn− γnA∗(Axn−Byn))− x‖2

≤ 〈pn− x,xn− γnA∗(Axn−Byn)− x〉

=
1
2

{
‖pn− x‖2 +‖xn− γnA∗(Axn−Byn)− x‖2

−‖pn− xn + γnA∗(Axn−Byn)‖2
}
,
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which implies that

‖pn− x‖2 ≤ ‖xn− x‖2−2γn〈xn− x,A∗(Axn−Byn)〉+ γ
2
n‖A∗(Axn−Byn)‖2

−‖pn− xn‖2− γ
2
n‖A∗(Axn−Byn)‖2−2γn〈pn− xn,A∗(Axn−Byn)〉

≤ ‖xn− x‖2 +2γn‖Axn−Ax‖‖Axn−Byn‖−‖pn− xn‖2

+2γn‖Apn−Axn‖‖Axn−Byn‖.(49)

Since (33) can also be written as

‖xn+1− x‖2 ≤ ‖cn− x‖2 +
∞

∑
i=1

αikid2(cn,Ticn).(50)

Using (30) and (49) in (50), we get

‖xn+1− x‖2 ≤ ‖xn− x‖2 +2γn‖Axn−Ax‖‖Axn−Byn‖−‖pn− xn‖2

+2γn‖Apn−Axn‖‖Axn−Byn‖+
∞

∑
i=1

αikid2(cn,Ticn),

−(1− (λnα)2)‖pn−un‖2,

which, in turn, implies that

‖pn− xn‖2 ≤ (‖xn− x‖+‖xn+1− x‖)‖xn+1− xn‖+2γn‖Axn−Ax‖‖Axn−Byn‖

+2γn‖Apn−Axn‖‖Axn−Byn‖+
∞

∑
i=1

αikid2(cn,Ticn).(51)

Since {pn}, {xn} are bounded and A is a bounded linear operator, then {Apn − Axn} is

bounded. Now, using (45), (43) and (47) in (51), we have

(52) lim
n→∞
‖pn− xn‖= 0.

Since

(53) ‖un− xn‖ ≤ ‖un− pn‖+‖pn− xn‖,

using (42), (52) in (53), we have

(54) lim
n→∞
‖un− xn‖= 0.
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Similarly, we obtain

(55) lim
n→∞
‖qn− yn‖= 0,

(56) lim
n→∞
‖vn− yn‖= 0.

It follows from (21), (26), (28) and (50) that

‖xn+1− x‖2 ≤ ‖xn− x‖2 +2γn‖Axn−Ax‖‖Axn−Byn‖−‖pn− xn‖2

+2γn‖Apn−Axn‖‖Axn−Byn‖−‖pn−un‖2−‖un− cn‖2

+2λnα‖pn−un‖‖cn−un‖+
∞

∑
i=1

αikid2(cn,Ticn),

which, in turn, implies that

‖un− cn‖2 ≤ (‖xn− x‖+‖xn+1− x‖)‖xn+1− xn‖+2γn‖Axn−Ax‖‖Axn−Byn‖

+2γn‖Apn−Axn‖‖Axn−Byn‖+
∞

∑
i=1

αikid2(cn,Ticn)

+2λnα‖pn−un‖‖cn−un‖.(57)

Since {cn}, {un} are bounded, using (45), (43) and (47) in (57), we have that

(58) lim
n→∞
‖un− cn‖= 0.

Since

(59) ‖cn− xn‖ ≤ ‖cn−un‖+‖un− xn‖,

using (58), (54) in (59), we have

(60) lim
n→∞
‖cn− xn‖= 0.

Similarly, we obtain

(61) lim
n→∞
‖vn− en‖= 0,

(62) lim
n→∞
‖en− yn‖= 0.

Since every Hilbert space satisfies Opial’s condition, Opial’s condition guarantees that the

weakly subsequential limit of {xn} and {yn} is unique. Since {xn} is bounded, there exists
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a subsequence {xni} of {xn} such that xni ⇀ x̄ and hence it follows from (60) that there is

a subsequence {cni} of {cn} such that cni ⇀ x̄. Further, demiclosedness of Ti at 0 for each

i ∈ N and (43) imply that x̄ ∈ Tix̄ for each i ∈ N. Hence x̄ ∈
∞⋂

i=1
Fix(Ti). Also, it follows from

boundedness of {yn} and (62) that there exist subsequences {yni} of {yn} and {eni} of {en}

such that yni ⇀ ȳ and eni ⇀ ȳ and hence demiclosedness of Si at 0 along with (44) yield that

ȳ ∈ Siȳ for each i ∈ N. Thus ȳ ∈
∞⋂

i=1
Fix(Si).

Now, we show that x̄ ∈ Sol(VIP(9)). Since lim
n→∞
‖pn−un‖= 0 and lim

n→∞
‖pn− xn‖= 0, there

exist subsequences {pni} and {uni} of {pn} and {un}, respectively such that pni ⇀ x̄ and uni ⇀ x̄.

Let

T v =

 f v+NC(v), if v ∈C ;

/0, if v /∈C ,

where NC(v) is the normal cone to C at v∈H1. In this case, the mapping T is maximal monotone

and hence 0 ∈ T v if and only if v ∈ Sol(VIP(9)). Let (v,w) ∈ graph(T ). Then, we have w ∈

T v = f v+NC(v) and hence w− f v ∈ NC(v). So, we have 〈v−u,w− f v〉 ≥ 0, for all u ∈C.

On the other hand, from un = PC(I−λn f )pn and v ∈C, we have

〈(I−λn f )pn−un,un− v〉 ≥ 0.

This implies that

〈v−un,
un− pn

λn
+ f pn〉 ≥ 0.

Since 〈v−u,w− f v〉 ≥ 0, for all u ∈C and uni ∈C, using monotonicity of f , we have

〈v−uni,w〉 ≥ 〈v−uni, f v〉

≥ 〈v−uni, f v〉−
〈

v−uni,
uni− pni

λn
+ f pni

〉
= 〈v−uni, f v− f uni〉+ 〈v−uni, f uni− f pni〉−

〈
v−uni,

uni− pni

λn

〉
≥ 〈v−uni, f uni− f pni〉−

〈
v−uni,

uni− pni

λn

〉
.
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Since f is continuous, then on taking limit i→ ∞, we have 〈v− x̄,w〉 ≥ 0. Since T is maximal

monotone, we have x̄ ∈ T−10 and hence x̄ ∈ Sol(VIP(9)). Similarly, one can show that ȳ ∈

Sol(VIP(10)).

Again, since A and B are bounded linear operators, we have Axn ⇀Ax̄ and Byn ⇀Bȳ. Further,

since ‖ · ‖2 is weakly lower semicontinuous, we have

(63) ‖Ax̄−Bȳ‖2 ≤ liminf
ni→∞

‖Axni−Byni‖
2 = 0,

i.e., Ax̄ = Bȳ. Thus, (x̄, ȳ) ∈ Γ and hence ww(xni,yni)⊂ Γ. Now, it follows from Lemma 2.3 that

the sequence {(xn,yn)} generated by iterative Algorithm 3.1 converges weakly to (x̄, ȳ) ∈ Γ.

Now, since Ti and Si for each i ∈ N, are hemi-compact, {xn} and {yn} are bounded and

lim
n→∞

d(cn,Ticn) = 0 and lim
n→∞

d(en,Sien) = 0 for each i ∈ N, there exist (without loss of general-

ity) subsequences {xni} of {xn} and {yni} of {yn} such that {xni} and {yni} converge strongly to

some points ū and v̄, respectively. It follows from the demiclosedness of Ti and Si, for each i∈N

that ū∈
∞⋂

i=1
Fix(Ti) and v̄∈

∞⋂
i=1

Fix(Si). Since {xni} and {yni} converge weakly to x̄ and ȳ, respec-

tively, we then have ū = x̄ and v̄ = ȳ. On the other hand, since ρn(x,y) = ‖xn− x‖2 +‖yn− y‖2,

for any (x,y) ∈ Γ then lim
i→∞

ρni(x̄, ȳ) = 0. Further, since lim
n→∞

ρn(x̄, ȳ) exists then lim
n→∞

ρn(x̄, ȳ) = 0

and hence lim
n→∞
‖xn − x̄‖ = 0 and lim

n→∞
‖yn − ȳ‖ = 0. Thus, {(xn,yn)} converges strongly to

(x̄, ȳ) ∈ Γ. This completes the proof.

Now, we present a consequence of Theorem 4.1.

For each i ∈ N, if Ti and Si are single-valued demicontractive mappings then we have the fol-

lowing result to approximate a common solution of SpEVIP(9)-(10) and SpEFPP (5) for two

countable families of single-valued demicontractive mappings:

Corollary 4.1. Let H1, H2 and H3 be real Hilbert spaces and C ⊂ H1, Q ⊂ H2 be nonempty,

closed and convex sets. Let A : H1 → H3, B : H2 → H3 be bounded linear operators with

their adjoint operators A∗ and B∗, respectively. Let f : C→ H1 be monotone and α-Lipschitz

continuous mapping and let g : Q→ H2 be monotone and β -Lipschitz continuous mapping.

Let {Ti}∞
i=1 : H1 → H1 and {Si}∞

i=1 : H2 → H2 be families of single-valued demicontractive

mappings with demicontractive constants ki and si, respectively and let k1 = sup
i≥1
{ki} ∈ (0,1)
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and k2 = sup
i≥1
{si} ∈ (0,1). For each i ∈ N, let Ti and Si be demiclosed at 0. Assume that

Γ := Sol(SpEVIP(9)− (10)
⋂( ∞⋂

i=1
Fix(Ti)×

∞⋂
i=1

Fix(Si)

)
6= /0. If the sequence {λn}n∈N⊂ [a,b],

for some a and b with 0 < a < b < 1
min{α,β} and k ∈ (0,1) where k = max{k1,k2}, then the se-

quence {(xn,yn)} generated by Algorithm 3.2 converges weakly to (x̄, ȳ) ∈ Γ. In addition, if for

each i ∈ N, Ti and Si are semicompact, then {(xn,yn)} converges strongly to (x̄, ȳ) ∈ Γ.

We remark that it is of further research effort to extend the iterative method presented in

this paper, to split equality mixed equilibrium problem and split equality monotone variational

inclusion problem [14].

5. NUMERICAL EXAMPLE

Finally, we give a numerical example which justifies Theorem 4.1.

Example 5.1. Let H1 = H2 = H3 = R with the inner product defined by 〈x,y〉= xy, ∀ x,y ∈ R,

and induced usual norm | · |. Let C = [−10,10] and Q = [−10,10]; let {Ti}∞
i=1,{Si}∞

i=1 : R→

CB(R) by Ti(x) =
{(
−1+ i

i

)
x
}
, Si(y) =

{(
−1+2i

2i

)
y
}

, for each i ∈N; let f : C→R and

g : Q→ R be defined by f (x) = 2x, ∀x ∈C and g(y) = 3y, ∀y ∈ Q; let A,B : R→ R be defined

by A(x) = 2x,∀x ∈ R, B(y) = 4y,∀y ∈ R. If we set αi =
1

2i+1 , ∀i ∈ N∪{0}, then there is a

unique sequence {(xn,yn)} generated by the iterative schemes:

(64)



pn = PC(xn−4γn(xn−2yn));

un = PC(pn−2λn pn);

cn = PC(pn−2λnun);

xn+1 = 1
2cn +

∞

∑
i=1

1
2i+1

(
−1+i

i

)
cn;

qn = PQ(yn +8γn(xn−2yn));

vn = PQ(qn−3λnqn);

en = PQ(qn−3λnvn);

yn+1 = 1
2en +

∞

∑
i=1

1
2i+1

(
−1+2i

2i

)
en.

Then the sequence {(xn,yn)} converges to a point (x̄, ȳ) ∈ Γ.
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Proof. Evidently, A and B are bounded linear operators on R with adjoint operators A∗, B∗,

respectively with ‖A‖ = ‖A∗‖ = 2, ‖B‖ = ‖B∗‖ = 4, and hence γn ∈
(

ε,
1

10
− ε

)
. Therefore,

for ε =
1

100
, we choose γn =

1
20

. We also assume λn =
2
3

. Furthermore, we observe that for

each i ∈ N, Ti is demicontractive with ki =
1

1+2i
, Fix(Ti) = {0} and (Ti− I) is demiclosed at

0, and Si is demicontractive with si =
1

1+4i
, Fix(Si) = {0} and (Si− I) is demiclosed at 0.

Since k1 = sup
i≥1
{ki} =

1
3

and k2 = sup
i≥1
{si} =

1
5

then k = max{k1,k2} =
1
3

. Next,, we observe

that Γ := Sol(SpEVIP(9)− (10))
⋂( ∞⋂

i=1
Fix(Ti)×

∞⋂
i=1

Fix(Si)

)
= {(0,0)} 6= /0.

After simplification, iterative schemes (64) are reduced to the following:
pn =

4
5xn +

2
5yn; un =− pn

3 ; cn = pn− 4
3un;

qn =−2
5xn +

9
5yn; vn =−qn; en = qn−2vn;

xn+1 =
1
2cn−

∞

∑
i=1

1+i
i2i+1 cn; yn+1 =

1
2en−

∞

∑
i=1

1+2i
i2i+2 en;

(65)

Next, using the software Matlab 7.8.0, we have following figure and table which shows that

{(xn,yn)} converges to the point (x̄, ȳ) = (0,0).
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Table
No. of xn yn Axn−Byn No. of xn yn Axn−Byn

iterations x0 = 8 y0 =−13 iterations

1 3.699636 -6.240070 32.359552 11 0.000031 0.000015 0.000004

2 1.733757 -3.033392 15.601081 12 0.000008 0.000004 0.000001

3 0.823414 -1.430052 7.367037 13 0.000002 0.000001 0.000000

4 0.390003 0.039671 0.621323 14 0.000000 0.000000 0.000000

5 0.112934 0.041824 0.058573 15 0.000000 0.000000 0.000000

6 0.029665 0.013086 0.006988 16 0.000000 0.000000 0.000000

7 0.007582 0.003505 0.001146 17 0.000000 0.000000 0.000000

8 0.001922 0.000901 0.000240 18 0.000000 0.000000 0.000000

9 0.000486 0.000229 0.000057 19 0.000000 0.000000 0.000000

10 0.000123 0.000058 0.000014 20 0.000000 0.000000 0.000000

This completes the proof.
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