Available online at http://scik.org Advances in Fixed Point Theory, 2 (2012), No. 2, 238-247 ISSN: 1927-6303

STABILITY RESULTS FOR GENERALIZED CONTRACTIONS IN PARTIAL METRIC SPACES

FATMA AL- SIREHY*

Department of Mathematics, King Abdul Aziz University, Jeddah, Saudi Arabia

Abstract. In 1994, Mathews [7] introduced the notion of partial metric spaces as a part of his study of denotational semantics of dataflow networks and obtained a generalization of the Banach contraction principle in partial metric spaces. In this paper, we prove stability results in partial metric spaces.

Keywords: partial metric space; weak stability; φ -contraction.

2000 AMS Subject Classification: 47H17; 47H05; 47H09

1. Introduction

A partial metric on a nonempty set X is a function $p: X \times X \to \mathbb{R}^+$ such that for all $x, y, z \in X$;

- (1) $x = y \Leftrightarrow p(x, x) = p(x, y) = p(y, y);$
- (2) $p(x,x) \le p(x,y);$
- (3) p(x,y) = p(y,x);
- (4) $p(x,z) \le p(x,y) + p(y,z) p(y,y).$

A pair (X, p) is called a partial metric space, where X is a nonempty set and p is a partial metric on X.

Each partial metric p on X generates a T_0 topology τ_p on X which has as a base the family of all open p-balls $\{B_p(x,\varepsilon) : x \in X \text{ and } \varepsilon > 0\}$, where $B_p(x,\varepsilon) = \{y \in X : p(x,y) < p(x,x) + \varepsilon\}$ for all $x \in X$ and $\varepsilon > 0$.

^{*}Corresponding author

Received May 17, 2012

A sequence $\{x_n\}$ in a partial metric space (X, p) is said to be convergent to a point $z \in X$ iff $p(z, z) = \lim_{n \to \infty} p(z, x_n)$.

A sequence $\{x_n\}$ in a partial metric space (X, p) is said to be a Cauchy sequence if $\lim_{n,m\to\infty} p(x_n, x_m)$ exists and finite.

A partial metric space (X, p) is said to be complete if every Cauchy sequence $\{x_n\}$ in X converges with respect to τ_p to a point $z \in X$ such that $p(z, z) = \lim_{n,m\to\infty} p(x_n, x_m)$.

If p is a partial metric on X, then the function $p^s: X \times X \to \mathbb{R}^+$ defined by

$$p^{s}(x,y) = 2p(x,y) - p(x,x) - p(y,y)$$

is a metric on X.

lemma 1.1 Let (X, p) be a partial metric space,

- (1) A sequence $\{x_n\}_{n=0}^{\infty}$ in a partial metric space is a Cauchy sequence if and only if it is a Cauchy sequence in the metric space (X, p^s) .
- (2) A partial metric space (X, p) is complete if and only if the metric space (X, p^s) is complete. Moreover $\lim_{n \to \infty} p^s(z, x_n) = 0$ iff $\lim_{n \to \infty} p(z, x_n) = \lim_{n, m \to \infty} p(x_n, x_m) p(z, z).$

Let (X, p) be a partial metric space, $T : X \to X$ a mapping with $F_T = \{x \in X : Tx = x\} \neq \phi$, and $\{x_n\}_{n=0}^{\infty}$ a sequence obtained by a certain fixed point iteration procedure defined by

$$x_{n+1} = f(T, x_n), \quad n = 0, 1, 2, \dots$$
 (1)

where $x_0 \in X$, and $f(T, x_n)$ includes all parameters that define the given fixed point iteration. For example if Krasnoselskij iteration producedure is used, then $f(T, x_n) = (1 - \lambda)x_n + \lambda T x_n$, n = 0, 1, 2, ...

Suppose $\{x_n\}_{n=0}^{\infty}$ converges to a fixed point z^* of T. We usually follow the next steps to compute $\{x_n\}_{n=0}^{\infty}$:

- (1) Choose the initial approximation $x_0 \in X$.
- (2) Compute x₁ = f(T, x₀), due to various errors that occur during the computations, we do not get the exact value of x₁, but we get another one, say y₁, which is however close enough to x₁, i.e y₁ ≈ x₁.
- (3) When computing $x_2 = f(T, x_1)$, we will actually compute x_1 as $x_2 = f(T, y_1)$, and so, instead of x_2 , we will obtain different value, say y_2 , which is close enough to x_2 , i.e., $y_2 \approx x_2$, ... and so on.

In this way, we will obtain a sequence $\{y_n\}_{n=0}^{\infty}$ instead of the theoretical sequence $\{x_n\}_{n=0}^{\infty}$.

FATMA AL- SIREHY*

The fixed point iteration method is said to be numerically stable if and only if for y_n close enough to x_n at each stage, the approximation sequence $\{y_n\}_{n=0}^{\infty}$ still converges to the fixed point z^* of T.

Following this idea, the concept of stability, due to Harder and Hicks [3], was used. For details, we refer to [2, 8]. Fixed point theory for partial metric spaces was discussed in [1, 4, 5, 6, 9].

2. Main Results

We now give the following definition in partial metric space.

Definition 2.1 Let (X, p) be a partial metric space, $T : X \to X$ a mapping, $x_0 \in X$. Assume that the iteration procedure (1) converges to a fixed point z^* of T, with $p(z^*, z^*) = 0$. Let $\{y_n\}_{n=0}^{\infty}$ be an arbitrary sequence in X and put

$$\varepsilon_n = p(y_{n+1}, f(T, y_n)), \text{ for } n = 0, 1, 2, \dots$$
 (2)

The fixed point iteration (2) is called T- stable if and only if

$$\lim_{n \to \infty} \varepsilon_n = 0 \iff \lim_{n \to \infty} p(y_n, z^*) = 0.$$
(3)

We use the following lemma from [2] to prove the next theorem.

Lemma 2.2 Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences of nonnegative numbers, and $0 \le q < 1$, so that

$$a_{n+1} \le qa_n + b_n$$
 for all $n \ge 0$

- (a) If $\lim_{n \to \infty} b_n = 0$, then $\lim_{n \to \infty} a_n = 0$.
- (b) If $\sum_{n=0}^{\infty} b_n < \infty$, then $\sum_{n=0}^{\infty} a_n < \infty$.

Theorem 2.3 Let (X, p) be a partial metric space and $T: X \to X$ a k- contraction mapping i.e.

$$p(Tx, Ty) \le kp(x, y), \text{ for every } x, y \in X,$$
(4)

where $k \in [0,1)$. Suppose T has a fixed point $z^*, x_0 \in X$ and $x_{n+1} = Tx_n, n \ge 0$. Then $\{x_n\}_{n=0}^{\infty}$ converges strongly to z^* and is stable with respect to T.

Proof Let $\varepsilon_n = p(y_{n+1}, Ty_n)$. Then we have

$$p(y_{n+1}, z^*) \leq p(y_{n+1}, Ty_n) + p(Ty_n, z^*) - p(Ty_n, Ty_n)$$

$$\leq p(y_{n+1}, Ty_n) + p(Ty_n, z^*)$$

$$\leq \varepsilon_n + k \ p(y_n, z^*).$$

Assume that $\lim_{n \to \infty} \varepsilon_n = 0$. Then, since $k \in [0, 1)$, it follows by Lemma 1.1 that $\lim_{n \to \infty} p(y_n, z^*) = 0$. Furthermore, $p(x_{n+1}, z^*) \leq k^n p(x_0, z^*) \longrightarrow 0$ as $n \longrightarrow \infty$, that is $\{x_n\}_{n=0}^{\infty}$ converges to z^* . Conversely, if

 $\lim_{n \to \infty} p(y_n, z^*) = 0, \text{ then}$

$$\varepsilon_n = p(y_{n+1}, Ty_n) \le p(y_{n+1}, z^*) + p(z^*, Ty_n) - p(z^*, z^*)$$
$$\le p(y_{n+1}, z^*) + k \ p(z^*, y_n) \longrightarrow 0 \ \text{as} \ n \longrightarrow \infty.$$

Hence $\lim_{n \to \infty} \varepsilon_n = 0.$

We use the following definition of weak stability due to Berinde [2] on partial metric spaces.

Definition 2.4 Let $\{x_n\}_{n=0}^{\infty}$ be a sequence in a partial metric space (X, p). We say that $\{y_n\}_{n=0}^{\infty}$ is an approximate sequence of $\{x_n\}_{n=0}^{\infty}$ if, for each $k \in \mathbb{N}$, there exists $\eta = \eta(k)$ such that

$$p(x_n, y_n) \le \eta$$
, for all $n \ge k$.

The proof of the following lemma has been taken from [2]. It works in our case too.

Lemma 2.5 Let (X, p) be a partial metric space. A sequence $\{y_n\}_{n=0}^{\infty}$ is an approximate sequence of $\{x_n\}_{n=0}^{\infty}$ if and only if there exists a decreasing sequence of positive numbers $\{\epsilon_n\}_{n=0}^{\infty}$ convergent to some $\eta \geq 0$ such that

$$p(x_n, y_n) \le \epsilon_n$$
, for any $n \ge k$.

Proof Suppose that the sequence $\{y_n\}_{n=0}^{\infty}$ is an approximate sequence of $\{x_n\}_{n=0}^{\infty}$. For k = 1 there exists η_1 such that $p(x_n, y_n) \leq \eta_1$, for n = 1, 2, 3, ... Take $\varepsilon_1 = \eta_1$. For k = 2 there exists η_2 such that $p(x_n, y_n) \leq \eta_2$, for n = 2, 3, 4, ... Put $\varepsilon_2 = \min\{\eta_1, \eta_2\}$. In this way we obtain a decreasing sequence of positive numbers $\{\epsilon_n\}_{n=0}^{\infty}$ which is convergent to some $\eta \geq 0$. For sufficient condition take $\eta(k) = \epsilon_k, k = 0, 1, 2, ...$

Let (X, p) be a partial metric space and $T: X \longrightarrow X$ a mapping such that $F_T \neq \phi$ and there exists a certain fixed point iteration procedure which converges to some fixed point z^* . When computing z^* we use a certain approximate mapping S of T, i.e., a mapping $S: X \longrightarrow X$, such that for $\eta > 0$ we have

$$p(Tx, Sx) \leq \eta$$
, for every $x \in X$.

Assume that $q \in F_S$. It is natural to ask the following question: Is q an approximation of z^* , and if yes how can we estimate $p(z^*, q)$?

The next theorem provides an answer to the prevolus question. The following statement due to Berinde [2] is used to prove the theorem.

Let $T: X \longrightarrow X$ be a φ - contraction, i.e, $p(Tx, Ty) \leq \varphi(p(x, y))$ for every $x, y \in X$, where $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is a monotone nondecreasing with $\lim_{n \to \infty} \varphi^n(t) = 0$ for every $t \geq 0$. Denote

$$t_{\eta} = \sup\{t \in \mathbb{R}^+ \mid t - \varphi(t) \le \eta\}, \quad \eta > 0.$$
(5)

Note that

$$\lim_{\eta \to 0} t_{\eta} = 0. \tag{6}$$

Theorem 2.6 Let (X, p) be a complete partial metric space and $T, S : X \to X$ two mappings satisfying:

- (a) T is a φ contraction,
- (b) $q \in F_S$,
- (c) there exists $\eta > 0$ such that

$$p(Tx, Sx) \le \eta$$
, for all $x \in X$.

Then

 $p(z^*, q) \le t_\eta,$

where $F_T = \{z^*\}.$

Proof By Theorem 3.2 in [9] we get that $\{T^n x_0\}$ converges to z^* , for any $x_o \in X$. By using (a), (b) and (c) we have

$$p(z^*,q) = p(Tz^*,Sq) \le p(Tz^*,Tq) + p(Tq,Sq) - p(Tq,Tq)$$
$$\le \varphi(p(z^*,q)) + \eta.$$

Hence

$$p(z^*, q) - \varphi(p(z^*, q)) \le \eta.$$

Using (6), we get

 $p(z^*, q) < t_{\eta}.$

Theorem 2.7 Let (X, p) be a complete partial metric space and $T: X \to X$ a φ - contraction mapping. Furthermore φ is subadditive and $\sum_{n=0}^{\infty} \varphi^n(t)$ converges for every t > 0. Let $S: X \to X$ be an approximate mapping of T and $\{x_n\}_{n=0}^{\infty}, \{y_n\}_{n=0}^{\infty}$ be the Picard iterations associated to T and S respectively, satisfying from x_0 . Then $F_T = \{z^*\}$. If $q \in F_S$, then

(a) $p(y_n, z^*) < s(\eta) + s(p(x_n, x_{n+1})),$

(b)
$$p(z^*, q) < s(\eta)$$
,

where s(t) denotes the sum of the comparison series $\sum_{k=0}^{\infty} \varphi^k(t)$.

Proof

(a) By Theorem 3.2 [9], $F_T = \{z^*\}$, $p(z^*, z^*) = 0$ and $\lim_{n \to \infty} p(x_n, z^*) = 0$, for any $x_0 \in X$. Since $y_1 = Sx_0, y_2 = Sy_1, \dots, y_n = Sy_{n-1}, n > 1$,

$$p(y_n, z^*) \leq p(y_n, x_n) + p(x_n, z^*) - p(x_n, x_n)$$

$$< p(y_n, x_n) + p(x_n, z^*). \quad (7)$$

Now, we compute $p(y_n, x_n)$.

$$p(y_{n}, x_{n}) = p(Sy_{n-1}, Tx_{n-1})$$

$$\leq p(Sy_{n-1}, Ty_{n-1}) + p(Ty_{n-1}, Tx_{n-1}) - p(Ty_{n-1}, Ty_{n-1})$$

$$\leq p(Sy_{n-1}, Ty_{n-1}) + p(Ty_{n-1}, Tx_{n-1})$$

$$\leq \eta + \varphi(p(y_{n-1}, x_{n-1}))$$

$$= \eta + \varphi(p(Sy_{n-2}, Tx_{n-2}))$$

$$\leq \eta + \varphi(p(Sy_{n-2}, Ty_{n-2}) + p(Ty_{n-2}, Tx_{n-2}) + -p(Ty_{n-2}, Ty_{n-2}))$$

$$\leq \eta + \varphi(p(Sy_{n-2}, Ty_{n-2}) + p(Ty_{n-2}, Tx_{n-2}))$$

$$\leq \eta + \varphi(\eta + \varphi(p(y_{n-2}, x_{n-2})))$$

$$\leq \eta + \varphi(\eta) + \varphi^{2}(p(Sy_{n-3}, Tx_{n-3}))$$

$$\leq \eta + \varphi(\eta) + \varphi^{2}(\eta + \varphi(y_{n-3}, x_{n-3}))$$

$$\leq \dots \dots \dots$$

$$\leq \dots \dots \dots$$

$$\leq \dots \dots \dots \dots$$

$$\leq \eta + \varphi(\eta) + \varphi^{2}(\eta) + \dots + \varphi^{n-1}(\eta)$$

$$\leq s(\eta). \qquad (8)$$

From (7) and (8) we get,

$$p(y_n, z^*) < s(\eta) + p(x_n, z^*).$$
 (9)

Notice that

$$p(x_{n+k}, x_{n+k+1}) \le \varphi^k(p(x_n, x_{n+1})), \ n = 0, 1, 2, ..., k \ge 1$$

FATMA AL- SIREHY*

and

$$p(x_n, x_{n+p}) \leq p(x_n, x_{n+1}) + p(x_{n+1}, x_{n+2}) + \dots + p(x_{n+p-1}, x_{n+p}) + -p(x_{n-1}, x_{n-1}) - p(x_{n-2}, x_{n-2}) - \dots - p(x_{n+p-1}, x_{n+p-1}) \\ \leq p(x_n, x_{n+1}) + p(x_{n+1}, x_{n+2}) + \dots + p(x_{n+p-1}, x_{n+p}) \\ \leq p(x_n, x_{n+1}) + \varphi(p(x_n, x_{n+1})) + \dots + \varphi^{p-1}(p(x_n, x_{n+1})) \\ = \frac{p-1}{k=0}\varphi^k(p(x_n, x_{n+1})).$$

Letting $p \to \infty$, we get,

$$p(x_n, z^*) \leq \sum_{k=0}^{\infty} \varphi^k(p(x_n, x_{n+1}))$$

= $s(p(x_n, x_{n+1})).$ (10)

From (9) and (10), we have,

$$p(y_n, z^*) < s(\eta) + s(p(x_n, x_{n+1}))$$

(b) Take $x_0 = q$ This implies that $y_n = q$ for each $n \ge 1$, and let $n \to \infty$. Then from (a) we get

$$p(z^*,q) < s(\eta) + s(p(z^*,z^*))$$

= $s(\eta).$

We next define the uniformly convergence and pointwise convergence of a sequence $\{T_n\}_{n=0}^{\infty}$ of selfmappings defined on a partial metric space X.

Definition 2.8 Let (X, p) be a partial metric space. A sequence of mappings, $\{T_n\}_{n=0}^{\infty}, T_n : X \to X$, is said to be uniformly convergent to a mapping $T : X \to X$, if for every $\varepsilon > 0$, there exists a natural number $N = N(\varepsilon)$, such that $n \ge N$ implies that

$$p(T_n x, Tx) < \varepsilon + p(Tx, Tx)$$
, for every $x \in X$.

Definition 2.9 Let (X, p) be a partial metric space. A sequence of mappings, $\{T_n\}_{n=0}^{\infty}, T_n : X \to X$, is said to be pointwise convergent to a mapping $T : X \to X$, if for every $\varepsilon > 0$, and $x \in X$ there exists a natural number $N = N(\varepsilon, x)$, such that

$$p(T_n x, Tx) < \varepsilon + p(Tx, Tx), \text{ for every } n \ge N.$$

Due to Berinde [2], there is a possible method to approximate the fixed point z^* of T as seen in the following theorems.

244

Theorem 2.10 Let (X, p) be a complete partial metric space and $\{T_n\}_{n=0}^{\infty}$ a sequence of mappings, $T_n: X \to X$, with $F_{T_n} = \{z_n^*\}$ and $p(z_n^*, z_n^*) = 0$, for every $n = 0, 1, 2, \dots$ If the sequence $\{T_n\}$ converges uniformly to a k-contraction $T: X \to X$, such that $F_T = \{z^*\}$ and $p(z^*, z^*) = 0$, then

$$\lim_{n \to \infty} p(z_n^*, z^*) = 0 \; .$$

Proof First note that $p(Tz_n^*, Tz_n^*) \leq k \ p(z_n^*, z_n^*) = 0$ for every $n = 0, 1, 2, \dots$ Hence $p(Tz_n^*, Tz_n^*) = 0$ for every $n = 0, 1, 2, \dots$ Therefore for any $\varepsilon > 0$ choose a natural number N such that for every $n \geq N$, we have

$$p(T_n z_n^*, T z_n^*) < \varepsilon \ (1-k), \text{ for every } n \ge N,$$

where k is the contraction constant. It follows that, for $n \ge N$, we get

$$p(z_n^*, z^*) = p(T_n z_n^*, T z^*)$$

$$\leq p(T_n z_n^*, T z_n^*) + p(T z_n^*, T z^*) - p(T z_n^*, T z_n^*)$$

$$< \varepsilon (1 - k) + k p(z_n^*, z^*).$$

This implies that $p(z_n^*,z^*) < \varepsilon$, for all $n \ge N$, i.e., $\lim_{n \to \infty} p(z_n^*,z^*) = 0$.

In the next theorem as in [2], if the uniform convergence of $\{T_n\}_{n=0}^{\infty}$ is replaced by the pointwise convergence, then T_n must be a k-contraction for every $n \ge 0$ to get that $\lim_{n \to \infty} p(z_n^*, z^*) = 0$.

Theorem 2.11 Let (X, p) be a complete partial metric space and $T_n, T : X \to X$ be mappings such that

(a) T_n is a k-contraction for every $n \ge 0$, with $F_{T_n} = \{z_n^*\}$,

(b) $\{T_n\}_{n=0}^{\infty}$ converges pointwisely to T.

Then

$$p(Tx, Ty) \le p(Tx, Tx) + p(Ty, Ty) + k \ p(x, y)$$
 for every $x, y \in X$.

If, in addition $z^* \in F_T$ with $p(z^*, z^*) = 0$, then $\lim_{n \to \infty} p(z_n^*, z^*) = 0$.

Proof For any $x, y \in X$, we have

$$p(Tx, Ty) \leq p(Tx, T_n x) + p(T_n x, T_n y) + p(T_n y, Ty) - p(T_n x, T_n x) - p(T_n y, T_n y)$$

$$\leq p(Tx, T_n x) + k \ p(x, y) + p(T_n y, Ty).$$

Letting $n \to \infty$, from (b), we get

$$p(Tx, Ty) \le p(Tx, Tx) + p(Ty, Ty) + k \ p(x, y)$$
 for every $x, y \in X$.

Now we prove $\lim_{n\to\infty} p(z_n^*,z^*) = 0$. Let $\varepsilon > 0$ choose a natural number N such that for every $n \ge N$ we have

$$p(T_n z^*, T z^*) < \varepsilon (1-k) + p(T z^*, T z^*)$$
$$= \varepsilon (1-k).$$

This implies that for every $n \geq N$

$$\begin{split} p(z_n^*, z^*) &= p(T_n z_n^*, T z^*) \leq p(T_n z_n^*, T_n z^*) + p(T_n z^*, T z^*) - p(T_n z^*, T_n z^*) \\ &< k \; p(z_n^*, z^*) + \varepsilon \; (1-k). \end{split}$$

This implies that

$$p(z_n^*, z^*) < \varepsilon$$
, for every $n \ge N$

We conclude that

$$\lim_{n \to \infty} p(z_n^*, z^*) = 0$$

Theorem 2.12 Let (X, p) be a complete partial metric space and $T_n, T : X \to X$ be mappings such that

- (a) T is a φ -contraction and $\lim_{t\to\infty}(t-\varphi(t))=\infty$,
- (b) $\{T_n\}_{n=0}^{\infty}$ converges uniformly to T,
- (c) $z_n^* \in F_{T_n}$ with $p(z_n^*, z_n^*) = 0$ for $n \ge 0$. Then $\lim_{n \to \infty} p(z_n^*, z^*) = 0$, where $F_T = \{z^*\}$ and $p(z^*, z^*) = 0$

Proof Note that $p(Tz_n^*, Tz_n^*) \leq \varphi(p(z_n^*, z_n^*)) = \varphi(0) = 0$ for every $n = 0, 1, 2, \dots$ Hence $p(Tz_n^*, Tz_n^*) = 0$ for every $n = 0, 1, 2, \dots$ Therefore for any $\varepsilon > 0$ choose a natural number N such that for every $n \geq N$, we have

$$p(T_n z_n^*, T z_n^*) < \varepsilon$$
, for every $n \ge N$,

This implies that

$$p(z_n^*, z^*) = p(T_n z_n^*, T z^*) \le p(T_n z_n^*, T z_n^*) + p(T z_n^*, T z^*) - p(T z_n^*, T z_n^*)$$

< $\varepsilon + \varphi(p(z_n^*, z^*))$ for every $n \ge N$.

It follows that

246

 $p(z_n^*,z^*)-\varphi(p(z_n^*,z^*))<\varepsilon, \text{ for every } n\geq N.$

By using (5) we get

$$\lim_{n \to \infty} p(z_n^*, z^*) = 0$$

References

- I. Alton, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology and its Applications, 157 (2010), 2778 - 2785
- [2] V. Berinde, Iterative approximation of fixed points, Lecture Notes in Mathematics, 1912, Springer, Berlin, 2007.
- [3] A. M. Harder, T. L. Hicks, Stability results for fixed point iteration procedures. Math. Japonica, 33, No. 5, 693-706 (1988).
- [4] D. Ilic, V. Pavlovic, V. Rakocevic, Some new extensions of Banach's contraction principal to partial metric space, Applied Math. Letters, (2011), (in press).
- [5] E. Karapinar, I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Applied Math Letters, 24 (2011), 1894-1899.
- [6] E. Karapinar, Generalizations of Caristi-Kirk's theorem on partial metric spaces, Fixed Point Theory and Applications, (2011), (in press).
- [7] S. G. Matthews, Partial metric topology, in: Proc, 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183- 197.
- [8] N. Shahzad and H. Zegeye, On stability results for phi -strongly pseudocontractive mappings, Nonlinear Anal. 64 (2006), no. 12, 2619 - 2630.
- [9] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol. 6 (2) (2005)
 229- 240.