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1. INTRODUCTION 

Boundary value problems (BVPs for short) for fourth order ordinary differential equations (ODEs 

for short) are used to describe a huge number of physical, biological and chemical phenomena, see 

for instance [1-4] and references therein. If we put 𝑓(𝑡, 𝑢(𝑡)) = 𝑝(𝑡)𝑔(𝑢(𝑡))  in our considered 
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boundary value problem, then it will be refer as the beam equation and further physical 

interpretation of that equation can be found in the work of Zill and Cullen [4, pp. 237-243]. It is 

well established that the fixed-point technique is the most important technique for checking the 

existence of solutions of ordinary differential equations. In the last few decades, two-point, three-

point and four-point boundary value problems for second order, three order, fourth order as well 

as higher order has extensively been studied by using various techniques, see for instance [5-18] 

and references therein. Inspiring by the above mentioned works, we have interested to check the 

existence of solutions of four-point boundary value problem (BVP for short) for fourth-order 

nonlinear ordinary differential equations (FONLODEs for short) by applying Krasnosclskii-

Zabreiko fixed point theorem and from this context, here we only described the most recent 

analogous literature about the existence of solutions of four-point BVP for FONLODEs.  

In 2006, Chen et al. [5] checked the existence of solutions of following four-point BVP for 

FONLODEs by applying the upper and lower solution method and Schauder fixed point theorem: 

{
𝑢(4)(𝑡) = 𝑓(𝑡, 𝑢(𝑡)),        𝑡 ∈ (0, 1)                                

𝑢(0) = 𝑢(1) = 0,                                                               

𝑎𝑢′′(𝜉1) − 𝑏𝑢′′′(𝜉1) = 0, 𝑐𝑢′′(𝜉2) + 𝑑𝑢′′′(𝜉2) = 0,

              (1.1) 

where, 𝑎, 𝑏, 𝑐, 𝑑  are nonnegative constants satisfying, 𝑎𝑑 + 𝑏𝑐 + 𝑎𝑐(𝜉2 − 𝜉1) > 0 , 0 ≤ 𝜉1 <

𝜉2 ≤ 1 and 𝑓 ∈ 𝐶([0, 1] × ℝ). They established their main result on basis the following lemma: 

Lemma 1.1 (See [5], Lemma 2.2). Suppose 𝑎, 𝑏, 𝑐, 𝑑, 𝜉1, 𝜉2 are nonnegative constants satisfying 

0 ≤ 𝜉1 < 𝜉2 ≤ 1, 𝑏 − 𝑎𝜉1 ≥ 0,   𝑑 − 𝑐 + 𝑐𝜉2 ≥ 0 and 

 𝛿 = 𝑎𝑑 + 𝑏𝑐 + 𝑎𝑐(𝜉2 − 𝜉1) ≠ 0.  

If 𝑢(𝑡) ∈ 𝐶4[0, 1] satisfies  

 𝑢(4)(𝑡) ≥ 0,   𝑡 ∈ (0, 1), 

 𝑢(0) ≥ 0,   𝑢(1) ≥ 0, 

 𝑎𝑢′′(𝜉1) − 𝑏𝑢′′′(𝜉1) ≤ 0,   𝑐𝑢′′(𝜉2) + 𝑑𝑢′′′(𝜉2) ≤ 0, 

then 𝑢(𝑡) ≥ 0 and 𝑢′′(𝑡) ≤ 0 for 𝑡 ∈ [0, 1]. 

Unfortunately, this lemma is incorrect. Now we provide a counter example to demonstrate it.  

Counter example to [5, Lemma 2.2]. Let 𝑢(𝑡) =
1

6
𝑡4 −

1

3
𝑡3 +

15

196
𝑡2 +

7

64
, 𝜉1 =

5

8
, 𝜉2 =

8

15
 and 
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𝑎, 𝑏, 𝑐, 𝑑 are four positive constants such that 𝑎 = 𝑏, and 𝑐 =  𝑑. Then we have  

 𝑢(4)(𝑡) ≥ 0,   𝑡 ∈ (0, 1) 

 𝑢(0) =
7

64
≥ 0,   𝑢(1) =

181

9408
≥ 0, 

 𝑎𝑢′′(𝜉1) − 𝑏𝑢′′′(𝜉1) = −𝑎
1279

1568
≤ 0 and 𝑐𝑢′′(𝜉2) + 𝑑𝑢′′′(𝜉2) = −𝑐

4661

22050
≤ 0. 

But  

 𝑢′′ (
1

16
) =

225

6272
> 0,  

which means that Lemma 2.2 of [5] is not correct. 

Therefore, the results of Chen et al. [5] should be reassessed. 

From this ground here we considered the fourth order four-point BVP defined by (1.1) and check 

the existence of solutions of that BVP by applying Krasnosclskii-Zabreiko fixed point theorem [19] 

instead of upper and lower solution method. The rest of this paper is organized as follows:  

The Section 2, is used to provide some necessary definitions, lemmas and Krasnosclskii-Zabreiko 

fixed point theorem [19] associated with BVP (1.1) and (1.2). In Section 3, the main results have 

been stated and proved. Finally, we give an example to illustrate our main results. 

 

2. PRELIMINARIES 

In this section, we establish some lemmas and state Krasnosclskii-Zabreiko fixed point theorem 

which are used as tools to proof of our main results. 

Lemma 2.1 Assume 𝑎, 𝑏, 𝑐, 𝑑, 𝜉1, 𝜉2 are nonnegative constants satisfying 0 ≤ 𝜉1 < 𝜉2 ≤ 1, and 

𝛿 = 𝑎𝑑 + 𝑏𝑐 + 𝑎𝑐(𝜉2 − 𝜉1) ≠ 0. If ℎ(𝑡) ∈ 𝐶[𝜉1, 𝜉2], then the BVP  

 {
𝑢′′(𝑡) = ℎ(𝑡),   𝑡 ∈ [𝜉1, 𝜉2],                                      

𝑎𝑢(𝜉1) − 𝑏𝑢′(𝜉1) = 0, 𝑐𝑢(𝜉2) + 𝑑𝑢′(𝜉2) = 0,
                   (2.1) 

has a unique solution 

 𝑢(𝑡) = − ∫ 𝐺(𝑡, 𝑠)ℎ(𝑠)𝑑𝑠
𝜉2

𝜉1
,  

where,𝐺(𝑡, 𝑠) =
1

𝛿
{

(𝑎(𝑡 − 𝜉1) + 𝑏)(𝑑 + 𝑐(𝜉2 − 𝑠)),    𝜉1 ≤ 𝑡 < 𝑠 ≤ 𝜉2,

(𝑎(𝑠 − 𝜉1) + 𝑏)(𝑑 + 𝑐(𝜉2 − 𝑡)),    𝜉1 ≤ 𝑠 ≤ 𝑡 ≤ 𝜉2

 

is the Green’s function of the BVP  

 {
𝑢′′(𝑡) = 0,   𝑡 ∈ [0, 1],                                            

𝑎𝑢(𝜉1) − 𝑏𝑢′(𝜉1) = 0, 𝑐𝑢(𝜉2) + 𝑑𝑢′(𝜉2) = 0,
                  (2.2) 
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Proof. Here first we solve the BVP (2.2) by using Green’s function. 

The general solution of (2.2) is  

 𝑢(𝑡) = 𝐴𝑡 + 𝐵                         (2.3) 

Using the boundary conditions of (2.2), we obtain 𝐴 = 𝐵 = 0 . Hence (2.3) yields only trivial 

solution 𝑢(𝑡) = 0. Therefore, the unique Green’s function exists for BVP (2.2) and is given by 

  𝐺(𝑡, 𝑠) = {
𝑎1𝑡 + 𝑎2,    𝜉1 ≤ 𝑡 < 𝑠 ≤ 𝜉2

𝑏1𝑡 + 𝑏2,    𝜉1 ≤ 𝑠 ≤ 𝑡 ≤ 𝜉2
                   (2.4) 

Now, by the properties of Green’s function, we have 

 (𝑏1 − 𝑎1)𝑠 + (𝑏2 − 𝑎2) = 0                      (2.5) 

 𝑏1 − 𝑎1 = −1 ⇒ 𝑏1 = 𝑎1 − 1                      (2.6) 

 𝑎𝐺(𝜉1, 𝑠) − 𝑏𝐺′(𝜉1, 𝑠) = 0 ⇒ (𝑎𝜉1 − 𝑏)𝑎1 + 𝑎𝑎2 = 0                 (2.7) 

 𝑐𝐺(𝜉2, 𝑠) + 𝑑𝐺′(𝜉2, 𝑠) = 0 ⇒ (𝑐𝜉2 + 𝑑)𝑏1 + 𝑐𝑏2 = 0                 (2.8) 

Solving (2.5), (2.6), (2.7) and (2.8), we obtain 

 𝑎1 =
𝑎𝑐(𝜉2−𝑠)+𝑎𝑑

𝛿
, 𝑎2 = −

(𝑎𝜉1−𝑏)(𝑐(𝜉2−𝑠)+𝑑)

𝛿
, 𝑏1 =

𝑎𝑐(𝜉1−𝑠)−𝑏𝑐

𝛿
  and  

  𝑏2 = −
(𝑐𝜉2+𝑑)(𝑎(𝜉1−𝑠)−𝑏)

𝛿
,  

where, 𝛿 = 𝑎𝑑 + 𝑏𝑐 + 𝑎𝑐(𝜉2 − 𝜉1). 

Putting the values of 𝑎1, 𝑎2, 𝑏1, and  𝑏2 in (2.4), we obtain the unique Green’s function 

 𝐺(𝑡, 𝑠) =
1

𝛿
{

(𝑎(𝑡 − 𝜉1) + 𝑏)(𝑑 + 𝑐(𝜉2 − 𝑠)),    𝜉1 ≤ 𝑡 < 𝑠 ≤ 𝜉2,

(𝑎(𝑠 − 𝜉1) + 𝑏)(𝑑 + 𝑐(𝜉2 − 𝑡)),    𝜉1 ≤ 𝑠 ≤ 𝑡 ≤ 𝜉2.
 

Therefore, the unique solution of BVP (2.2) is  

 𝑢(𝑡) = − ∫ 𝐺(𝑡, 𝑠)𝑑𝑠
𝜉2

𝜉1
,  

where, 𝐺(𝑡, 𝑠) =
1

𝛿
{

(𝑎(𝑡 − 𝜉1) + 𝑏)(𝑑 + 𝑐(𝜉2 − 𝑠)),    𝜉1 ≤ 𝑡 < 𝑠 ≤ 𝜉2,

(𝑎(𝑠 − 𝜉1) + 𝑏)(𝑑 + 𝑐(𝜉2 − 𝑡)),    𝜉1 ≤ 𝑠 ≤ 𝑡 ≤ 𝜉2,
  and this solution 

ensure that the BVP (2.1) has a unique solution and which is  

 𝑢(𝑡) = − ∫ 𝐺(𝑡, 𝑠)ℎ(𝑠)𝑑𝑠
𝜉2

𝜉1
.  

This completes the lemma.                  ∎ 

Remark 2.2 Considering  
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 𝑅(𝑡) =
1

𝛿
((𝑎(𝑡 − 𝜉1) + 𝑏)𝑥3 +  (𝑐(𝜉2 − 𝑡) + 𝑑)𝑥2),                 (2.9) 

 𝐺1(𝑡, 𝑠) = {
𝑡(1 − 𝑠),    0 ≤ 𝑡 < 𝑠 ≤ 1,
𝑠(1 − 𝑡),    0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

                   (2.10) 

 𝐺2(𝑡, 𝑠) =
1

𝛿
{

(𝑎(𝑡 − 𝜉1) + 𝑏)(𝑑 + 𝑐(𝜉2 − 𝑠)),    𝜉1 ≤ 𝑡 < 𝑠 ≤ 𝜉2,

(𝑎(𝑠 − 𝜉1) + 𝑏)(𝑑 + 𝑐(𝜉2 − 𝑡)),    𝜉1 ≤ 𝑠 ≤ 𝑡 ≤ 𝜉2,

            (2.11) 

in [5, Lemma 2.2], Chen et al. claimed that  

𝑢(𝑡) = 𝑡𝑥1 + (1 − 𝑡)𝑥0 − ∫ 𝐺1(𝑡, 𝜉)𝑅(𝜉)𝑑𝜉 + ∫ 𝐺1(𝑡, 𝜉) ∫ 𝐺2(𝜉, 𝑠)ℎ(𝑠)𝑑𝑠
𝜉2

𝜉1
𝑑𝜉

1

0

1

0
, (2.12) 

is the solution of the following BVP 

 {

𝑢(4)(𝑡) = ℎ(𝑡),              𝑡 ∈ (0, 1)                                       

𝑢(0) = 𝑥0,                 𝑢(1) = 𝑥1,                                          

𝑎𝑢′′(𝜉1) − 𝑏𝑢′′′(𝜉1) = 𝑥2, 𝑐𝑢′′(𝜉2) + 𝑑𝑢′′′(𝜉2) = 𝑥3,

 

where, 𝑥0 ≥ 0, 𝑥1 ≥ 0, 𝑥2 ≤ 0, 𝑥3 ≤ 0, ℎ(𝑡) ∈ 𝐶[0, 1]and ℎ(𝑡) ≥ 0.  

But, the solution defined by (2.12) is incorrect. Definitely, by our Lemma 2.1, (2.12) should be 

replaced as follows: 

 𝑢(𝑡) = 𝑡𝑥1 + (1 − 𝑡)𝑥0 − ∫ 𝐺1(𝑡, 𝜉)𝑅(𝜉)𝑑𝜉 − ∫ 𝐺1(𝑡, 𝜃)𝑣(𝜃)𝑑𝜃
1

0

1

0
, 

where, 

  𝑣(𝜃) = ∫ (𝜃 − 𝑠)ℎ(𝑠)𝑑𝑠 +
1

𝛿
∫ (𝑎(𝜉1 − 𝜃) − 𝑏)(𝑐(𝜉2 − 𝑠) + 𝑑)ℎ(𝑠)𝑑𝑠

𝜉2

𝜉1

𝜃

𝜉1
. 

Remark 2.3. In [5, Theorem 3.1], the operator 𝐴: 𝐶[0, 1] → 𝐶[0, 1] is defined as  

 𝐴𝑢(𝑡) = ∫ 𝐺1(𝑡, 𝜃) ∫ 𝐺2(𝜃, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
𝜉2

𝜉1
𝑑𝜃

1

0
,  

where, 𝐺1(𝑡, 𝜃)  and 𝐺2(𝜃, 𝑠)  are as in Remark 2.2. But, according to our Lemma 2.1 and 

Remark 2.2, this definition is not accurate. So, according to our Lemma 2.1 and Remark 2.2, the 

operator 𝐴: 𝐶[0, 1] → 𝐶[0, 1] should be defined as follows: 

 𝐴𝑢(𝑡) = ∫ 𝐺1(𝑡, 𝜃) ∫ (𝑠 − 𝜃)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠𝑑𝜃
𝜃

𝜉1

1

0
, 

     +
1

𝛿
∫ 𝐺1(𝑡, 𝜃) ∫ (𝑏 − 𝑎(𝜉1 − 𝜃))(𝑐(𝜉2 − 𝑠) + 𝑑)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠𝑑𝜃

𝜉2

𝜉1

1

0
.        (2.13) 

Now, we state the well-known Krasnosclskii-Zabreiko fixed point theorem [13], which will help 

to establish our main result.  

Theorem 2.4 [18]. Let 𝐵 be a Banach space, and 𝑇: 𝐵 → 𝐵 be completely continuous operator. 
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Assume that 𝐿: 𝐵 → 𝐵 is a bounded linear operator such that 1 is not an eigenvalue of 𝐿 and  

 𝑙𝑖𝑚
‖𝑥‖→∞

‖𝑇𝑥−𝐿𝑥‖

‖𝑥‖
= 0.  

Then 𝑇 has a fixed point in 𝐵. 

 

3. MAIN RESULTS 

In this section, we present and prove our main result and finally, justify it by a suitable example of 

fourth order nonlinear ordinary differential equation with four-point boundary conditions.  

To establish our main result, we need the following assumptions: 

(𝐴1) Let 𝑎, 𝑏, 𝑐, 𝑑, 𝜉1, 𝜉2 are nonnegative constants satisfying 0 ≤ 𝜉1 < 𝜉2 ≤ 1, 𝑏 − 𝑎𝜉1 ≥ 0,           

        𝑑 − 𝑐 + 𝑐𝜉2 ≥ 0 𝑎𝑛𝑑 𝛿 = 𝑎𝑑 + 𝑏𝑐 + 𝑎𝑐(𝜉2 − 𝜉1) ≠ 0. 

(𝐴2) Let 𝑓(𝑡, 𝑢(𝑡)) = 𝑝(𝑡)𝑔(𝑢(𝑡)), where 𝑔: ℝ → ℝ is continuous with 𝑙𝑖𝑚
𝑢→∞

𝑔(𝑢)

𝑢
= 𝜅,  

        and 𝑝 ∈ 𝐶[0, 1]. Furthermore, there exists some 𝑡0 ∈ (0, 1] such that 𝑝(𝑡0)𝑔(0) ≠ 0,   

        and there exists a continuous nonnegative function 𝜔: (0, 1] → ℝ+ such that 

        |𝑝(𝑠)| ≤ 𝜔(𝑠) for each 𝑠 ∈ (0, 1]. 

Theorem 3.1. Suppose 𝐵 = 𝐶2[0,1] and ‖𝑢‖0 = 𝑚𝑎𝑥{‖𝑢‖, ‖𝑢′‖}, 

where ‖𝑢‖ = 𝑚𝑎𝑥0≤𝑡≤1|𝑢(𝑡)| and assume (𝐴1) and (𝐴1). Then the BVP (1.1) has at least one 

nontrivial solution 𝑢 ∈ 𝐵 if |𝜅| < 𝑚𝑖𝑛 {
1

𝑀1
,

1

𝑀2
}, where 

 𝑀1 =
1

12
[∫ 𝑟3(2 − 𝑟)𝜔(𝑟)𝑑𝑟 + ∫ (1 − 𝑟)3(1 + 𝑟)𝜔(𝑟)𝑑𝑟

1

𝜉1

𝜉1

0
 

           +
2(𝑏−𝑎𝜉1)+𝑎

𝛿
∫ (𝑐(𝜉2 − 𝑟) + 𝑑)𝜔(𝑟)𝑑𝑟

𝜉2

𝜉1
],  

and  

 𝑀2 = ∫ (1 − 𝑠)𝜔(𝑠)𝑑𝑠
1

𝜉1
+

1

𝛿
∫ (𝑏 + 𝑎(1 − 𝜉1))(𝑐(𝜉2 − 𝑠) + 𝑑)𝜔(𝑠)𝑑𝑠

𝜉2

𝜉1
. 

Proof. We prove this theorem by using Krasnosclskii-Zabreiko fixed point theorem (Theorem 2.4). 

First we define an operator 𝑇: 𝐵 → 𝐵 according to (2.13) by  

 𝑇𝑢(𝑡) ∶= ∫ 𝐺1(𝑡, 𝑠) ∫ (𝑟 − 𝑠)𝑝(𝑟)𝑔(𝑢(𝑟))𝑑𝑟𝑑𝑠
𝑠

𝜉1

1

0
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     +
1

𝛿
∫ 𝐺1(𝑡, 𝑠) ∫ (𝑏 − 𝑎(𝜉1 − 𝑠))(𝑐(𝜉2 − 𝑟) + 𝑑)𝑝(𝑟)𝑔(𝑢(𝑟))𝑑𝑟𝑑𝑠

𝜉2

𝜉1

1

0
        (3.1) 

where 𝐺1(𝑡, 𝑠)is as in (2.10). Then by our Lemma 2.1 and Remark 2.3, it is clear that the fixed 

points of the operator 𝑇: 𝐵 → 𝐵 are the solutions to the BVP (1.1). From the definition of the 

operator 𝑇 it is also clear that this operator is a completely continuous operator (see for proof 

[20]). 

Now, we consider an analogous BVP of BVP (1.1) 

{
𝑢(4)(𝑡) = 𝜅𝑝(𝑡)𝑢(𝑡),         𝑡 ∈ (0, 1)                             

𝑢(0) = 𝑢(1) = 0,                                                             

𝑎𝑢′′(𝜉1) − 𝑏𝑢′′′(𝜉1) = 0, 𝑐𝑢′′(𝜉2) + 𝑑𝑢′′(𝜉2) = 0,

               (3.2) 

and define an operator 𝐿: 𝐵 → 𝐵 by 

 𝐿𝑢(𝑡) ∶= ∫ 𝐺1(𝑡, 𝑠) ∫ (𝑟 − 𝑠)𝜅𝑝(𝑟)𝑢(𝑟)𝑑𝑟𝑑𝑠
𝑠

𝜉1

1

0
 

     +
1

𝛿
∫ 𝐺1(𝑡, 𝑠) ∫ (𝑏 − 𝑎(𝜉1 − 𝑠))(𝑐(𝜉2 − 𝑟) + 𝑑)𝜅𝑝(𝑟)𝑢(𝑟)𝑑𝑟𝑑𝑠

𝜉2

𝜉1

1

0
        (3.3) 

Clearly, 𝐿 is a bounded linear operator and the fixed point of 𝐿 is a solution of the BVP (3.2) 

and conversely. 

Now, we prove that 1 is not an eigenvalue of 𝐿. In fact, if 𝜅 = 0, then the BVP (3.2) has no 

nontrivial solution. So, If we let 𝜅 ≠ 0 and suppose the BVP (3.2) has a nontrivial solution 𝑢 ∈

𝐵 and ‖𝑢‖0 > 0, then we have 

 |𝐿𝑢(𝑡)| ≤ ∫ 𝐺1(𝑡, 𝑠) ∫ |(𝑟 − 𝑠)𝜅𝑝(𝑟)𝑢(𝑟)|𝑑𝑟𝑑𝑠
𝑠

𝜉1

1

0
 

     +
1

𝛿
∫ 𝐺1(𝑡, 𝑠) ∫ |(𝑏 − 𝑎(𝜉1 − 𝑠))(𝑐(𝜉2 − 𝑟) + 𝑑)𝜅𝑝(𝑟)𝑢(𝑟)|𝑑𝑟𝑑𝑠

𝜉2

𝜉1

1

0
 

   ≤ ∫ 𝑠(1 − 𝑠) ∫ (𝑠 − 𝑟)|𝜅||𝑝(𝑟)||𝑢(𝑟)|𝑑𝑟𝑑𝑠
𝑠

𝜉1

1

0
 

     +
1

𝛿
∫ 𝑠(1 − 𝑠) ∫ (𝑏 − 𝑎(𝜉1 − 𝑠))(𝑐(𝜉2 − 𝑟) + 𝑑)|𝜅||𝑝(𝑟)||𝑢(𝑟)|𝑑𝑟𝑑𝑠

𝜉2

𝜉1

1

0
 

   ≤ [∫ 𝑠(1 − 𝑠) ∫ (𝑠 − 𝑟)|𝜅||𝑝(𝑟)|𝑑𝑟𝑑𝑠
𝑠

𝜉1

1

0
 

     +
1

𝛿
∫ 𝑠(1 − 𝑠) ∫ (𝑏 − 𝑎(𝜉1 − 𝑠))(𝑐(𝜉2 − 𝑟) + 𝑑)|𝜅||𝑝(𝑟)|𝑑𝑟𝑑𝑠

𝜉2

𝜉1

1

0
] ‖𝑢‖0 

   =
1

12
[∫ 𝑟3(2 − 𝑟)|𝜅||𝑝(𝑟)|𝑑𝑟

𝜉1

0
+ ∫ (1 − 𝑟)3(1 + 𝑟)|𝜅||𝑝(𝑟)|𝑑𝑟

1

𝜉1
 

     +
2(𝑏−𝑎𝜉1)+𝑎

𝛿
∫ (𝑐(𝜉2 − 𝑟) + 𝑑)|𝜅||𝑝(𝑟)|𝑑𝑟

𝜉2

𝜉1
] ‖𝑢‖0 
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   ≤ |𝜅|
1

12
[∫ 𝑟3(2 − 𝑟)𝜔(𝑟)𝑑𝑟

𝜉1

0
+ ∫ (1 − 𝑟)3(1 + 𝑟)𝜔(𝑟)𝑑𝑟

1

𝜉1
 

     +
2(𝑏−𝑎𝜉1)+𝑎

𝛿
∫ (𝑐(𝜉2 − 𝑟) + 𝑑)𝜔(𝑟)𝑑𝑟

𝜉2

𝜉1
] ‖𝑢‖0 

   ≤ |𝜅|𝑀1‖𝑢‖0 <
1

𝑀1
𝑀1‖𝑢‖0 = ‖𝑢‖0. 

That is,  

|𝐿𝑢(𝑡)| < ‖𝑢‖0.                         (3.4) 

On the other hand, we have 

 |(𝐿𝑢)/(𝑡)| ≤ |∫ (𝑠 − 𝑡)𝜅𝑝(𝑠)𝑢(𝑠)𝑑𝑠
𝑡

𝜉1
 

           +
1

𝛿
∫ (𝑏 − 𝑎(𝜉1 − 𝑡))(𝑐(𝜉2 − 𝑠) + 𝑑)𝜅𝑝(𝑠)𝑢(𝑠)𝑑𝑠

𝜉2

𝜉1
| 

        ≤ [∫ (1 − 𝑠)|𝜅||𝑝(𝑠)|𝑑𝑠
1

𝜉1
 

           +
1

𝛿
∫ (𝑏 + 𝑎(1 − 𝜉1))(𝑐(𝜉2 − 𝑠) + 𝑑)|𝜅||𝑝(𝑠)|𝑑𝑠

𝜉2

𝜉1
] ‖𝑢‖0 

        ≤ |𝜅| [∫ (1 − 𝑠)𝜔(𝑠)𝑑𝑟
1

𝜉1
 

           +
1

𝛿
∫ (𝑏 + 𝑎(1 − 𝜉1))(𝑐(𝜉2 − 𝑠) + 𝑑)𝜔(𝑠)𝑑𝑠

𝜉2

𝜉1
] ‖𝑢‖0 

        = |𝜅|𝑀2‖𝑢‖0 <
1

𝑀2
𝑀2‖𝑢‖0 = ‖𝑢‖0. 

That is, 

|(𝐿𝑢)′(𝑡)| < ‖𝑢‖0.                       (3.5) 

Therefore, according to the definition of ‖𝑢‖0  and the inequalities (3.4) and (3.5), we have 

‖𝐿𝑢‖0 < ‖𝑢‖0. That is, 𝑢 is not a fixed point of 𝐿. This is a contradiction and this contradiction 

indicates that the BVP (3.2) has no nontrivial solution. Hence, 1 is not an eigenvalue of 𝐿. 

Now, we prove that  

 lim
‖𝑢‖0→∞

‖𝑇𝑢−𝐿𝑢‖0

‖𝑢‖0
= 0. 

Since, lim
𝑢→∞

𝑔(𝑢)

𝑢
= 𝜅, hence for any 𝜀 > 0, there must have an 𝐷 > 0 such that 

 |𝑔(𝑢) − 𝜅𝑢| < 𝜀|𝑢| for all |𝑢| > 𝐷. 

Put  𝐷∗ = 𝑚𝑎𝑥|𝑢|≤𝐷|𝑔(𝑢)| and choose 𝑁 > 0 such that (𝐷∗ + |𝜅|𝐷)< 𝜀𝑁.  
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Now, if we denote 

 𝐹1 = {𝑡 ∈ [0, 1]: |𝑢(𝑡)| ≤ 𝐷} and 𝐹2 = {𝑡 ∈ [0, 1]: |𝑢(𝑡)| > 𝐷},  

then, for any 𝑢 ∈ 𝐶2[0, 1] with ‖𝑢‖0 > 𝑁 and 𝑡 ∈ 𝐹1, we have  

 |𝑔(𝑢(𝑡)) − 𝜅𝑢(𝑡)| ≤ |𝑔(𝑢(𝑡))| + |𝜅||𝑢(𝑡)| ≤  𝐷∗ + |𝜅|𝐷 < 𝜀𝑁 < 𝜀‖𝑢‖0.  

Similarly, for any 𝑢 ∈ 𝐶2[0, 1] with ‖𝑢‖0 > 𝑁 and 𝑡 ∈ 𝐹2, we have 

 |𝑔(𝑢(𝑡)) − 𝜅𝑢(𝑡)| < 𝜀‖𝑢‖0. 

From (3.1) and (3.3), we get 

 |𝑇𝑢(𝑡) − 𝐿𝑢(𝑡)| 

 = |∫ 𝐺1(𝑡, 𝑠) ∫ (𝑟 − 𝑠)𝑝(𝑟)[𝑔(𝑢(𝑟)) − 𝜅𝑢(𝑟)]𝑑𝑟𝑑𝑠
𝑠

𝜉1

1

0
 

   +
1

𝛿
∫ 𝐺1(𝑡, 𝑠) ∫ (𝑏 − 𝑎(𝜉1 − 𝑠))(𝑐(𝜉2 − 𝑟) + 𝑑)𝑝(𝑟)[𝑔(𝑢(𝑟)) − 𝜅𝑢(𝑟)]𝑑𝑟𝑑𝑠

𝜉2

𝜉1

1

0
|  

≤ ∫ 𝐺1(𝑠, 𝑠) ∫ (𝑠 − 𝑟)|𝑝(𝑟)||𝑔(𝑢(𝑟)) − 𝜅𝑢(𝑟)|𝑑𝑟𝑑𝑠
𝑠

𝜉1

1

0

 

   +
1

𝛿
∫ 𝐺1(𝑠, 𝑠) ∫ (𝑏 − 𝑎(𝜉1 − 𝑠))(𝑐(𝜉2 − 𝑟) + 𝑑)|𝑝(𝑟)||𝑔(𝑢(𝑟)) − 𝜅𝑢(𝑟)|𝑑𝑟𝑑𝑠

𝜉2

𝜉1

1

0
  

≤ [∫ 𝐺1(𝑠, 𝑠) ∫ (𝑠 − 𝑟)|𝑝(𝑟)|𝑑𝑟𝑑𝑠
𝑠

𝜉1

1

0

 

   +
1

𝛿
∫ 𝐺1(𝑠, 𝑠) ∫ (𝑏 − 𝑎(𝜉1 − 𝑠))(𝑐(𝜉2 − 𝑟) + 𝑑)|𝑝(𝑟)|𝑑𝑟𝑑𝑠

𝜉2

𝜉1

1

0
] 𝜀‖𝑢‖0  

= [∫ 𝑠(1 − 𝑠) ∫ (𝑠 − 𝑟)|𝑝(𝑟)|𝑑𝑟𝑑𝑠
𝑠

𝜉1

1

0

 

   +
1

𝛿
∫ 𝑠(1 − 𝑠) ∫ (𝑏 − 𝑎(𝜉1 − 𝑠))(𝑐(𝜉2 − 𝑟) + 𝑑)|𝑝(𝑟)|𝑑𝑟𝑑𝑠

𝜉2

𝜉1

1

0
] 𝜀‖𝑢‖0  

 ≤
1

12
[∫ 𝑟3(2 − 𝑟)𝜔(𝑟)𝑑𝑟

𝜉1

0
+ ∫ (1 − 𝑟)3(1 + 𝑟)𝜔(𝑟)𝑑𝑟

1

𝜉1
 

     +
2(𝑏−𝑎𝜉1)+𝑎

𝛿
∫ (𝑐(𝜉2 − 𝑟) + 𝑑)𝜔(𝑟)𝑑𝑟

𝜉2

𝜉1
] 𝜀‖𝑢‖0 

= 𝜀𝑀1‖𝑢‖0. 

That is,  

|𝑇𝑢(𝑡) − 𝐿𝑢(𝑡)| ≤ 𝜀𝑀1‖𝑢‖0 .                    (3.6) 

On the other hand, we have 
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|(𝑇𝑢 − 𝐿𝑢)′(𝑡)|   

= |∫ (𝑠 − 𝑡)𝑝(𝑠)[𝑔(𝑢(𝑠)) − 𝜅𝑢(𝑠)]𝑑𝑠
𝑡

𝜉1

 

   +
1

𝛿
∫ (𝑏 − 𝑎(𝜉1 − 𝑡))(𝑐(𝜉2 − 𝑠) + 𝑑)𝑝(𝑠)[𝑔(𝑢(𝑠)) − 𝜅𝑢(𝑠)]𝑑𝑠

𝜉2

𝜉1
|  

≤ ∫ (𝑠 − 𝑡)|𝑝(𝑠)||𝑔(𝑢(𝑠)) − 𝜅𝑢(𝑠)|𝑑𝑠
𝑡

𝜉1

 

   +
1

𝛿
∫ (𝑏 − 𝑎(𝜉1 − 𝑡))(𝑐(𝜉2 − 𝑠) + 𝑑)|𝑝(𝑠)||𝑔(𝑢(𝑠)) − 𝜅𝑢(𝑠)|𝑑𝑠

𝜉2

𝜉1
  

≤ [∫ (1 − 𝑠)𝜔(𝑠)𝑑𝑠
1

𝜉1

 

    +
1

𝛿
∫ (𝑏 + 𝑎(1 − 𝜉1))(𝑐(𝜉2 − 𝑠) + 𝑑)𝜔(𝑠)𝑑𝑠

𝜉2

𝜉1
] 𝜀‖𝑢‖0 

= 𝜀𝑀2‖𝑢‖0. 

That is, 

|(𝑇𝑢 − 𝐿𝑢)′(𝑡)| ≤ 𝜀𝑀2‖𝑢‖0.                    (3.7) 

Combining the inequalities (3.6) and (3.7), we get 

 lim
‖𝑢‖0→∞

‖𝑇𝑢−𝐿𝑢‖0

‖𝑢‖0
= 0. 

Hence, Krasnosclskii-Zabreiko fixed point theorem (Theorem 2.4) is satisfied and which assured 

that the BVP (1.1) has a solution  𝑢 ∈ 𝐵.  

Now, if we take  𝑢 = 0 , then (0)(4) = 𝑝(𝑡0)𝑔(0) = 0 , for some  𝑡0 ∈ (0, 1] , which leads a 

contradiction in our assumption (𝐴2). Therefore, 𝑢 ∈ 𝐵 is a nontrivial solution of the BVP (1.1). 

This completes the proof.           ∎ 

Now we give an example to justify the Theorem 3.1. 

Example 3.2. Consider a nonlinear fourth order four-point BVP as follows: 

 {

𝑢(4)(𝑡) = 𝑡𝑠𝑖𝑛2𝜋𝑡 𝑐𝑜𝑠 𝑢(𝑡),     𝑡 ∈ (0, 1)               

𝑢(0) = 𝑢(1) = 0,                                                        

𝑢′′ (
1

3
) − 𝑢′′′ (

1

3
) = 0,        𝑢′′ (

2

3
) + 𝑢′′′ (

2

3
) = 0.

                          (3.8) 

For proving that the BVP (3.8) has at least one nontrivial solution, we apply our Theorem 3.1 with 
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𝑝(𝑡) = 𝑡. 𝑠𝑖𝑛2𝜋𝑡, 𝑔(𝑢) = 𝑐𝑜𝑠𝑢, 𝑎 = 𝑏 = 𝑐 = 𝑑 = 1, 𝜉1 =
1

3
, and  𝜉2 =

2

3
.  

Clearly, assumption (𝐴1) is satisfied with 𝛿 =
7

3
≠ 0.  

Now, 𝑝(𝑡0)𝑔(0) = 𝑡0 𝑠𝑖𝑛2𝜋𝑡0. cos 0 ≠ 0  for some 𝑡0 ∈ (0, 1] , and |𝑝(𝑠)| = |𝑠. 𝑠𝑖𝑛2𝜋𝑠| <

|𝑠. 1| < 𝑠 = 𝜔(𝑠) for each 𝑠 ∈ (0, 1], we have 

 𝑀1 =
1

12
[∫ 𝑟3(2 − 𝑟)𝑟 𝑑𝑟 + ∫ (1 − 𝑟)3(1 + 𝑟)𝑟𝑑𝑟

1
1

3

1

3
0

+ ∫ ((
2

3
− 𝑟) + 1) 𝑟𝑑𝑟

2

3
1

3

] 

       =
319

9720
= 0.03281893 < 1 ,                    (3.9) 

and  

 𝑀2 = ∫ (1 − 𝑠)𝑠𝑑𝑠
1

1

3

+
3

7
∫

5

3
(

5

3
− 𝑠) 𝑠𝑑𝑠

2

3
1

3

=
295

1134
= 0.260141093 < 1.          (3.10) 

So, from (3.9) and (3.10), we obtain 

  𝑀1 < 𝑀2 < 1, that is 
1

𝑀1
>

1

𝑀2
> 1.  

Notice that 

 𝜅 = 𝑙𝑖𝑚
𝑢→∞

𝑔(𝑢)

𝑢
= 𝑙𝑖𝑚

𝑢→∞

𝑐𝑜𝑠𝑢

𝑢
= 0, 

which prove that,   

 |𝜅| < 1 < 𝑚𝑖𝑛 {
1

𝑀1
,

1

𝑀2
}.  

Hence, assumption (𝐴2) is satisfied. Therefore, Theorem 3.1 assurances that the BVP (3.8) has 

at least one nontrivial solution 𝑢 ∈ 𝐶2[0, 1]. 

 

4. CONCLUSION 

In this work, we develop a new approach to check the existence of nontrivial solution to four-point 

boundary problem for fourth order nonlinear ordinary differential equation given by (1.1) using 

Krasnosclskii-Zabreiko fixed point theorem. As the considered fourth order four-point boundary 

value problem of this paper represents a beam equation, so we can conclude that the Theorem 3.1 

will play a vital role to check the existence of nontrivial solution of this type of beam equations. A 

justifying example also discussed here. 
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