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Abstract. In this paper, a new version of Ekeland’s variational principle is presented in partial b-metric spaces

via Cantor’s intersection theorem. As a consequence, some Caristi type fixed point theorems are proved in partial

b-metric spaces. Furthermore, the construction and number of fixed points are discussed.
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1. INTRODUCTION

In 1974, Ekeland proposed a variational principle, which is the basis of modern variational

calculus and has applications in many branches of mathematics, including optimization and

fixed point theory etc.(see [1,2] ). Since then, Bota [3] and Aydi [4] have applied Ekeland’s vari-

ational principle to various generalized metric spaces, such as b-metric spaces, partial metric

spaces(see [5,6]). Satish [7] compares the concepts of b-metric space and partial metric space

and generates partial b-metric space. In his paper, an analog of the Banach contraction principle
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as well as the Kannan type fixed point theorem was proved, and some examples were put for-

ward to illustrate this new space. (More papers concerning the fixed point theorems in b-metric

spaces and partial metric spaces can be seen in [8-19] and references therein).

Motivated by above research, in this paper, we’ll establish a new version of Ekeland’s vari-

ational principle in partial b-metric space. Then, the principle is applied to derive some fixed

point theorems in partial b-metric space.

This paper is organized as follows. In section 2, some definitions and notations are given.

In section 3, Cantor’s intersection theorem in partial b-metric spaces is proved, and a new ver-

sion of Ekeland’s variational principle is established. In section 4, some Caristi type fixed point

theorems are prove in partial b-metric spaces. Furthermore, the construction and numbers of

fixed points are also discussed.

2. PRELIMINARIES

In this section, some definitions and notations are presented.

Definition 2.1 [3] Let X be a nonempty set and let s≥ 1 be a given real number. A functional

d : X×X → R+ is said to be a b-metric if and only if for all x,y,z ∈ X the following conditions

are satisfied:

(bM1) d(x,y) = 0 if and only if x = y for all x,y ∈ X

(bM2) d(x,y) = d(y,x) for all x,y ∈ X

(bM3) there exists a real number s≥ 1, such that d(x,y)≤ s[d(x,z)+d(z,y)]

for all x,y,z ∈ X .

The pair (X,d) is called a b-metric space.

Definition 2.2 [4] Let R+ denote the set of all non-negative real numbers. A partial metric

space is a pair(X , p) where X is a non-empty set and p : X×X → R+ is such that

(P1) p(x,y) = p(y,x) (symmetry);

(P2) if p(x,x) = p(x,y) = p(y,y), then x = y (equality);

(P3) p(x,x)≤ p(x,y) (small self-distances);

(P4) p(x,y)+ p(z,z)≤ p(x,z)+ p(y,z) (triangle inequality)

for all x,y,z ∈ X . We will use the abbreviation PMS for the partial metric space(X , p).
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Remark 2.3 In a partial metric space (X , p), if x,y ∈ X and p(x,y) = 0, then x = y, but the

converse may not be true.

Example 2.4 Let X = R,0 < r < 1 a constant and b : X×X → R+ be defined by

p(x,y) = max{|x|r, |y|r} f or all x,y ∈ X

Then (X , p) is a partial metric space.

Definition 2.5 [7] A partial b−metric on a nonempty set X is a function b : X×X→R+ such

that for all x,y,z ∈ X ,

(1) b(x,y) = b(y,x);

(2) if b(x,x) = b(x,y) = b(y,y), then x = y;

(3) b(x,x)≤ b(x,y);

(4) there exists a real number s≥ 1, such that b(x,y)≤ s[b(x,z)+b(y,z)]−b(z,z).

The partial b-metric space is a pair (X ,b) such that X is a nonempty set and b is a b-metric on

X . The number s is called the coefficient of (X ,b). We will use the abbreviation b−PMS for

the partial b-metric space(X ,b).

Remark 2.6 Let (X,b) be a b-PMS,

(i) if b(x,y) = 0, then x = y;

(ii)if x 6= y, then b(x,y)> 0.

Remark 2.7 It is obvious that every partial metric space is a partial b-metric space with

coefficient s = 1 and every b-metric space is a partial b-metric space with the same coefficient

and zero self-distance. However, the converse of this fact need not hold.

Example 2.8 [7] Let X = R+, p > 1 a constant and b : X×X → R+ be defined by

b(x,y) = [max{x,y}]p + |x− y|p f or all x,y ∈ X

Then (X ,b) is a partial b-metric space with coefficient s = 2p > 1, but it is neither a b-metric

nor a partial metric space. Indeed, for any x > 0, we have b(x,x) = xp 6= 0; therefore, b is not a

b-metric on X. Also, for x = 5,y = 1,z = 4 we have

b(x,y) = 5p +4p
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and

b(x,z)+b(z,y)−b(z,z) = 5p +1+4p +3p−4p = 5p +1+3p

b(x,y)> b(x,z)+b(z,y)−b(z,z) f or all p > 1,

therefore, b is not a partial metric on X .

We have the following diagram where arrows stand for inclusions. The inverse inclusions do

not hold.

metric space −→ b−metric space

↓ ↓

partial metric space −→ partial b−metric space

Every partial b-metric “ b ” on a nonempty set X generates a topology τb on X whose base

is the family of open b-balls Bb(x,ε) where τb = {Bb(x,ε) : x ∈ X ,ε > 0} and Bp(x,ε) = {y ∈

X : b(x,y)< ε +b(x,x)}. It is clear that the topological space (X ,τb) is T0, but need not be T1.

Now, we recall the definitions of convergent sequence and Cauchy sequence in b-PMS.

Definition 2.9 [7] Let (X ,b) be a b-PMS, let {xn} be any sequence in X and x ∈ X . Then

(1) a sequence {xn} is said to be convergent with respect to τb and converges to x ∈ X if and

only if lim
n→∞

b(xn,x) = b(x,x);

(2) a sequence {xn} in X is called Cauchy if and only if lim
n,m→∞

b(xn,xm) exists and is finite;

(3) (X ,b) is said to be complete b-PMS if every Cauchy sequence {xn} in X there exists

x ∈ X , such that

lim
n,m→∞

b(xn,xm) = lim
n→∞

b(xn,x) = b(x,x).

Definition 2.10 [20] Let(X ,b) be a b-PMS. For a subset A⊂ X , if diamr(A) = sup{p(x,y)−

p(x,x) : x,y ∈ A} is finite, then we call A a radii-bounded set and diamr(A) the radii-diameter

of A.

As an extension of strong b-metric space [21] , we give the concept of partial strong b-metric

space as follows.

Definition 2.11 Let X be a nonempty set and let s ≥ 1 be a given real number. A functional

b : X × X → R+ is said to be a strong partial b-metric if and only if for all x,y,z ∈ X , the

following conditions are satisfied:
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(1) b(x,y) = b(y,x);

(2) if b(x,x) = b(x,y) = b(y,y), then x = y;

(3) b(x,x)≤ b(x,y);

(4) there exists a real number s≥ 1, such that b(x,y)≤ sb(x,z)+b(y,z)−b(z,z).

The pair (X ,b) is called a strong partial b-metric space. The number s is called the coefficient

of (X ,b). We will use the abbreviation sb-PMS for the strong partial b-metric (X ,b).

3. MAIN RESULTS

In this section, we’ll present a new version of Ekeland’s variational principle in b-PMS.

To prove the main results, we need the following Lemma.

Lemma 3.1 (Cantor’s intersection theorem in b-PMS) Let (X,b) be a complete b-PMS, then

for every descending nested sequence {An}n∈N+ of nonempty bounded closed subsets of X such

that lim
n→∞

diamr(An) = 0, there exists x ∈ X such that
⋂

n∈N+
An = {x}.

Proof. Firstly, let us show
⋂

n∈N+
An 6= /0.

For each n ∈ N+, take xn ∈ An. Since {An}n∈N+ is a descending nested sequence, we

get {xn} ⊂ A1, then ∀n ∈ N+,b(xn,xn)− b(x1,x1) ≤ b(xn,x1)− b(x1,x1) ≤ diamr(A1). Thus,

{b(xn,xn)} is bounded, and then there exists a convergent subsequence. Without loss of gener-

ality, we may assume that {b(xn,xn)} is convergent.

Since lim
n→∞

diamr(An) = 0, we get lim
m,n→∞

{b(xm,xn)−b(xm,xm)}= 0, then

lim
m,n→∞

b(xm,xn) = lim
n→∞

b(xn,xn)

i.e., {xn}n∈N+ is Cauchy. Thus, there is some x ∈ X such that

lim
m,n→∞

b(xm,xn) = lim
n→∞

b(x,xn) = b(x,x)

Since ∀n ∈ N+,∀i ∈ N+,xn+i ∈ An and lim
i→∞

b(x,xn+i) = b(x,x), we get x ∈ Ān = An. Thus,

x ∈
⋂

n∈N+
An, and hence,

⋂
n∈N+

An 6= /0.

Secondly, let us prove {An}n∈N+ is a singleton.
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Conversely, suppose there is y∈
⋂

n∈N+
An and y 6= x. From (Pb1), we have that b(x,y),b(x,x),b(y,y)

are not equal. We draw contradictions in two cases.

Case 1. If b(x,y),b(x,x),b(y,y) are not equal to each other, then b(x,y)−b(x,x) = α > 0.

Since y∈
⋂

n∈N+
An, we have lim

n→∞
diamr(An)= sup{b(x,y)−b(x,x)|x,y∈An}= 0. i.e., lim

n→∞
diamr(An)<

α = b(x,y)−b(x,x), which ensures that y /∈ An. Hence, y cannot be in
⋂

n∈N+
An, a contradiction.

Case 2. If b(x,x) = b(y,y) 6= b(x,y), then b(x,y)− b(x,x) = α > 0. Similar to case 1, a

contradiction can be deduced. As for b(x,x) = b(x,y) 6= b(y,y) or b(x,y) = b(y,y) 6= b(x,x), a

similar method can be used to draw contradictions

Finally, we have
⋂

n∈N+
An = {x}. �

Ekeland’s variational principle in b-PMS is presented as follows.

Theorem 3.2 Let (X ,b) be a complete b-PMS (with s > 1 ), such that the partial b-metric b is

continuous and let f : X →R+ be a lower semicontinuous, proper and lower bounded function.

Let ε > 0 and x0 ∈ X be such that

f (x0)≤ inf
x∈X

f (x)+ ε,

then there exists a sequence {xn}n∈N+ ⊂ X and xε ∈ X such that

(i) lim
n→∞

xn = xε ;

(ii) b(xε ,xn)−b(xn,xn)≤ ε

2n n ∈ N+;

(iii) f (xε)+∑
∞
n=0

1
sn b(xε ,xn)≤ f (x0)+b(x0,x0);

(iv) f (xε)+∑
∞
n=0

1
sn b(xε ,xn)< f (x)+∑

∞
n=0

1
sn b(x,xn), f or every x 6= xε .

Proof. Consider the set

T (x0) = {x ∈ X | f (x)+b(x,x0)≤ f (x0)+b(x0,x0)}.(1)
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Noting that f is lower semicontinuous and x0 ∈ T (x0), we have T (x0) is nonempty and closed

in (X ,b) and for every y ∈ T (x0)

b(y,x0)−b(x0,x0)≤ f (x0)− f (y)≤ f (x0)− inf
x∈X

f (x)≤ ε

Choose x1 ∈ T (x0) such that

f (x1)+b(x1,x0)≤ inf
x∈T (x0)

{ f (x)+b(x,x0)}+
ε

2s
.(2)

and let

T (x1) = {x ∈ T (x0)| f (x)+
1

∑
i=0

1
si b(x,xi)≤ f (x1)+b(x0,x1)+b(x1,x1)}

Inductively, we can suppose that xn−1 ∈ T (xn−2) was already chosen and we consider

T (xn−1) = {x ∈ T (xn−2)| f (x)+
n−1

∑
i=0

1
si b(x,xi)

≤ f (xn−1)+
n−1

∑
i=0

1
si b(xi,xn−1)}(3)

Let us choose xn ∈ T (xn−1) such that

f (xn)+
n−1

∑
i=0

1
si b(xn,xi)≤ inf

x∈T (xn−1)
{ f (x)+

n−1

∑
i=0

1
si b(x,xi)}+

ε

2nsn(4)

and define the set

T (xn) = {x ∈ T (xn−1)| f (x)+
n

∑
i=0

1
si b(x,xi)

≤ f (xn)+
n

∑
i=0

1
si b(xi,xn)}(5)
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T (xn) is nonempty and closed. From (4) and (5), it follows that for each y ∈ T (xn)

1
sn b(y,xn)−

1
sn b(xn,xn) ≤ [ f (xn)+

n−1

∑
i=0

1
si b(xi,xn)]− [ f (y)+

n−1

∑
i=0

1
si b(y,xi)]

≤ [ f (xn)+
n−1

∑
i=0

1
si b(xi,xn)]

− inf
x∈T (xn−1)

{ f (x)+
n−1

∑
i=0

1
si b(x,xi)}

≤ ε

2nsn .(6)

Therefore, for all y ∈ T (xn)

1
sn b(y,xn)−

1
sn b(xn,xn)≤

ε

2nsn .(7)

Noting that
1
sn b(y,xn)−

1
sn b(xn,xn)→ 0 (n→ ∞),

we have diamT (xn)→ 0. Since (X ,b) is a complete partial b-metric space, by Lemma 3.1,

there exists xε ∈ X such that
∞⋂

n=0
T (xn) = {xε}. By (2) and (6), we know that xε ∈ X satisfies

(ii). Thus xn→ xε as n→ ∞.

Moreover, for all x 6= xε , we have x 6=
∞⋂

n=0
T (xn), so there exists m ∈ N+ such that

f (xm)+
m−1

∑
i=0

1
si b(xm,xi)< f (x)+

m

∑
i=0

1
si b(x,xi)

By (1), (3) and (4), for every q≥ m, we obtain

f (xε)+
q

∑
i=0

1
si b(xε ,xi) ≤ f (xq)+

q

∑
i=0

1
si b(xq,xi)

≤ f (xm)+
m

∑
i=0

1
si b(xm,xi)

≤ f (x0)+b(x0,x0).

Thus (iii) and (iv) hold.

This ends the proof. �
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Corollary 3.3 Let (X ,b) be a complete partial b-metric spaces (with s > 1 ), such that the

partial b−metric b is continuous and let f : X → R+ be a lower semicontinuous, proper and

lower bounded mapping. Then, for every ε > 0, there exists a sequence {xn}∞
n=0 ⊂ X and

xε ∈ X such that

(i) f (x0)≤ inf
x∈X

f (x)+ ε

(ii) lim
n→∞

xn = xε

(iii) f (xε)+∑
∞
n=1

1
sn b(xε ,xn)≤ f (x0)

(iv) f (xε)+∑
∞
n=0

1
sn b(xε ,xn)< f (x)+∑

∞
n=0

1
sn b(x,xn) for any x ∈ X and x 6= xε .

Now, we’ll present some generalizations of the Caristi type fixed point theorem.

Theorem 3.4 Let (X ,b) be a complete partial b-metric spaces (with s > 1), such that the

partial b-metric b is continuous and let T : X → X be an operator for which there exists a lower

semicontinuous mapping f : X → R+, such that

b(T (u),v)≤ sb(u,T (u))+b(u,v)−b(u,u)(8)

s2

s−1
b(u,T (u))≤ f (u)− f (T (u))(9)

for any u,v ∈ X . Then T has at least one fixed point.

Proof. By Corollary 3.3, for each ε > 0, there exists a sequence {xn}n∈N ⊂ X , such that

xn→ xε as n→ ∞, xε ∈ X and

f (xε)+
∞

∑
n=0

1
sn b(xε ,xn)≤ f (x)+

∞

∑
n=0

1
sn b(x,xn) ∀x ∈ X

In what follows, we’ll prove that xε is a fixed point of T .

Conversely, suppose that xε 6= T (xε). Let x = T (xε), we get that

f (xε)− f (T (xε))<
∞

∑
n=0

1
sn b(T (xε),xn)−

∞

∑
n=0

1
sn b(xε ,xn)
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Using (8), for u = xε ,v = xn we have

f (xε)− f (T (xε)) <
∞

∑
n=0

1
sn b(T (xε),xn)−

∞

∑
n=0

1
sn b(xε ,xn)

=
∞

∑
n=0

1
sn [b(T (xε),xn)−b(xε ,xn)]

<
∞

∑
n=0

s
sn b(xε ,T (xε)) (by condition (8))

=
s2

s−1
b(xε ,T (xε)).

i.e.,

f (xε)− f (T (xε))<
s2

s−1
b(xε ,T (xε)).(10)

In (9),let u = xε , then

s2

s−1
b(xε ,T (xε))≤ f (xε)− f (T (xε)).(11)

Combing the inequalities (10) with (11), we obtain that

s2

s−1
b(xε ,T (xε))≤ f (xε)− f (T (xε))<

s2

s−1
b(xε ,T (xε)).

which is a contradiction. Thus xε = T (xε) , i.e., xε is a fixed point of T . �

Corollary 3.5 Assume the conditions of Theorem 4.1 are all satisfied.

(1) If there exists ω0 ∈ X , f (ω0) = inf
x∈X

f (x), then ω0 is fixed point of T;

(2) If for arbitrary ω ∈ X , f (ω) > inf
x∈X

f (x), i.e., the infinimum of f can not be attained,

then T has infinite fixed points in X;

(3) If T is continuous on X, then for any u0 ∈ X , the iterative sequence {un}, (where un+1 =

T (un), n = 0,1,2, · · · ) converges to a fixed point of T in X .

Proof. (1) Let u = ω0. By condition (9), we have

s2

s−1b(ω0,T (ω0))≤ f (ω0)− f (T (ω0))

Thus

f (T (ω0))≤ f (ω0)− s2

s−1b(ω0,T (ω0))
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Therefore, we must have

f (T (ω0)) = inf
x∈X

f (x) = f (ω0)

This implies that b(ω0,T (ω0)) = 0, that is, ω0 = T (ω0). Hence, ω0 is a fixed point of T .

(2) Let ε1 = 1
2 . By Corollary 3.3, there exists a sequence {xn}∞

n=0 ⊂ X and xε1 ∈ X such

that

f (xε1)+
∞

∑
n=1

1
sn b(xε1,xn)≤ f (x0)≤ inf

x∈X
f (x)+ ε1

By Theorem 4.1, we have

xε1 = T (xε1) and f (xε1)≤ inf
x∈X

f (x)+ ε1

Let ε2 = min{ 1
22 ,

f (xε1)− inf
x∈X

f (x)

22 }. In a similar manner, we have a fixed point xε2 , which satisfies

xε2 = T (xε2) and f (xε2)≤ inf
x∈X

f (x)+ ε2

Then, we have

f (xε2)≤ inf
x∈X

f (x)+
f (xε1)− inf

x∈X
f (x)

22 =
1
4

f (xε1)+
3
4

inf
x∈X

f (x)< f (xε1)

Let ε3 = min{ 1
23 ,

f (xε2)− inf
x∈X

f (x)

23 }, we have xε3 ∈ X such that xε3 = T (xε3) and f (xε3)< f (xε2).

Generally, when xεk exists, let εk+1 = min{ 1
2k+1 ,

f (xεk )− inf
x∈X

f (x)

2k+1 }, there is xεk+1 ∈ X such that

xεk+1 = T (xεk+1) and f (xεk+1)< f (xεk).

Continuing this process, we obtain a sequence {xεk} ⊂ X such that

xεk+1 = T (xεk+1)

f (xεk+1)< f (xεk)

That is, T has infinite fixed points in X .

(3) For every u0 ∈ X ,un+1 = T (un)(n = 0,1,2, · · ·). By condition (9), we have

s2

s−1
b(un,un+1)≤ f (un)− f (un+1)

Then { f (un)} is decreasing and lower bounded, { f (un)} is convergent. Hence, for ∀ε > 0 and

∀p ∈N, there exists N, when n > N, we have 0≤ f (un)− f (un+p)< ε . At this time, let v = un,
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by assumptions (8) and (9), we have

b(un,un+p) = b(T (un+p−1),un)

≤ sb(un+p−1,un+p)+b(un+p−1,un)

≤ sb(un+p−1,un+p)+ sb(un+p−2,un+p−1)+ · · ·

+ sb(un+2,un+1)+b(un+1,un)

≤ s−1
s

[ f (un+p−1)− f (un+p)]+
s−1

s
[ f (un+p−2)− f (un+p−1)]+ · · ·

+
s−1

s
[ f (un+1)− f (un+2)]+

s−1
s2 [ f (un)− f (un+1)]

≤ f (un+p−1)− f (un+p)+ f (un+p−2)− f (un+p−1)+ · · ·

+ f (un+1)− f (un+2)+ f (un)− f (un+1)

= f (un)− f (un+p).(12)

That is

b(un,un+p) = f (un)− f (un+p)< ε

i.e.,

lim
n→∞

b(un,un+p) = 0

Therefore, {un} is Cauchy, there exists ω ∈ X such that lim
n→∞

un = ω .

Since un+1 = T (un) and T is continuous, we’ll obtain that

ω = lim
n→∞

un+1 = lim
n→∞

T (un) = T ( lim
n→∞

un) = T (ω)

Then, sequence {un} converges to fixed point of T . �

Corollary 3.6 Let (X ,b) be a complete partial sb-metric spaces (with s > 1). Suppose T :

X → X be a mapping such that

b(T (x),T (y))≤ λb(x,y) f or all x,y ∈ X(13)

where λ ∈ (0,1). Then T has a unique fixed point u ∈ X and b(u,u) = 0
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Proof. Let us first show the existence of fixed point. (X ,b) is a complete partial sb-metric

spaces implies

b(x,y)≤ sb(x,z)+b(y,z)−b(z,z) f or all x,y,z ∈ X

Taking x = T (u),y = v and z = u, we have

b(T (u),v)≤ sb(u,T (u))+b(u,v)−b(u,u) f or all u,v ∈ X

so (8) holds.

Define f : X → R+ as follows

f (x) =
s2

s−1
1

1−λ
b(T (x),x)

Then f : X → R+ is lower semi-continuous, bounded below and

f (x)− f (T (x)) =
s2

s−1
1

1−λ
b(T (x),x)− s2

s−1
1

1−λ
b(T 2(x),T (x))

≥ s2

s−1
1

1−λ
[b(T (x),x)−λb(T (x),x)]

=
s2

s−1
b(T (x),x)(14)

i.e.,

f (x)− f (T (x))≥ s2

s−1
b(T (x),x)

Hence (9) holds. By Theorem 4.1, there exists u ∈ X such that u = T (u).

Let v ∈ X is a fixed point of T , then

b(u,v) = b(Tu,T v)≤ λb(u,v)

Hence b(u,v) = 0, which means u = v. i.e., the fixed point of T is unique.

Finally, if u is a fixed point of T and b(u,u) 6= 0, then from (13), we have b(u,u)= b(Tu,Tu)≤

λb(u,u)< b(u,u), a contradiction. Therefore b(u,u) = 0. �
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