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Abstract. In this work, we give some theorems on pseudo-almost automorphic solutions for some abstract
semilinear differential equations with uniform continuity. To facilitate this we give a new composition
theorem of Stepanov-like pseudo-almost automorphic functions. Since SP-pseudo-almost automorphic
functions are more general and complicated than almost automorphic functions and SP-pseudo-almost
periodic functions, our work improves the known results by making use of a uniform continuity condition

instead of the Lipschitz condition.
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1. INTRODUCTION

The qualitative theory of differential equations involving almost periodicity and al-
most automorphism has been an attractive topic for nearly a century because of their
significance and applications in areas such as physics and control theory. Consequently,
differential equations, partial differential equations, and functional differential equation-

s with the properties such as almost periodicity and almost automorphism have been
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of great interest to many authors and there is a vast literature on the subject(see, for
example, [1]-[12] and the references therein).

Recently, Xiao, Liang and Zhang [9] introduced a new concept of a function called
a pseudo-almost automorphic function. They established a general existence and u-
niqueness theorem for pseudo-almost automorphic mild solutions to some semilinear
abstract differential equations as well as solving a basic problem on the Banach space
(PAAR,X), || - [loo)-

In this paper, we introduce and study the notion of SP-pseudo-almost automorphy (or
Stepanov-like pseudo-almost automorphy), which generalizes the concepts such as pseudo-
almost automorphy and SP-pseudo-almost periodicity. As applications, some existence
theorems for pseudo-almost automorphic solutions for abstract differential equations were
obtained. We notice that a Lipschitz condition is needed in the composition theorem
and its applications in abstract differential equations(see [3], Theorem 3.5). So it is
interesting and worthwhile to consider the same problem under a uniform continuity
condition instead of the Lipschitz condition. This seems reasonable and necessary since the
uniform continuity condition is the main condition needed for the composition theorems
of almost-automorphic functions and pseudo-almost automorphic functions(see [13]).

The aim of this paper is to give some theorems on stepanov-like pseudo-almost auto-
morphic (mild) solutions of the abstract semilinear differential equations

(1) dz;—(tt) — Aut) + f(t u(t)),t € R,

under a uniform continuity condition. For this purpose, we give a new composition
theorems for stepanov-like pseudo-almost automorphic functions, which improves the one
given in [13] because of SP-pseudo-almost automorphic functions are more general and
complicated than almost automorphic functions.

Throughout the rest of the paper, we set ¢ = 1 — %. Note that ¢ # 0, as p > 1,
and we suppose that A : D(A) C X — X is densely defined closed linear operator,
and the operator A is the infinitesimal generator of a compact Cy-semigroup (7(t)):>o0,

which is exponentially stable. Namely, there exist some constants M,d > 0 such that

IT(t)|| < Me= for every t > 0.
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2. PRELIMINARIES

Throughout this paper, we always assume that (X, ||-||) is a Banach space. Let BC(R, X)
(respectively, BC'(R x X, X)) be the space of bounded continuous functions f : R — X
(respectively, f : R x X — X), and BC(R, X) equipped with the sup norm defined by

| fIl =sup||f(t)], is a Banach space.
teR

Definition 2.1 ([13]). (i) A continuous function f : R — X is said to be almost automor-

phic if for each sequence of real numbers {s,,}5

o ., we can extract a subsequence {7,}>°,

such that ¢(t) = lim, o0 f(t + 7,) is well-defined in ¢ € R, and lim, o g(t — 7,) = f(t)
for each t € R. Denote by AA(X) the set of all such functions.

(ii) A continuous function f : R x X — X is said to be almost automorphic if f(¢,z) is
almost automorphic in ¢t € R uniformly for all z € K, where K is any bounded subset of X.
That is to say, for each sequence of real numbers {s,}°°,, we can extract a subsequence
{7 }52, such that g(¢,x) = lim,, o f(t + T, x) is well-defined in ¢ € R for all z € K, and
lim, o g(t — 7, z) = f(t,z) for all t € R and = € K. Denote by AA(R x X) the set of all

such functions.

Remark 2.1. The function g in definition 2.1 is measurable, but not necessarily contin-

uous. If f is almost automorphic, then its range is relatively compact.

Define the classes of functions PAP)(X) and PAPy(R x Y) respectively as follows:
PARX) = {f € BORX) : lim oo [ 1£(9)]ds =0}
and PAPy(R x Y) is the collection of all functions F' € BC'(R x Y, X) such that
hm —/ | F'(t,u)||dt =0

uniformly in v € Y.

Define AAp(R x Y) as the collection of all functions F' € BC(R x Y, X) such that

hm—/ | E(t,u)||dt =0

uniformly v € K, where K C Y is any bounded subset.
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Obviously,
PAR(R xY) C AAy(R x Y).

Now we are ready to introduce the set PAA(X) (resp.,PAA(R x X)) of pseudo-almost

automorphic functions.

Definition 2.2 ([13]). A continuous function f : R +— X (resp., R x X — X)) is said to
be pseudo-almost automorphic if it can be decomposed as f = g + ¢, where g € AA(X)
(resp., AA(R x X)) and ¢ € AAy(X) (resp., AAo(R x X)). Denoted by PAA(X) (resp.,
PAA(R x X)) the set of all such functions.

The functions g and ¢ in Definition 2.2 are called the almost automorphic and the
ergodic perturbation components of f, respectively. Moreover, the decomposition g+ ¢ of
f is unique, and AAy(X) (resp., AAy(R x X)) and PAA(X) (resp., PAA(R x X)) are all
Banach spaces with the norm inherited from BC(R,X) (resp., BC(R x X, X)) (see [14]).

Definition 2.3 ([15]). The Bocher transform f°(t,s),t € R,s € [0,1] of a function
f: R+ Xis defined by f(t,s) := f(t + s).

Definition 2.4 ([3]). Let p € [1,00). The space BS?(X) of all Stepanov bounded func-
tions, with the exponent p, consists of all measurable functions f : R — X such that
f? € L=(R; LP((0,1),X)). This is a Banach space with the norm || f||se := || f?|| Lo (r,1r) =
sup,cg(f, | F(r)|Pdr)e.

Definition 2.5 ([16]). The space ASP(X) of Stepanov-like almost automorphic func-
tions consists of all f € BSP(X) such that f° € AA(LP(0,1),X). That is, a function
f e LV (R;X) is said to be SP-almost automorphic if its Bochner transform f*: R —

LP((0,1),X) is almost automorphic in the sense that for every sequence of real numbers

(8!, )nen, there exist a subsequence (s, )nen and a function g € Lj (R;X) such that

t+1 .
[/t £ (sn + 5) — g(s)||Pds]» — 0, and

t+1
[/ llg(s — sn) — f(s)||pds]% — 0, as n — oo pointwise on R.
¢
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Definition 2.6 ([3]). A function F': Rx Y — X with F(-,u) € L}

loc

(R; X) for each u € Y,
is said to be SP-almost automorphic in ¢ € R uniformly in v € Y if ¢t — F(t,u) is SP-
almost automorphic for each u € Y, that is, for every sequence of real numbers (s),en,

(R; X) such that

there exist a subsequence (s,)nen and a function G(-,u) € L |

t+1 )
[/ |F(sp + s,u) — G(s,u)||Pds]» — 0, and
t

t+1
[/ ||G(s—sn,u)—F(s,u)des]% — 0, as n— oo pointwise on R for each wu €Y.
t

The collection of those SP-almost automorphic functions F' : R x Y +— X will be denoted

by ASP(R x Y).

Definition 2.7 ([3]). (i) A function f € BS?(X) is called SP-pseudo-almost automor-
phic if it can be expressed as f = h + ¢, where h® € AA(LP((0,1),X)) and ¢® €
AAy(LP((0,1),X)). The collection of such functions will be denoted by PAAP(X).

(ii) A function F' : R x Y — X is called SP-pseudo-almost automorphic if there exist
two functions H,® : R x Y — X such that F' = H + ®, where H* € AA(R x LP((0,1),X))
and ®* € AA (R x LP((0,1),X)). The collection of such functions will be denoted by
PAAP(R x Y).

Example 2.1. Let (*°(X) be the space of all two-sided bounded sequences with values in

the Banach space X equipped with the sup norm defined by
7|0 = Sug |znll  for all == (zn)nez.
ne

Define the space papy(X) by

papo(X) = {& = (2p)nez € I°(X) : lim — Z ||| = 0}

n—+oo 2N

It is well-known that a sequence © = (T,)nez € papo(X) if there exists a function ¢ €
papo(X) such that x,, = p(n) for alln € Z, see [5]. Fizeg € (0,1). Let g be any X-valued
almost automorphic function , but not almost periodic. Clearly, g € AA(X) C ASP(X) for
p>1and g ¢ AP(X). Let b = (by)nez C papo(X) and suppose b is not the zero sequence.
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Let ¢ be the function defined by

by, if t € (n,n+¢p),
p(t) =
0, otherwise.
Then ©° € papo(LP((0,1),X)) for p > 1. The function f defined by f = g+¢ € PAAP(X)
while f ¢ PAPSP(X).

From the Example 2.1, we can follow that SP-pseudo-almost automorphic functions are

more general and complicated than SP-pseudo-almost periodic functions.

3. COMPOSITION THEOREM

In this section, we give a composition theorem for Stepanov-like pseudo-almost automor-

phic functions under uniform continuity condition. Let us give the following assumptions:

(Hy) f(t,-) is uniformly continuous in each bounded subset K C Y uniformly for ¢ € R.
More explicitly, given ¢ > 0 and K C Y bounded, there exists A > 0 such that,
z,y € K and ||z — y|| < A imply that || f(¢t,z) — f(t,y)|| < e for all t € R.

(Hy) For each bounded subset J C Y, {f(-,u) : uw € J} is bounded in BS?(X).

(H3) faa(t,+) is uniformly continuous in any bounded subset K C Y uniformly for ¢ € R,
where f € PAA(R x X) and f,, is the almost automorphic components of f.

(Hy) The function f € PAAP(R x X)NC(R x X, X) for p > 1.

(Hs) Let {u,} € PAA(X) be uniformly bounded in R and uniformly convergent in each
compact subset of R. Then f(-,u,(+)) is relatively compact in BSP(X).

(Hg) There exists L > 0 such that

L
M(€50)s Sy e

q6 n=

t+1 1
Sp= sup </ 1 (0, w)|Pdo)? <
t

teR, [|ul[<L

The following lemma will be used in the proof of the composition theorem.

Lemma 3.1. [8] Suppose f € BSP(X). Then, f* € PAP,(L*((0,1),X)) if and only if for
any € > 0,

lim LTmes(MTﬁ(f)) =0,

T—o0
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where mes(-) denote the Lebeque measure and My .(f) ={t € [-T,T] : (fttJrl Hf(a)dea)% >

e}.

Theorem 3.1. Let f : RxY +— X be a SP-pseudo-almost automorphic function. Assume

that (Hy)-(Hs) hold. If ¢ € PAA(Y), then f(-,¢(-)) € PAAP(X).

Proof. Let f = f..+h, where f°, € AARXLP((0,1),X)) and h® € AAy(Rx L?((0,1),X)).
Similarly, ¢ = hy + hg, where hy € AA(Y) and hy € PAPy(Y). Let f(t,0(t)) =

Jaa(t, () + f(8,0(8)) — f(t, ha(2)) + h(t, ha(2)).
Set

A1<t) = fzza(ta hl(t))aAQ(t) - f(t7¢(t)) - f(t7 hl(t))aA?;(t) = h(ta h1<t))

Now we show that AY € AA(LP((0,1),X)), A5 € PAPy(LP((0,1),X)) and A; € PAPy(LP((0,1),X)).
We first show that A € AA(LP((0,1),X)). Suppose that {s,} is a sequence of real

numbers. Then we can extract a subsequence {7,} of {s,} such that

() ()" I faals + 7a,) = gls,2)[Pds)> — 0, as 0 — oo,
() (L7 g(5 = Tr ) = faals, 2)|Pds)? =0, as n— oo,
(i) limy, o0 h1(t + 7n) = (t), for each t € R,

(iv) lim, 00 ¥(t — 7,) = hy(t), for each t € R.

If we define G(t) : R — X as G(t) = g(¢,¢(t)). Hence

1A (t4+70) =GO < Nl faa(t+Tn, Pa (t470)) = faa (t4Tn, D ()[4 faa (t47m, ©(8)) =g (&, (1))

Since hy(t) is almost automorphic, hi(t) and ¥(t) are bounded. So we can choose a
bounded subset K C Y such that hy(t) C K,9(t) C K for all t € R. Therefore, (iii) and
(Hs) yield that

t+1 L
(/ I faa(s + Tns hi(s + 7)) — faa(s + T, ¥(s))||Pds)» — 0, as n — oo,

Moreover, from (i), it follows that

(/t | faa(s + oy 0(s)) — g(s,w(s))des)% — 0, as n— oo.
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Hence, we deduce that
t+1 )
(/ IA1(s + 1) — G(s)||Pds)» — 0, as n — 0.
t

Using the same argument, we can prove that (ffrl |G (s—7)—A1(s) ||pds)% —0, as n—
oo. This proves that A} € AA(LP((0,1),X)).

We next show that A, € PAP,(L*((0,1),X)). Let J C Y be bounded such that
d(R), hi(R) C J. It is easy to get from (H) that Ay € BSP(X). By (H;), for € > 0, there
exists A > 0 such that u,v € J and ||u — v|| < A imply that ||f(¢,u) — f(t,v)|| < € for all

t € R, and then
t+1 L
( / 1f(o,0) — Flo0)|Pdo)t <, tER.
t

Hence, for each t € R, ||ho(0)|| < A\, o € [t,t + 1] implies that

(/t 1As(0)|[Pder) e = (/t 1f (0, 8(0)) — f(o, hi(0))|Pdo)r < e.

Let M(T,\, hy) = {t € [=T,T] : |ha(c)|| > A}. So we get
MT,S(AQ) = MT,e(f('v ¢()) - f(7 hl())) - M(Tv )‘7 h2)

Since hy € PAPy(Y), by an argument similar to the proof of Lemma 1.1 in [17], we can
obtain that limy_,o smmes(M (T, A, hy)) = 0. Thus limy_,o gzmes(Mr.(Az)) = 0.

This implies that A € PAPy(LP((0,1),X)) by Lemma 3.1.

The left task is to prove Ay € PAPy(L*((0,1),X)). Since h; € AA(Y) and f°, €

AA(R x LP((0,1),X)), hi(R) is compact and f° is uniformly continuous in R x hy(R).

By an argument similar to the proof of Lemma 1.1 in [8], we can obtain that A} €

PAP,(L*((0,1),X)). The proof is complete.

Remark 3.1. (i) Theorem 3.1 improves the composition theorem given in [13] since
PAA(X) ¢ PAAP(X) for p > 1(see [3], Theorem 3.2).
(ii) Theorem 3.1 improves Theorem 3.5 in [3]. In fact, the following Lipschitz condition

for '€ PAAP(R x Y), is necessary for the composition theorem in [3]:

|E(t,u) — F(t,v)|| < Lllu—v|| for all wu,ve¥Y,teR. (3.1)
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It is easy to verify that (3.1) implies the conditions (H;-Hj). On the other hand, Ex-
ample 4.1 at the end of this paper shows that there are functions satisfying the conditions

(H;-H3) but not satisfying (3.1).

4. SEMILINEAR DIFFERENTIAL EQUATIONS

Consider the semilinear differential equations

(1) dle(tt) = Au(t) + f(t,u(t)),t € R,

where f € PAAP(X)NC(R x X, X).

The following Lemma will be used in the proof of our main results in this section

Lemma 4.1. [3] Assume that the Cy-semigroup (7(t)):>o associated with A is exponen-
tially stable. If (Hy) hold, then equation

(2) dz;_(tt) = Au(t) + f(s),t € R,

has a unique mild solution u € PAA(X) given by
t
(3) u(t) = / T(t—s)f(s)ds,t € R.
Theorem 4.1. Assume that the Cy-semigroup (T'(t))i>0 associated with A is exponentially
stable. If (Hy)-(Hg) hold. Then equation (1) has a mild solution v € PAA(X) such that

lull = super [lu(@)]] < L.

Proof. It is easy to see that each mild solution u to (2) is given by

u(t) = / T(t—s)f(s,u(s))ds,t € R.

Let B = {u € PAA(X) : |lu|| < L}. Clearly B is closed convex. Now consider the
nonlinear operator on BC(R, X) defined by
t
VO = [ Tt ) (s(s)ds.t € R

We only need to prove that the existence of fixed points of V' in B, and this can be
approached by Schauder’s fixed point theorem. By assumption (H;), it is easy to verify
that V' is continuous. In fact, let {u,} C BC(R,X),u, — u in BC(R,X), as n — 0.
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We may find a bounded subset K C X such that u,(t),u(t) € K fort e R,n =1,2,---.
By assumption (H;), given € > 0 there exists A > 0 such that z,u € K and ||z —u|| < A
imply that
de
|f(t,x) — f(t,u)| < i for all teR.

. For the above A > 0, there exists N such that |u,(t) — u(t)|| < A for n > N and ¢ € R.
Then || f(t, un(t)) — f(t,u(t))|| < % for n > N, and ¢t € R. Hence, for n > N, and t € R,

we have

|(Vun)(t) — (V) (8]

_y / T(t — ) (5, wn(s)) — F(s,u(s)))ds]
< /_OOMe_é(t_s)Mgds

<

First, for u € B and t € R, by (Hg), we have
Vool =1 [ 7= )76 u)as]

t—n+1
< Z || / T(t - 8) (s, u(s))ds]

[e.e]

t—n+1
<[ M s u(e)) s
n=1

—-n

IN

—-n —n

[e) t—n—+1 L t—n+1 1
Su(f e agi([ s at) pis?
n=1 t ¢

n=1

e — 1
qo

IA

) %e—(snSL
<

which shows that ||[Vu| < L for u € B.

Next, let u(-) € PAA(X). From Theorem 3.1 and (Hy), it follows that f(-,u(-)) €
PAAP(X). It is easy to check that f(-,u(-)) € C(R x X, X). Applying Lemma 4.1, it is
follows that the operator V maps PAA(X) to PAA(X), Therefore, we have V(B) C B.

Now we show that the following statements are true.
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(i) {(Vu)(t) : uw € B} is relatively compact subset of X for each ¢ € R.
(i) {(Vu)(t) : uw € B} ¢ PAA(X) is equicontinuous.

To prove (i), let u(-) € PAA(X), it is easy to deduce that f(-,u(-)) € PAAP(X). Given

0<e<l,let

which implies {(Vu)(t) : u € B} is relatively compact in X for each ¢ € R since T'(g9) is

compact. By(Hg), for each u € B we have
[(Vu)(t) = (Vow) (@)l = ||/ T(t—s)f(s,u(s))ds||
<M / ) | £ (s, u(s)) s
t—ed
¢ 1 t 1
<u(f emeagi([ s
t—ed? t—ed
S M(é‘q)%SL = MSL&

from which it follows that {(Vu)(t) : w € B} is relatively compact subset of X for each
te R

To prove (ii), suppose that u € B, —0o < t; < t3 < +00 and 0 < € < 1 such that

9
6MS

p=( )< 1.

Let (Viu)(t2) — (Viu)(t1) = I + I> + I3, where

I :/rﬁﬂ@—@—Tm—@ﬁ@w@m&

—00

L zllww—g—Tm—@ﬁ@m@u&

I3 :/QT(tg —3)f(s,u(s))ds.

t1
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Since (T'(t))¢>0 is a Cy-semigroup and T'(¢) is compact for ¢ > 0, there exists A = A(e, p) <

p such that ¢, —¢t; < A implies that

t t €
2y T(Z _ < Z
||T(2) T(2 +ito—t)] < ” for ¢>0,
where
dq fe’e)
2(ez — 1 —5(n
7]=3MSL( 625 ))%Ze 6(2+p)
q n=1
Here
Io— / (T(ts — ty + ) — T(E) f(ts — £, u(ts — 1)),
p
o0 t to ¢
— [ @t ) - TENTG) 0ttt — )
p
By (Hg) we then have
19 < t
100 < S0 [ e ettt 1) o
U P
£ = [P s
= —MZ/ e ||f(ty — t,u(ty —t))||dt
n n=1 Y n—1+p

—14p —14p

o0

s ([
< - e 2 dt)e
n L

and

t1
I 12| S/ (Me=*t2=%) 4 Me=2M=9))|| f(s,u(s))||ds
ti—p

t1

t1 ) 4 1
< M(/ (e~ | 6_5(t1—8)))qd3)q(/ £ (s, u(s))||Pds)
ti—p .,

9
6MSy,

™M

))iSL =5

< 2MpiS;, = 2M(( ;

> e sy 1, [P 1
<Su Y[ a1 - st - o)lean?
1 n n
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and

to
I < / M350 £ (s, u(s))||ds
t1

< M( / ) i / (s us)Pds)

t1 t1

gALﬁSL<AaﬁSL:%.

Hence, for u € B and t, — t; < A, we get
(V) (t2) = (Vu)(E)l < |4l + L]l + [[s]] <e.

This implies that the statement (ii) is true. Now using (Hs), by argument the same as
the proof of ([17], Theorem 3.1), we can prove that V has a fixed point in coV (B) (here
we omit the details). That is (1) has a mild pseudo almost antomorphic solution u € B.

The Proof is complete.

Theorem 4.2. Let u(t) be a mild pseudo almost antomorphic solution of (1), and suppose

that
(4) f(tu(t)) € D(A)  for teRAf(-u()) € L'(R,X)).
Then u(t) is a pseudo almost antomorphic solution of (1).

Proof. Since u(t) be a mild pseudo almost antomorphic solution of (1),
t
u(t) = / T(t—s)f(s,u(s))ds.

By condition (4),
u : 1
S = limno, 3 (u(t + ) — u(t))

:mm%d/ %Uﬁ+h—$—T@—$ﬁ@m@Wk

—00

t+h
+%[/t T(t+h—s)f(s u(s))ds]

— / %T(t —5)f(s,u(s))ds + f(t,u(t)).

—00
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This shows that %24 ig continuous, and then u(t) is continuously differentiable in ¢ € R.
dt

Noticing that A is closed,
u'(t) = Au(t) + f(t, u(t)).
That is, u(t) is a pseudo almost antomorphic solution of (1).

To conclude this paper, we give an example involving the heat equation

Example 4.1. Consider the following heat equation given by the system

2 . .
Quu(t, ) = Srult,x) + TSN oo + ¢(t)sin,

u(t,0) =u(t,1) =0,t € R

(4.1)

Let X = L*(0,1), and define A : X — X by Au(-) = u"(-) with domain D(A) := {u(-) €
X" € X, u(t,0) = u(t,1) = 0}.

It is well known that A is the infinitesimal generator of compact Cy-semigroup T'(t)i>o
satisfying | T'(t)|| < e™*,t >0 fort > 0.

Write

1
cos?t + cos?nt

flt,u(t)) = u(t)sin

_ —(t£k2)?
¢(t) = max{e }-

+ o(t)sinu(t),

for (t,u(t)) € R x X.

It is not hard to verify that f € PAAP(R x X) and f satisfying (Hy)-(Hg) with L =
2,M = 1,0 = 1. Then, by Theorem 4.2, the above heat equation has a pseudo-almost
automorphic mild solution u € PAA(X) such that ||u|| = sup,cg ||[u(t)] < 2.

However, it is obvious that f is not Lipschitz continuous. As a result, ([3], Theorem

4.2)1s not applicable.
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