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Abstract. In this paper, we prove a common fixed point theorem using t-norm T of Hadzi¢- type (H-type). In fact
our result is a generalization of the result of Choudhury and Das [1] under more general condition, that answer to the
open problem of Choudhury and Das [1].
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1. Introduction

In 1922, Banach proved an important result which is the mile stone in the fixed point
theory and its applications. A new class of fixed point problems in metric spaces was addressed
by Khan et al. [4] . They proved fixed point theorem for mappings satisfying certain inequalities
involving the altering distances function.

In 1942, Menger [5] introduced the notion of probabilistic metric space or statistical
metric space, which is in fact, a generalization of metric space. The idea in probabilistic metric
space is to associate a distribution function with a point pairs, say (p,q), denoted by F(p,q;t)
where t > 0 and identify this function as the probability that distance between p and q is less than
t . Sehgal and Reid A.T.Bharucha [12] initiated the study of contraction mapping theorems in

PM-spaces. Subsequently, several contraction mapping theorems for different variants of
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commuting and compatible mappings have been proved in PM-spaces.Various aspects of this
theory have been elaborately discussed in the book of Hadzi¢ and Pap[3].

Recently Choudhury et. al. [1] extended the idea of altering distances in probabilistic
metric spaces and proved a contraction principle in Menger spaces using t-norm Ty given by
Twm (a, b) = min{a,b} and put an open problem that whether contraction Principle is valid for
anyother choice of the t-norm.

Now in this paper, we prove a common fixed point theorem using t-norm T of Hadzi¢-type (H-
type for short) that answer to the open problem of Choudhury and Das [1].
2. Preliminaries
First, we recall that a real valued function defined on the set of real numbers is known as
a distribution function if it is non-decreasing, left continuous and inf f(x) =0, sup f(x) = 1.
An example of a distribution function is the Heavy side function H(x), defined by
H(x) = 0ifx<0and H(x)=1if x > 0.
Definition 2.1.[3] A mapping T: [0, 1]>0, 1] - [0, 1] is called a continuous t-norm if the
following conditions are satisfied:
T(a, 1) =aforeveryace€ [0, 1];
T(a, b) = T(b, a) for every a,be [0, 1];
T(T (a,b),c)=T(a, T(b, ¢));
T(a, b) <T(c,d), fora<c,b<d.
Basic examples of t-norm are the Lukasiewicz t-norm T, Ty (a,b) = Max(a+tb—1,0) , t-norm Tp,

To(ab) = ab, and t-norm Ty, Ti(ab) = Min{a.b}, To(x.y) = {‘(‘)‘in("' y)if ma’(‘)g{; ) TS:
w .

Definition2.2. [3] A Menger space is a triplet (X, F, T), where X is a non-empty set, F is a
function defined on X xX to L.(setof all distribution functions) which satisfies the following

conditions :
() Fy(0) =0,
(i)  Ey(s)=1foralls>0iffx =y,
(i) Fyy(s) = Fx(9),
(iv)  Ey(u+v) 2T(F,(u), F;y(v)) forall u,v > 0and x,y, z € X where T is a t-norm.
For a given metric space (X, d) with usual metric d, one can put F, (t) = H(t - d(X, y)),

where H is defined as:



ASHA RANI, SANJAY KUMAR 128

_(1ifs >0,
H(s)‘{o ifs <0

andt-norm T is defined as T(a, b) = min{a, b}.

If (X, F, T) is a Menger space with continuous t-norm then the topology induced by the
family {Sc1(p) : peX, € > 0, A> 0} is called the (e- 1) — topology, where S.;(p) = {g€ X :
F,q(€) > 1—A} is called the (e- 1) — neighborhood of p.

A sequence {xn} c X is said to be
0] converge to some point X € X in the (e- A) — topology if and only if given € > 0, 1> 0 we
can find a positive integer N, ; such that, for all n >N ;, F,_,(€) = 1-A.
(i) a Cauchy sequence in X if given e > 0, 2> 0 there exists a positive integer N, ; such that
F, x, (€)= 1=Aforallm,n>N_,.
A Menger space (X, F, T) is said to be complete if every Cauchy sequence is convergent.
In 1979, Hadzic [2] introduced a special class of t-norms (called as a Hadzi¢- typenorm) as
follows:
Definition 2.3.[2]Let T be at-norm and let T,, : [0, 1] - [0, 1] (n €N) be defined in the following
way,
T1(X) = T(X, X), Tns1(X) = T(Tn(X), X) (n €N, x € [0, 1]).

We say that the t-norm T is of H-type if T is continuous and the family {T,(x), n €N} is
equicontinuous at x = 1.
The family {Tn(X), n €N} is equicontinuous at x = 1, if for every A€ (0, 1) there exists §(4) € (0,
1) such that the following implication holds:
x> 1—§(A) implies Tp(x) > 1 - Afor all n eN.
A trivial example of t-norm of H-type is T = Tw( Twm (a, b) = min{a, b}).
Remark 2.4.Every t-norm Tyis of Hadzi¢-type but converse need not be true, see [3].
There is a nice characterization of continuous t-norm T of H-type[8] as given below:
Q) If there exists a strictly increasing sequence {b, },enin [0,1] such that lim,_,..b, =1 and

T(bn,bn) = by nE N, then T is of Hadzi¢-type.
(i) If T is continuous and T is of Hadzi¢-type, then there exists a sequence {b,, },enas in (i).
Definition 2.5. [3] If T is at-norm and (X1,Xz, ... ,Xn) € [0,1] " (n € N), then T"i=1 X; is defined
recurrently by 1, if n = 0 and T =y X; = T(T" 'iz1 Xi ,Xa) for all n > 1. If {x;},cy is a sequence of

numbers from[0,1], then T”i=1 X; is defined as lim, . T"i=1 X; (this limit always exists) and T”i=nXi
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as T”iz1 Xn+i. In fixed point theory in probabilistic metric spaces there are of particular interest t-
norms T and sequences {xn}< [0,1] such that lim,_..x, = 1and lim, ., T i=1 Xn+i = 1.

In 1972, Sehgal and Bharucha-Reid [12] introduced the idea of contraction in PM space.
Definition 2.6.Probabilistic g-contraction [3] Let (X, F) be a probabilistic metric space. A

mapping f: X — X is a probabilistic g-contraction ( g€ (0, 1)) if F¢yfy (X) = Fuv(g ) for every u,

v € X and every x € R.

The following Theorem was proved by Sehgal and Bharucha-Reid [12].

Theorem 2.7.Let (X, F,Ty) be a complete Menger space where Ty (a, b) = min{a, b} and f :
X — X is a probabilistic g-contraction. Then there exist a unique fixed point x of the mapping f
and x = lim,,_,, f" p for every p € X.

In 1984, Khan et al. [4] Introduceda new category of contractive fixed point problems using a
control function (altering distance function) that alters the distance between two points in a
metric space.

Definition 2.8.[4]An altering distance function is a function ¥ : [0,0) — [0,%0) such that

Q) which is monotone increasing and continuous and

@) yY(t)=0ifandonlyift=0.

Khan et. al. [4] proved the following result using altering distance function.

Theorem 2.9. [4] Let (X, d) be a complete metric space andy be an altering distance
function.Let f: X — X be a self mapping which satisfies the following inequality:

Y (d(fx, fy)) < cy(d(x, y)),for all x, y € X and for some 0 <c < 1.

Then f has a unique fixed point.

In fact, Khan et. al.[4] proved a more general fixed point theorem (Theorem 2 in [4] ) of which
the above result is a corollary. This result was further generalized in a different direction by
various authors. One can refer to [7], [9] and [10].

Recently, Choudhury et. al. [1] extended the idea of altering distance function in Menger spaces
and obtained fixed point results for self-mapping using ¢function.

Definition 2.10. A function ¢ : R*> R" is said to satisfy the condition (¢) if it satisfies the
following conditions:

0] e)=0ifandonly ift=0,

(i) @(t) is increasing and ¢(t) » cwast — oo,

(i) ¢ is left continuous in (0, «),
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(iv) ¢ is continuous at 0,
(v)  oissuperadditive, that is, p(x +y) = @(x) + ¢(y), forall x,y > 0.
Definition 2.11.[1] Let (X, F, T) be a Menger space. A self map f: X — X is said to be ¢-

contractive if
(*) Frxpy (@) = ny(qO(% )), where 0 <c<1,x¥y€ Xandt>0 and the function ¢ satisfy the

condition (¢).

Definition 2.12. Two maps f and g are said to be weakly compatible if they commute at their
coincidence points.

Example 2.13.Let X = [0, 1] be equipped with the usual metric d(x,y) = |X-y|.

Define f, g: [0, 1] — [0, 1] by

fx_{Oifx=0, _ X_{Oifxzo,
“1015if x>0, 9%=10.35if x > 0,

Then, 0 is a coincidence point and fg 0 = gf 0, showing that f, g are weakly compatible maps on
[0, 1].

Proposition 2.14. [7] Let ( X,, n €N) be a sequence of numbers in [0, 1] such that lim,_.X, =1
and the t-norm T is of H-type, then

iMoo T2 Xi = 1M T X = 1.

Throughout this paper, (X, F, T) will denote a Menger space which satisfies the condition
lime_., F,, (t) = Lforall x,y € Xand t > 0.

3. Main Result

Recently, Choudhury et. al. [1] proved the following fixed point theorem using continuous t-
norm Ty, which is strongest t-norm.

Theorem 3.1. Let (X, F,Tu) be a Menger space with continuous t-norm Ty, and f: X — X be ¢-
contractive satisfying (*).Then f has a fixed point.

Now we prove our main result for a pair of weakly compatible mapsusing continuous t-norm T
of H- type.

Theorem 3.2. Let (X, F,T) be a complete Menger space with continuous t-norm T of H- type
andlet f, g be two self-mappings on X satisfy the following inequality:

31 f(X)cg(X),

(3.2) anyone of f (X) and g (X) is complete,
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(3.3)  Frxpy (@(1) = nggy@p(f )), where0<c<1,xYye€ Xandt>0and the function ¢

satisfy the condition (¢).
For any Xo€ X, the sequence {yn} in X be constructed as follows : y, = fX, = gXn+1, N = 0,1,

2,3,...and foru € (c 1) the following condition holds:

lim, T2 nFyoyl( o -)=1.

Then f and g have a unique common fixed point provided f and g are weakly compatible on X.
Proof: In view of the properties of (¢)-function, for u> 0 we can find a positive number r such
that u > ¢(r). For u > 0, we have

Fynyn+1(L’|)2 Franfan (o)

> Fyengins: (#00)

= By ul0(5)

= fon_lfxn((p( z))

= Fyx 1gxn(<.0( 2)

FJ’n 2Yn— 1(('0( ))

2 Fyoyl ((p( CLn))'
Therefore,
FS’nJ’n+1(u) = FYOJH((p( CLn))
Proceeding limit as n— oo,we have lim,,_,F, , . (u)=1.
We claim that the sequence {yn} is a Cauchy sequence.

Let, o= 5 , where 1 € (¢, 1) and ¢ € (0, 1), then 0 <o< 1, therefore the series Y72, o* is

convergent and there exists mo€ N such that Y72, o'< 1.Now for every m > mg and for every s
€ N and in view of (¢),
u>@(r) >e(r8em,, o) >o(r Xk o') which implies that

F)’m+s+13’m(u) Ym+s+1J’m((p(r))

= FJ’m+s+13’m ( r2m+s ))

m+s m+s—1
= T(T T ( J’m+s+1Ym+s ( ro ) Ym+SYm+s 1<p( ro )’
s—times
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! FYm+1Ym(p( rO'm)))

To-m+5 To-m
> T(T T ( yoyl(p( cm+s )’ e FyOyl cm

s—times

= Tm+SFyoy1‘p( Ll )

_Tloom Yo qu)( )
It is obvious that,

lim,_ T2, F ( ) =1, implies that, lim,_, T2, yoyl‘P( -) =1, and this implies that,

n-Yoyi

lim, T2 nFyoy1§0( -) =1, forevery r>0.

Now for every u > 0, there exists r > 0 such that u >¢(r) > 0, there exist miy(¢(r), A) such that
F,

Ym+s+1Ym

(u) >1-2, for every m >m;(¢(r), 1) and every s € N.
This means that the sequence {y,} is Cauchy sequence.Since either f(X) or g(X) is complete, for
definiteness assume that g(X) is complete subspace of X then the subsequence of {y,} must get a
limit in g(X). Call it be z. Let peg™z. Then g p = z as {y,} is a Cauchy sequence containing a
convergent subsequence, therefore the sequence {y,} also convergent implying thereby the
convergence of subsequence of the convergent sequence.
Which gives, lim,_, . Yn= lim,_e 9Xn = lim, o X, = 2.
Now we claim that fp = z.
From the property of (¢), it follows that given e> 0, we can find €;> 0 such that e>¢(e1) > 0.
Thenforalln=0,1,23, ...,
Frpz(€)2T(Fpy, @(€1)), B, 2 (€ — @(€1)))

= T(Frprx, @(€1)), By, 2 (€ — @(€1)))

2 T(Fypgae, (P(), B2 (€ — @(€1))

= T(Fy,_, (P, By, (€ = @(€2))).
Since T is continuous, taking limit as n— oo in the above inequality, we have for all €> 0, Ff,,(€)
=1,i.e.,fp=z wegetfp=gp=z since f and g are weakly compatible therefore we have fg p =
gfp,ie, fz=g9z

We claim that fz = z, from (3.3), we have

Ffzz (QD(t)) Ffzfp (QD(t))Z gzgp(‘p( )) Ffzfp(q)( )) gzgp((o( ))
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Proceeding as above, for any t > 0, Fr,,(¢(t)) = Ffzz(qo(j—jl)) — 1l as n— oo, which givesfz=z =
gz. Thus z is a common fixed point of f and g.

Uniqueness.

If possible let w and v be two fixed points of f and g, then in view of (¢) for given > 0, we can
find €;> 0 such that € > ¢(e1) > 0. Then one can see that

Fyy(€) :Ffwfv(f)

= Fryro(@(€1))

> Fyuugo(@(D))

= Ffwfv((p(ec_l))

2 Fpugu(9(

= Fyo(0(2).

Proceeding as above, for any € > 0, F,,,(€) = va(¢(%)) — 1as n— oo, which givesw =v.
Next we give the following example to validate our result

Example 3.3.Let X {a, b, ¢, d}, Ty is the t-norm and F be defined as

0if t <0,
Fop(t) = Foot) = Fg(t) =404 if 0 < t < 4,
1ift >4

Fpc(t) = Fpa(t) = Fea(t) = {(i llj]it; f 8.'

Then (X, F, Tyv) is a complete Menger space.

If we define f, g: X —»X as follows:

f(a) =d, f(b) = c, f(c) = c, f(d) = d, andg(a) = d, g(b) = ¢, g(c) = ¢, g(d) = ¢, where ¢(t) =tand c
is the unique common fixed point of f and g, then the mappings f and g satisfy all the conditions
of the Theorem 3.2.
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