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Abstract. ln this paper, a Halpern-type algorithm for approximating a common fixed point of multivalued α-

hemicontractive mappings and a set of solutions of split equilibrium and variational inequality problems is con-

structed. Strong convergence of the sequence generated by the algorithm is proved in the setting real Hilbert

spaces. Our results improved and generalised the results of Meche and Zegeye [2] in particular and some recent

results in Literature.
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1. INTRODUCTION

Throughout this paper, F(S) denotes the set of fixed point of the multivalued mapping S, R

denotes the set of all real numbers, and N a set of positive integers. Let H be a Hilbert space and

C be a nonempty closed convex subset of H. Let CB(C) denotes the family of nonempty, closed

and bounded subsets of C and K(C) denotes a family of nonempty and compact subsets of C.
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The Hausdorff metric is defined by

D(A,B) = max{(supd(x,B),x ∈ A),(supd(y,A),y ∈ B)},

for all A,B ∈CB(C), where d(x,B) = inf{‖x−b‖ : b ∈ B}

Definition 1.1. (see [2]) Let S : C −→CB(C) be a multivalued mapping. Then, S is said to be

L-Lipshitizian if there exists L > 0 such that

(1.1) D(Sx,Sy)≤ L‖x− y‖,∀x,y ∈C

S is said to be nonexpansive if it is Lipschitz continous with L = 1 in (1.1). Note that the

class of nonexpansive mapping is one of the initial classes of mappings for which fixed point

results were obtained using the geometric structure of the underlying Banach space rather than

the compactness property. An element x ∈C is called the fixed point of a multivalued mapping

S if x ∈ Sx. A nonexpansive multivalued mapping S with a nonempty fixed point set is called

quasi-nonexpansive multivalued mapping(i.e, a mapping S : C−→CB(C) such that D(Sx,Sp)≤

|x− p‖,∀(x, p) ∈C×F(S)).

Definition 1.2. (see [2]) Let S : C −→CB(C) be a multivalued mapping. Then, S is said to be

demicontractive if F(S) = {x ∈C : x ∈ Sx} 6= /0 and for all u∈ S satisfying ‖u− p‖ ≤D(Sx,Sp),

there exists k ∈ (0,1) such that

(1.2) D2(Sx,Sp)≤ ‖x− p‖2 + k‖x−u‖2,∀x ∈C and ∀p ∈ F(S),

Note that if k in (1.2) is 1, then S is called hemicontractive multivalued mapping. Thus, the

class of demicontractive multivalued napping is a proper subclass of the class of hemicontrac-

tive multivalued mapping.

ln 2015, Osilike and Onah [12] introduced a new class of mapping called α-hemicontractive
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mapping in a closed convex subset of a real Hilbert space. They showed that the class of α-

demicontractive mapping introduced by Maruster and Maruster in [18] is a subclass of the class

of α-hemicontractive mapping. Also, it was shown in [12] that the class of hemicontractive

mapping and the class of α-hemicontractive mapping are independent(see [12] for details).

Definition 1.3. Let S : C −→ CB(C) be a multivalued mapping. Then, S is said to be α-

hemicontractive multivalued mapping if F(S) = {x∈C : x∈ Sx} 6= /0 and for all u∈ S satisfying

‖u− p‖ ≤ D(Sx,Sp), we have

(1.3) D2(Sx,Sα p)≤ ‖x−α p‖2 +‖x−u‖2,∀x ∈C and ∀p ∈ F(S),

for some α ≥ 1. The class of mapping defined by (1.3) is a superclass of the class of α-

demicontractive multivalued mapping(where a mapping S :C−→CB(C) is called α-demicontractive

multivalued mapping if F(S) = {x ∈ C : x ∈ Sx} 6= /0 and for all u ∈ S satisfying ‖u− p‖ ≤

D(Sx,Sp), there exists k ∈ (0,1) such that D2(Sx,Sα p) ≤ |x− α p‖2 + k‖x− u‖2, ∀x ∈ C,

∀p ∈ F(S) and for some α ≥ 1).

Observe that (1.3) is equivalent to

(1.4) 〈x−u,x−α p〉 ≥ 0,∀x ∈C ,∀p ∈ F(S),∀u ∈ S and for some α ≥ 1.

Let F : C×C −→ R be a bifunction. The equilibrium problem for F is to find z ∈C such that

(1.5) F(z,y)≥ 0,∀y ∈C

The set of all solutions of (1.5) is denoted by EP(F), that is, EP(F) = {z∈C : F(z,y)≥ 0,∀y∈

C.

Let A : C −→ R be a nonlinear mapping. The classical variational inequality problem, which

was developed as a useful tool in solving partial differential equation by Stampacchia(see [22]

for details), is the problem of finding x ∈C such that

(1.6) 〈u− x,Ax〉 ≥ 0,∀u ∈C
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The set of all solutions of (1.6) is denoted by V I(C,A).

Recently, Karmi and Rizvi [17] considered a problem which they called split equilibrium prob-

lem. Let H1 and H2 be two Hilbert spaces and C,K be two nonempty closed and convex subsets

of H1 and H2 respectively. Let F1 : C×C −→ R and F2 : K×K −→ R be two bifunctions and

A : H1 −→H2 be a bounded linear operator.The split equilibrium problem is to find x? ∈C such

that

(1.7) F1(x?,x)≥ 0,∀x ∈C and y? = Ax? ∈ K such that F2(y?,y)≥ 0,∀y ∈ K

The set of solutions of split equilibrium problem is denoted by Ω, that is, Ω = {z ∈ C : x ∈

EP(F1),Ax ∈ EP(F2)}.

Very recently, Meche and Zegeye [2] first introduced an iteration sequence (for finding common

set of solutions of fixed point problem, split equilibrium and variational inequality problems)

defined as follows:

Let xo,u ∈C be arbitrary and let xn be a sequence in C generated by

zn = T F1
s (1−λB?(1−T F2

r )B)xn,

yn = Jtzn,

un = (1−δn)yn +δnvn,

xn+1 = anu+bnwn + cnyn,


(1.8)

for all n ≥ 0, where vn ∈ Syn and wn ∈ Sun are such that ‖vn−wn‖ ≤ 2D(Syn− Sun),s,r, t >

0,λ ∈ (0, 1
d ),d = BB?, where B? is the adjoint of B, an,δn ⊂ (0,1) and bn,cn ⊂ [a,b] for some

a,b ∈ (0,1).They used (1.8) to prove the following theorems:

Theorem MZ1[2]: Let H1 and H2 be two Hilbert spaces and C,Q be two nonempty, closed and

convex subsets of H1 and H2 respectively. Let F1 : C×C −→ R and F2 : Q×Q −→ R be two

bifunctions satisfying Assumption G. Let A : C −→ H1 be a continous monotone mapping and

B : Q−→H2 be a bounded linear operator. Let S : C−→CB(C) be L-Lipschitz hemicontractive-

type multivalued mapping. Assume that Θ = F(S)∩Ω∩V I(CA) is nonempty and Sp = p for
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all p ∈Θ. Let x0,u ∈C be arbitrary and let xn be a sequence in C generated by

zn = T F1
s (1−λB?(1−T F2

r )B)xn,

yn = Jtzn,

un = (1−δn)yn +δnvn,

xn+1 = anu+bnwn + cnyn,


(1.9)

for all n ≥ 0, where vn ∈ Syn and wn ∈ Sun are such that ‖vn−wn‖ ≤ 2D(Syn− Sun),s,r, t >

0,λ ∈ (0, 1
d ),d = BB?, where B? is the adjoint of B, an,δn ⊂ (0,1) and bn,cn ⊂ [a,b] for some

a,b ∈ (0,1) satisfying the following conditions:

i. an +bn + cn = 1,

ii. an +bn ≤ δn ≤ c < 1√
1+4L2+1

.

Then, the sequence {xn} is bounded.

Theorem MZ2[2]: Let H1 and H2 be two Hilbert spaces and C,Q be two nonempty, closed and

convex subsets of H1 and H2 respectively. Let F1 : C×C −→ R and F2 : Q×Q −→ R be two

bifunctions satisfying Assumption G. Let A : C −→ H1 be a continous monotone mapping and

B : Q−→H2 be a bounded linear operator. Let S : C−→CB(C) be L-Lipschitz hemicontractive-

type multivalued mapping. Assume that Θ = F(S)∩Ω∩V I(CA) is nonempty, Sp = p for all

p ∈Θ and (I−S) is demiclosed at zero. Let x0,u ∈C be arbitrary and let xn be a sequence in C

generated by

zn = T F1
s (1−λB?(1−T F2

r )B)xn,

yn = Jtzn,

un = (1−δn)yn +δnvn,

xn+1 = anu+bnwn + cnyn,


(1.10)

for all n ≥ 0, where vn ∈ Syn and wn ∈ Sun are such that ‖vn−wn‖ ≤ 2D(Syn− Sun),s,r, t >

0,λ ∈ (0, 1
d ),d = BB?, where B? is the adjoint of B, an,δn ⊂ (0,1) and bn,cn ⊂ [a,b] for some

a,b ∈ (0,1) satisfying the following conditions:
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i. an +bn + cn = 1,

ii. an +bn ≤ δn ≤ c < 1√
1+4L2+1

.

Then, the sequence {xn} converges strongly to α p, where α p = PΘ(u).

It is our purpose in this paper to first introduce a new iterative sequence and then prove strong

convergence theorem of our new iterative sequence to the common solutions of fixed point

problem for α-hemicontractive mapping (which is a more general operator than the one used

by Meche and Zegeye), split equilibrium and variational inequality problems.

2. PRELIMINARY

In this section, we collect some concepts and results that play a crucial role in the sequel.

Let S : C−→C be a nonexpansive mapping with F(S) 6= /0. Then, for every x ∈C and y ∈ F(S),

we obtain that

(2.1) 〈x−Sx,y−Sx〉 ≤ 1
2
‖Sx− x‖2

(see e.g. [17]). Let H be a real Hilbert space, C a closed convex subset of H and PC : H −→ 2C

a metric projection of H onto C. Recall that for every x ∈ H, there exists a unique nearest point

in C, denoted by PCx such that

‖x−PCx‖= inf{‖x− y‖ : y ∈C}.

The mapping PC : H −→ 2C is characterised by

(2.2) z = PCx ∈C if and only if 〈x− z,z− y〉 ≥ 0,∀x ∈ H,y ∈C.

In what follows, we shall use the following assumptions:

Assumption G : Let H be a Hilbert space and C a nonempty, closed and convex subset of H.

Let F : C×C −→R be a bifunction satisfying the following conditions:

G1 : F(x,x) = 0,∀x ∈ H

G2 :F is a monotone, i.e, F(x,y)+F(y,x)≤ 0,∀x,y ∈C

G3 : limt−→0(tz+(1− t)y)≤ F(x,y),∀x,y,z ∈C

G4 : for each x ∈C,y→ F(x,y) is convex and lower semicontinous.
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ln the proof of our main results, we make use of the following lemmas:

Lemma 2.1. Let F1 : C×C−→R be a bifunction satisfying assumption G. For s > 0 and for all

x ∈ H, define the mapping T F1
s : H1 −→C as follows:

(2.3) T F1
s x = {x ∈C : F1(x,y)+

1
s
〈y− z,x− y〉 ≥ 0,∀y ∈C}

Then, we have the following:

(1) T F1
s is nonempty and single valued;

(2) T F1
s is firmly nonexpansive, i.e, ‖T F1

s x−T F1
s y‖ ≤ 〈T F1

s x−T F1
s y,x− y〉;

(3) F(T F1
s ) = EP(T F1

s );

(4) EP(F1) is closed and convex.

Furthermore, assume that F2 : Q×Q −→R is another bifunction that satisfies assumption G.

For r > 0 and for all x ∈ H define the mapping T F2
s : H1 −→ Q as follows:

(2.4) T F2
s x = {x ∈ Q : F1(x,y)+

1
s
〈y− z,x− y〉 ≥ 0,∀y ∈ Q}

Then, we have the following:

(1) T F2
s is nonempty and single valued;

(2) T F2
s is firmly nonexpansive, i.e, ‖T F2

s x−T F2
s y‖ ≤ 〈T F2

s x−T F1
s y,x− y〉;

(3) F(T F2
s ) = EP(T F2

s );

(4) EP(F2) is closed and convex.

Lemma 2.2. Let H be a Hilbert space. Then, for all xi ∈ H and αi ∈ [0,1], for i = 1,2,3, such

that α1 +α2 +α3 = 1, the following equality holds:

‖α1 +α2 +α3‖2 =
2

∑
i=1

αi‖x‖2− ∑
1≤i, j≤3

αiα j‖xi− x j‖.

Lemma 2.3. Let H be a real Hilbert space. Then, for every x,y ∈ H, we have the following:

i. ‖x− y‖2 = ‖x‖2 +‖y‖2−2〈x,y〉;

ii. ‖x+ y‖= ‖x‖2 +2〈x,x+ y〉.



8 IMO KALU AGWU, DONATUS IKECHI IGBOKWE, AUSTINE E. OFEM

Lemma 2.4. Let H be a real Hilbert space. Let A,B ∈CB(H) and a ∈ A. Then for any ε > 0,

there exists a point b ∈ Bsuch that ‖a−b‖ ≤ D(A,B)+ ε. In particular, for every a ∈ A, there

exists an element b ∈ B such that ‖a−b‖ ≤ 2D(A,B)+ ε.

Lemma 2.5. Let {bn} be a sequence of nonnegative real numbers such that

bn+1 ≤ (1−αn)bn +αnδn,

for n≥ n0, where αn⊂ (0,1) and δn ∈R satisfying the following restrictions : limn→∞ = 0,∑∞
n=0 αn =

∞ and limn→∞ supδn ≤ 0.Then, limn→∞ bn = 0.

Lemma 2.6. Let H be a Hilbert space and C a closed convex subset of H. Let A : C −→ H be

a continous monotone mapping. Then, for t > 0 and for all x ∈ H, there exists z ∈C such that

〈Az,y− z〉+ i
t
〈y− z,z− x〉 ≥ 0,∀x,y ∈C

Moreover, the mapping Jt : H −→C defined by

Jt = {z ∈C : 〈Az,zx〉+ i
t
〈y− z,z− x〉 ≥ 0,∀y ∈C},

satisfies the following:

(1) Jt is nonempty and single valued;

(2) Jt is firmly nonexpansive;

(3) F(Jt) =V I(C,A);

(4) V I(C,A) is closed and convex.

Lemma 2.7. Let {an} be a sequence of real numbers such that there exists a subsequence {ni}

of {n} such that ani ≤ ani+1 for all i ∈ N. Then, there exists a nondecreasing sequence mk ∈ N

such that mk→ ∞ and the following properties are satisfied by all (sufficiently large) numbers

k ∈ N : amk < amk+1 and ak < amk+1 . lnfact, mk = max{ j ≤ k : a j < a j+1}

3. MAIN RESULTS

Theorem 3.1. Let H1 and H2 be two Hilbert spaces and C,Q be two nonempty, closed and

convex subsets of H1 and H2 respectively. Let F1 : C×C −→ R and F2 : Q×Q −→ R be two

bifunctions satisfying Assumption G. Let A : C−→H1 be a continous monotone mapping and B :
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Q−→H2 be a bounded linear operator. Let S : C−→CB(C) be L-Lipschitz α-hemicontractive

multivalued mapping. Assume that Θ = F(S)∩Ω∩V I(CA) is nonempty and Sα p = α p for all

p ∈Θ and for some α ≥ 1.Let x0,u ∈C be arbitrary and let xnbe a sequence in C generated by

zn = T F1
s (1−λB?(1−T F2

r )B)xn,

yn = Jtzn,

un = (1−δn)yn +δnvn,

xn+1 = anu+bn[(1− γn)wn + γnxn]+ cnyn,


(3.1)

for all n ≥ 0, where vn ∈ Syn and wn ∈ Sun are such that ‖vn−wn‖ ≤ 2D(Syn− Sun),s,r, t >

0,λ ∈ (0, 1
d ),d = BB?, where B? is the adjoint of B, an,δn ⊂ (0,1) and bn,cn ⊂ [a,b] for some

a,b ∈ (0,1) satisfying the following conditions:

i. an +bn + cn = 1,

ii. an +bn ≤ δn ≤ c < 1√
1+4L2+1

.

Then, the sequence {xn} is bounded.

Proof. First, we show that B?(1−T F2
r )B is a 1

2d -inversely strongly monotone mapping. Since,

T F2
r is nonexpansive, we have that (1−T F2

r ) is 1
2 -inversely strongly monotone. Thus, ∀x,y∈H1,

we have

‖B?(1−T F2
r )Bx−B?(1−T F2

r )By‖2

= 〈B?(1−T F2
r )Bx−B?(1−T F2

r )By,B?(1−T F2
r )Bx−B?(1−T F2

r )By〉

= 〈((1−T F2
r )Bx− (1−T F2

r )By),BB?((1−T F2
r )Bx− (1−T F2

r )By)〉

≤ BB?|〈(1−T F2
r )Bx− (1−T F2

r )By),((1−T F2
r )Bx− (1−T F2

r )By)〉|

= d‖(1−T F2
r )Bx− (1−T F2

r )By‖2

≤ 2d〈x− y,B?[(1−T F2
r )Bx− (1−T F2

r )By〉]

= 2d〈x− y,B?(1−T F2
r )Bx−B?(1−T F2

r )By〉],

which implies that B?(1−T F2
r )B is 1

2d -inversely strongly monotone. Next, we show that (1−

λB?(1−T F2
r )B) is nonexpansive. Now, since λ ∈ (0, 1

d ), we otain that (1−λB?(1−T F2
r )B) is
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nobexpansive. Hence, from the nonexpansiveness of T F1
s , we obtain

‖T F1
s (1−λB?(1−T F2

r )B)x−T F1
s (1−λB?(1−T F2

r )B)y‖

≤ ‖(1−λB?(1−T F2
r )B)x− (1−λB?(1−T F2

r )B)y‖

≤ ‖x− y‖.(3.2)

Now, let α p∈Θ, for some α ≥ 1. Then, we have S(α p) =α p,Jt(α p) =α p and α p∈Θ; hence

α p = T F1
s (α p) and B(α p) = T F2

s (α p), which implies that T F1
s (1−λB?(1−T F2

r )B)(α p) = α p.

Thus, from (3.1) and (3.2), we have

‖zn−α p‖ = ‖T F1
s (1−λB?(1−T F2

r )B)xn−α p‖

≤ ‖(1−λB?(1−T F2
r )B)xn−α p‖

≤ ‖xn−α p‖.(3.3)

Since Jt is npnexpansive, we get

‖yn−α p‖ = ‖Jtzn−α p‖

= ‖Jtzn− Jt(α p)‖

≤ ‖zn−α p‖,(3.4)

which by (3.3) gives

(3.5) ‖yn−α p‖ ≤ ‖xn−α p‖.

Since S is α-hemicontractive, for all wn ∈ Sun, we have

‖wn−α p‖2 ≤ D2(Sun,Syn)

≤ ‖un−α p‖2 +‖un−wn‖2.(3.6)

Also,

‖un−α p‖2 = ‖(1−δn)yn +δnvn−α p‖2

= ‖(1−δn)(yn−α p)+δn(vn−α p)‖2,
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which, using Lemma 2.2, gives

‖un−α p‖2 = (1−δn)‖yn−α p‖2 +δn‖vn−α p‖2−δn(1−δn)‖yn− vn‖2,

Since S is α-hemicontractive, for all, vn ∈ Syn, we have

‖un−α p‖2 = (1−δn)‖yn−α p‖2 +δnD2(vn−α p)−δn(1−δn)‖yn− vn‖2

≤ (1−δn)‖yn−α p‖2 +δn[‖yn−α p‖2 +‖yn− vn‖2]−δn(1−δn)‖yn− vn‖2

= (1−δn)‖yn−α p‖2 +δn‖yn−α p‖2 +δn‖yn− vn‖2−δn(1−δn)‖yn− vn‖2

= ‖yn−α p‖2 +δn‖yn− vn‖2−δn(1−δn)‖yn− vn‖2

= ‖yn−α p‖2 +δ
2
n ‖yn− vn‖2.(3.7)

(3.4) and (3.7) imply that

(3.8) ‖un−α p‖2 ≤ ‖xn−α p‖2 +δ
2
n ‖yn− vn‖2.

(3.6) and (3.8) imply that

(3.9) ‖wn−α p‖2 ≤ ‖xn−α p‖2 +δ
2
n ‖yn− vn‖2 +‖un−wn‖2.

Next, we estimate ‖un−wn‖2: From (3.1), we get

‖un−wn‖2 = ‖(1−δn)yn +δnvn−wn‖2

= ‖(1−δn)yn +δnvn−δnwn +δnwn−wn‖2

= ‖(1−δn)yn +δn(vn−wn)− (1−δn)wn‖2

= ‖(1−δn)(yn−wn)+δn(vn−wn)‖2,

which by Lemma 2.2 gives

‖un−wn‖2 = (1−δn)‖yn−wn‖2 +δn‖vn−wn‖2−δn(1−δn)‖yn− vn‖2.

Since, vn,wn ∈ Sun,Syn respectively implies that ‖vn−wn‖ ≤ 2D(Syn,Sun), we get

‖un−wn‖2 = (1−δn)‖yn−wn‖2 +4δnD2(Svn,Syn)−δn(1−δn)‖yn− vn‖2,
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and since S is L-Lipschitizian mapping, we get

‖un−wn‖2 ≤ (1−δn)‖yn−wn‖2 +4δnL2‖yn−un‖2−δn(1−δn)‖yn− vn‖2

= (1−δn)‖yn−wn‖2 +4δnL2‖yn− [(1−δn)yn +δnvn]‖2

−δn(1−δn)‖yn− vn‖2

= (1−δn)‖yn−wn‖2 +4δnL2‖yn− (1−δn)yn−δnvn‖2

−δn(1−δn)‖yn− vn‖2

= (1−δn)‖yn−wn‖2 +4δnL2‖δn(yn− vn)‖2

−δn(1−δn)‖yn− vn‖2

= (1−δn)‖yn−wn‖2 +4δ
3
n L2‖yn− vn‖2

−δn(1−δn)‖yn− vn‖2.(3.10)

Putting (3.10) into (3.9), we have

‖wn−α p‖2 ≤ ‖xn−α p‖2 +δ
2
n ‖yn− vn‖2 +(1−δn)‖yn−wn‖2 +4δ

3
n L2‖yn− vn‖2

−δn(1−δn)‖yn− vn‖2

= ‖xn−α p‖2 +δ
2
n ‖yn− vn‖2 +(1−δn)‖yn−wn‖2

+δn(4δ
2
n L2 +δn−1)‖yn− vn‖2

= ‖xn−α p‖2 +(1−δn)‖yn−wn‖2

−δn(1−4δ
2
n L2−2δn)‖yn− vn‖2.(3.11)

Now, we estimate ‖xn+1−α p‖2:

‖xn+1−α p‖2 = ‖au+bn[γnwn +(1− γn)xn]+ cn−α p‖2

= ‖an(u−α p)+(an +bn + cn)α p+bn[γnwn +(1− γn)xn−α p]

+cn(yn−α p‖2

= ‖an(u−α p)+bn[γn(wn−α p)+(1− γn)(xn−α p)]

+cn(yn−α p)‖2,
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which by Lemma 2.2 gives

‖xn+1−α p‖2 = an‖u−α p‖2 +bn‖γn(wn−α p)+(1− γn)(xn−α p)‖2

+cn‖yn−α p‖2− cnbn‖(1− γn)wn + γnxn− yn‖2

= an‖u−α p‖2 +bn‖γn(wn−α p)+(1− γn)(xn−α p)‖2

+cn‖yn−α p‖2− cnbn‖(1− γn)(wn− yn)+ γn(xn− yn)‖2

= an‖u−α p‖2 +bn[(1− γn)‖wn−α p‖2 + γn‖xn−α p‖2

−γn(1− γn)‖wn− xn‖2]+ cn‖yn−α p‖2

−cnbn[(1− γn)‖wn− yn‖2 + γn‖xn− yn‖2− γn(1− γn)‖wn− xn‖2]

= an‖u−α p‖2 +bn(1− γn)‖wn−α p‖2 +bnγn‖xn−α p‖2

−bnγn(1− γn)‖wn− xn‖2 + cn‖yn−α p‖2− cnbn(1− γn)‖wn− yn‖2

−cnbnγn‖xn− yn‖2 + cnbnγn(1− γn)‖wn− xn‖2

≤ an‖u−α p‖2 +bn(1− γn)‖wn−α p‖2 +bnγn‖xn−α p‖2

−cnbnγn‖wn− yn‖2 + cn‖yn−α p‖2− cnbn(1− γn)‖wn− yn‖2

+[cnbnγn(1− γn)−bnγn(1− γn)]‖wn− xn‖2.(3.12)

(3.11) and (3.12) imply that

‖xn+1−α p‖2 ≤ an‖u−α p‖2 +bn(1− γn)[‖xn−α p‖2 +(1−δn)‖yn−wn‖2

−δn(1−4δ
2
n L2−2δn)‖yn− vn‖2]+bnγn‖xn−α p‖2

+bnγn(1− γn)(cn−1)‖wn− xn‖2 + cn‖yn−α p‖2

−cnbn(1− γn)‖wn− yn‖2

= an‖u−α p‖2 +bn(1− γn)‖xn−α p‖2 +bn(1− γn)(1−δn)‖yn−wn‖2

−bn(1− γn)δn(1−4δ
2
n L2−2δn)‖yn− vn‖2]+bnγn‖xn−α p‖2

+bnγn(1− γn)(cn−1)‖wn− xn‖2 + cn‖yn−α p‖2

−cnbn(1− γn)‖wn− yn‖2
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≤ an‖u−α p‖2 +bn(1− γn)‖xn−α p‖2 +bn(1− γn)(1−δn)‖yn−wn‖2

−bn(1− γn)δn(1−4δ
2
n L2−2δn)‖yn− vn‖2]+bnγn‖xn−α p‖2

+bnγn(1− γn)(cn−1)‖wn− xn‖2 + cn‖xn−α p‖2

−cnbn(1− γn)‖wn− yn‖2 (by (3.5))

= an‖u−α p‖2 +[bn(1− γn)+bnγn + cn]‖xn−α p‖2

+bn(1− γn)(1−δn)‖− (wn− yn)‖2

−bn(1− γn)δn(1−4δ
2
n L2−2δn)‖yn− vn‖2

+bnγn(1− γn)(cn−1)‖wn− xn‖2− cnbn(1− γn)‖wn− yn‖2

= an‖u−α p‖2 +[bn(1− γn)+bnγn + cn]‖xn−α p‖2

+bn(1− γn)(1−δn)‖wn− yn‖2

−bn(1− γn)δn(1−4δ
2
n L2−2δn)‖yn− vn‖2

+bnγn(1− γn)(cn−1)‖wn− xn‖2− cnbn(1− γn)‖wn− yn‖2

≤ an‖u−α p‖2 +[bn(1− γn)+bnγn + cn]‖xn−α p‖2

+bn(1− γn)(1−δn− cn)‖wn− yn‖2

−bn(1− γn)δn(1−4δ
2
n L2−2δn)‖yn− vn‖2

= an‖u−α p‖2 +(bn + cn)‖xn−α p‖2

+bn(1− γn)(1−δn− cn)‖wn− yn‖2

−bn(1− γn)δn(1−4δ
2
n L2−2δn)‖yn− vn‖2.(3.13)

Using conditions (i) and (ii), we obtain

1−4δ
2
n L2−2δn ≥ 1−4c2L2−2c > 0;

bnγn(1− cn−δn) = bnγn(an +bn−δn)≤ 0;(3.14)

an +bn + cn = 1.
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Putting (3.14) into (3.13), we obtain

‖xn+1−α p‖2 ≤ an‖u−α p‖2 +(1−an)‖xn−α p‖2

≤ max{‖u−α p‖2,‖xn−α p‖2},∀n ∈ (0,N).

Using mathematical induction, we see that

‖xn+1−α p‖2 ≤ max{‖u−α p‖2,‖xn−α p‖2}

= ‖x0−α p‖2,∀n ∈ {0,N}.(3.15)

Hence, {xn} is bounded. This completes the proof. �

Theorem 3.2. Let H1 and H2 be two Hilbert spaces and C,Q be two nonempty, closed and

convex subsets of H1 and H2 respectively. Let F1 : C×C −→ R and F2 : Q×Q −→ R be

two bifunctions satisfying Assumption G. Let A : C −→ H1 be a continous monotone map-

ping and B : Q −→ H2 be a bounded linear operator. Let S : C −→ CB(C) be L-Lipschitz

α-hemicontractive multivalued mapping. Assume that Θ = F(S)∩Ω∩V I(CA) is nonempty

and Sα p = α p for all p ∈ Θ and for some α ≥ 1.Let xo,u ∈ C be arbitrary and let xnbe a

sequence in C generated by

zn = T F1
s (1−λB?(1−T F2

r )B)xn,

yn = Jtzn,

un = (1−δn)yn +δnvn,

xn+1 = anu+bn[(1− γn)wn + γnxn]+ cnyn,


(3.16)

for all n ≥ 0, where vn ∈ Syn and wn ∈ Sun are such that ‖vn−wn‖ ≤ 2D(Syn− Sun),s,r, t >

0,λ ∈ (0, 1
d ),d = BB?, where B? is the adjoint of B, an,δn ⊂ (0,1) and bn,cn ⊂ [a,b] for some

a,b ∈ (0,1) satisfying the following conditions:

i. an +bn + cn = 1,

ii. an +bn ≤ δn ≤ c < 1√
1+4L2+1

.

Then, the sequence {xn} converges strongly to α p ∈Θ, where α p = PΘ(u)
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Proof. We note that PΘ is well defined because Θ is nonempty, closed and convex subset of C,

and from (3.1), it follows that the sequence {xn} is bounded and so are the sequences {un} and

{zn}. Now, let α p ∈Θ. Then, since T F1
s is nonexpansive, we have

‖zn−α p‖2 = ‖T F1
s (1−λB?(1−T F2

r )B)xn−α p‖2

= ‖T F1
s (1−λB?(1−T F2

r )B)xn−T F1
s (1−λB?(1−T F2

r )B)α p‖2

≤ ‖(1−λB?(1−T F2
r )B)xn− (1−λB?(1−T F2

r )B)α p‖2

= ‖xn−α p−λ (B?(1−T F2
r )Bxn−B?(1−T F2

r )Bα p)‖2,

which by Lemma 2.3(i) gives

‖zn−α p‖2 ≤ ‖xn−α p‖2 +λ
2‖B?(1−T F2

r )Bxn−B?(1−T F2
r )Bα p‖2

−2λ 〈xn−α p,B?(1−T F2
r )Bxn−B?(1−T F2

r )Bα p〉.

Since B?(1−T F2
r )B is 1

2d -inversely strongly monotone, we have

‖zn−α p‖2 ≤ ‖xn−α p‖2 +λ
2‖B?(1−T F2

r )Bxn−B?(1−T F2
r )Bα p‖2

−λ

d
‖B?(1−T F2

r )Bxn−B?(1−T F2
r )Bα p‖2

= ‖xn−α p‖2 +λ
2‖B?(1−T F2

r )Bxn−B?(Bα p−T F2
r Bα p)‖2

−λ

d
‖B?(1−T F2

r )Bxn−B?(Bα p−T F2
r Bα p)‖2.(3.17)

Since Bα p = T F2
r Bα p, (3.17) becomes

‖zn−α p‖2 ≤ ‖xn−α p‖2 +λ
2‖B?(1−T F2

r )Bxn‖2

−λ

d
‖B?(1−T F2

r )Bxn‖2

= ‖xn−α p‖2 +λ (λ − 1
d
)‖B?(1−T F2

r )Bxn‖2.(3.18)

Also, from (3.16), we get

‖xn+1−α p‖2 = ‖anu+bn[1− γn)wn + γnxn]+ cnyn−α p‖2

= ‖an(u−α p)+bn[(1− γn)wn + γnxn)−α p]+ cn(yn−α p)‖2

= ‖bn[(1− γn)wn + γnxn)−α p]+ cn(yn−α p)+an(u−α p)‖2,
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which by Lemma 2.3(ii) gives

‖xn+1−α p‖2 ≤ ‖bn[(1− γn)wn + γnxn)−α p]+ cn(yn−α p)‖2

+2an〈u−α p,xn+1−α p〉,

and by Lemma 2.2, we obtain

‖xn+1−α p‖2 ≤ bn‖(1− γn)wn + γnxn−α p‖2 + cn‖yn−α p‖2

−cnbn‖(1− γn)wn + γnxn− yn‖2 +2an〈u−α p,xn+1−α p〉

= bn‖(1− γn)wn + γnxn− γn(α p)+ γn(α p)−α p‖2 + cn‖yn−α p‖2

−cnbn‖(1− γn)wn + γnxn− γnyn + γnyn− yn‖2 +2an〈u−α p,xn+1−α p〉

= bn‖(1− γn)(wn−α p)+ γn(xn−α p)‖2 + cn‖yn−α p‖2

−cnbn‖(1− γn)(wn− yn)+ γn(xn− yn)‖2 +2an〈u−α p,xn+1−α p〉

= bn[(1− γn)‖wn−α p‖2 + γn‖xn−α p‖2− γn(1− γn)‖wn− xn‖2]

+cn‖yn−α p‖2− cnbn[(1− γn)‖wn− xn‖2 + γn‖xn− yn‖2

−γn(1− γn)‖wn− xn‖2]+2an〈u−α p,xn+1−α p〉

= bn(1− γn)‖wn−α p‖2 +bnγn‖xn−α p‖2

+cn‖yn−α p‖2 +bnγn(1− γn)(cn−1)‖wn− xn‖2

−cnbn(1− γn)‖wn− yn‖2− cnbnγn‖xn− yn‖2

+2an〈u−α p,xn+1−α p〉.(3.19)
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Using (3.4),(3.16) and (3.11) into (3.19), we obtain

‖xn+1−α p‖2 ≤ bn(1− γn)[‖xn−α p‖2 +(1−δn)‖yn−wn‖2−δn(1−4δ
2
n L2−2δn)‖yn− vn‖2]

+bnγn‖xn−α p‖2 + cn‖zn−α p‖2 +bnγn(1− γn)(cn−1)‖wn− xn‖2

−cnbn(1− γn)‖wn− yn‖2− cnbnγn‖xn− yn‖2 +2an〈u−α p,xn+1−α p〉

= bn(1− γn)‖xn−α p‖2 +bn(1− γn)(1−δn)‖yn−wn‖2

−δnbn(1− γn)(1−4δ
2
n L2−2δn)‖yn− vn‖2 +bnγn‖xn−α p‖2

+cn‖zn−α p‖2 +bnγn(1− γn)(cn−1)‖wn− xn‖2− cnbn(1− γn)‖wn− yn‖2

−cnbnγn‖xn− yn‖2 +2an〈u−α p,xn+1−α p〉.(3.20)

(3.18) and (3.20) imply that

‖xn+1−α p‖2 ≤ bn(1− γn)‖xn−α p‖2 +bn(1− γn)(1−δn)‖yn−wn‖2

−δnbn(1− γn)(1−4δ
2
n L2−2δn)‖yn− vn‖2 +bnγn‖xn−α p‖2

+cn[‖xn−α p‖2 +λ (λ − 1
d
)‖B?(I−T F2

r )Bxn‖2]+bnγn(1− γn)(cn−1)‖wn− xn‖2

−cnbn(1− γn)‖wn− yn‖2− cnbnγn‖xn− yn‖2 +2an〈u−α p,xn+1−α p〉

= (bn + cn)‖xn−α p‖2 +bn(1− γn)(1− cn−δn)‖wn− yn‖2

−δnbn(1− γn)(1−4δ
2
n L2−2δn)‖yn− vn‖2

+cnλ (λ − 1
d
)‖B?(I−T F2

r )Bxn‖2]+bnγn(1− γn)(cn−1)‖wn− xn‖2

−cnbnγn‖xn− yn‖2 +2an〈u−α p,xn+1−α p〉

≤ (bn + cn)‖xn−α p‖2 +bn(1− γn)(1− cn−δn)‖wn− yn‖2

−δnbn(1− γn)(1−4δ
2
n L2−2δn)‖yn− vn‖2

+cnλ (λ − 1
d
)‖B?(I−T F2

r )Bxn‖2]

−cnbnγn‖xn− yn‖2 +2an〈u−α p,xn+1−α p〉
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Using (3.14), condition (i) and (ii), and the fact that λ ∈ (0, 1
d ), we get

‖xn+1−α p‖2 ≤ (1−an)‖xn−α p‖2 + cnλ (λ − 1
d
)‖B?(I−T F2

r )Bxn‖2]

+2an〈u−α p,xn+1−α p〉.(3.21)

Then, we complete the proof by the next two cases:

Case 1: Suppose that there exists a positive integer n0 such that {‖xn−α p‖} is decreasing for

all n≥ n0. Then, the sequence {‖xn−α p‖} is convergent, and from (3.21), we have

cnλ (
1
d
−λ )‖B?(I−T F2

r )Bxn‖2 ≤ (1−an)‖xn−α p‖2−‖xn+1−α p‖2

+2an〈u−α p,xn+1−α p〉.

Hence, assumption of {cn}, convergence of {‖xn−α p‖} and the fact that an → 0 as n→ ∞

imply that

(3.22) lim
n→∞
‖B?(I−T F2

r )Bxn‖= 0,

and hence

(3.23) lim
n→∞
‖xn− (xn−λB?(I−T F2

r )Bxn‖= 0.

And since T F1
s is firmly nonexpansive and (I−λB?(I−T F2

r )B) is nonexpansive, using (3.16)

and Lemma 2.3(i), we obtain

‖zn−α p‖2 = ‖T F1
s (I−λB?(I−T F2

r )B)xn−T F1
s α p‖2

≤ 〈zn−α p,(I−λB?(I−T F2
r )Bxn)−α p〉

= ‖zn−α p‖‖(I−λB?(I−T F2
r )B)xn−α p‖

≤ 1
2
{‖zn−α p‖2 +‖(I−λB?(I−T F2

r )B)xn−α p‖2

−‖(zn− (I−λB?(I−T F2
r )B)xn‖2}
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=
1
2
{‖zn−α p‖2 +‖xn−α p‖2 +λ

2‖B?(I−T F2
r )Bxn‖2

−2λ 〈xn−α p,B?(I−T F2
r )Bxn〉−‖zn− xn‖2−λ

2‖B?(I−T F2
r )Bxn‖2

+2λ 〈zn− xn,B?(I−T F2
r )Bxn〉}

≤ 1
2
{‖zn−α p‖2 +‖xn−α p‖2−‖zn− xn‖2 +2λ 〈zn− xn,B?(I−T F2

r )Bxn〉}.

Thus,

(3.24) ‖zn−α p‖2 ≤ ‖xn−α p‖2−‖zn− xn‖2 +2λ 〈zn− xn,B?(I−T F2
r )Bxn〉.

Now, from (3.4) and (3.20), we get

‖xn+1−α p‖2 ≤ bn(1− γn)‖wn−α p‖2 + γnbn‖xn−α p‖2 + cn‖zn−α p‖2

−cnbn(1− γn)‖wn− yn‖2 +2an〈u−α p,xn+1−α p〉.(3.25)

Substituting (3.11) and (3.24) into (3.25), we obtain

‖xn+1−α p‖2 ≤ bn(1− γn)[‖xn−α p‖2 +(1−δn)‖yn−wn‖2

−δn(1−4δnL2−2δn)‖yn− vn‖2]+ γnbn‖xn−α p‖2

+cn[‖xn−α p‖2−‖zn− xn‖2 +2λ 〈zn− xn,B?(I−T F2
r )Bxn〉]

−cnbn(1− γn)‖wn− yn‖2 +2an〈u−α p,xn+1−α p〉

= (bn + cn)‖xn−α p‖2 +bn(1− γn)(1− cn−δn)‖wn− yn‖2

−bnδn(1− γn)(1−4δnL2−2δn)‖yn− vn‖2− cn‖zn− xn‖2

+2cnλ 〈zn− xn,B?(I−T F2
r )Bxn〉+2an〈u−α p,xn+1−α p〉.(3.26)

It follows from condition (i),(3.14) and (3.26) that

cn‖zn− xn‖2 ≤ (1−an)‖xn−α p‖2−‖xn+1−α p‖2 +2cnλ‖zn− xn‖‖B?(I−T F2
r )Bxn‖

+2an〈u−α p,xn+1−α p〉.

Hence, since {xn} and {zn} are bounded and an→ 0 as n→ ∞, from (3.22) and the assumption

of cn, we obtain that

(3.27) lim
n→∞
‖zn− xn‖= 0
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On the other hand, since Jt is firmly nonexpansive, it follows from lemma 2.3(i) and (3.16) that

‖yn−α p‖2 = ‖Jtzn− Jtα p‖2

≤ 〈yn−α p,zn−α p〉

=
1
2
{‖yn−α p‖2 +‖zn−α p‖2−‖zn− yn‖2}.(3.28)

(3.3) and (3.28) imply that

‖yn−α p‖2 ≤ ‖zn−α p‖2−‖zn− yn‖2

≤ ‖xn−α p‖2−‖zn− yn‖2.(3.29)

Substituting (3.11) and ( 3.28) into (3.25), we get

‖xn+1−α p‖2 ≤ bn(1− γn)[‖xn−α p‖2 +(1−δn)‖yn−wn‖2

−δn(1−4δnL2−2δn)‖yn− vn‖2]+ γnbn‖xn−α p‖2

+cn[‖xn−α p‖2−‖zn− yn‖2]− cnbn(1− γn)‖wn− yn‖2

+2an〈u−α p,xn+1−α p〉

= (bn + cn)‖xn−α p‖2 +bn(1− γn)(1− cn−δn)‖wn− yn‖2

−bnδn(1− γn)(1−4δnL2−2δn)‖yn− vn‖2− cn‖zn− yn‖2

+2an〈u−α p,xn+1−α p〉,

which from condition (i) and (3.14) yield

‖xn+1−α p‖2 ≤ (1−an)‖xn−α p‖2−bnδn(1− γn)(1−4δnL2−2δn)‖yn− vn‖2

−cn‖zn− yn‖2 +2an〈u−α p,xn+1−α p〉(3.30)

(3.30) implies that

bnδn(1− γn)(1−4δnL2−2δn)‖yn− vn‖2 ≤ (1−an)‖xn−α p‖2−‖xn+1−α p‖2

−cn‖zn− yn‖2 +2an〈u−α p,xn+1−α p〉.
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Hence, the assumption that an→ 0 as n→ ∞ and (3.14) imply that

(3.31) lim
n→∞
‖yn− vn‖= 0.

Since vn ∈ Syn, using (3.31), we get

(3.32) lim
n→∞

d(yn,Syn) = 0.

In addition, from (3.30), we also have

cn‖zn− yn‖2 ≤ (1−an)‖xn−α p‖2−‖xn+1−α p‖2 +2an〈u−α p,xn+1−α p〉,

and, because an→ 0 as n→ ∞, it follows from the assumption of {cn} that

(3.33) lim
n→∞
‖yn− zn‖= 0.

From the Lipschitz condition of S and (3.30), we get

‖yn−wn‖ ≤ ‖yn− vn‖+‖vn−wn‖

≤ ‖yn− vn‖+2D(Syn,Sun)

≤ ‖yn− vn‖+2L‖yn−un‖

= (1+2Lδn)‖yn− vn‖→ 0 as n→ ∞.(3.34)

Observe that

‖xn+1− xn‖ ≤ ‖xn+1− yn‖+‖yn− xn‖

= ‖anu+bn[(1− γn)wn + γnxn]+ cnyn− yn‖+‖yn− xn‖

= ‖an(u− yn)−bn(1− γn)(yn−wn)− γnbn(yn− xn)‖+‖yn− xn‖

≤ an‖u− yn‖+bn(1− γn)‖yn−wn‖+ γnbn‖yn− xn‖+‖yn− xn‖

= an‖u− yn‖+bn(1− γn)‖yn−wn‖+(1+ γnbn)‖yn− xn‖,

which, from (3.27), (3.33), (3.34) and the fact that an→ 0 as n→ ∞, gives

‖xn+1− xn‖ ≤ an‖u− yn‖+bn(1− γn)‖yn−wn‖+(1+ γnbn)‖zn− yn‖

+(1+ γnbn)‖zn− xn‖→ 0 as n→ ∞.(3.35)
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Moreover, from (3.14) and (3.30), we get

‖xn+1−α p‖2 ≤ (1−an)‖xn−α p‖2 +2an〈u−α p,xn+1−α p〉.(3.36)

Now, let α p = PΘ(u). Then, we show that limsupn→∞〈u−α p,xn+1−α p〉 ≤ 0.

Since the sequence {xn+1} is bounded in a real Hilbert space H1, we can choose a subsequence

{xni+1} of {xn+1} such that xni+1 ⇀ ω as n→ ∞ and

limsup
n→∞

〈u−α p,xn+1−α p〉= lim
n→∞
〈u−α p,xn+1−α p〉.

Since C is closed and convex, C is weakly closed. So, we have ω in C and from (3.35), we find

that xni ⇀ ω as i→ ∞, and thus it follows from (3.27) and (3.33) that zni ⇀ ω and yni ⇀ ω as

i→ ∞

Next, we claim that ω ∈ Θ. From (3.32) and the hypothesis that (I− S) is demiclosed at zero,

we obtain that ω ∈ F .

Since (I−λB?(I−T F2
r )B) is nonexpansive, from (3.23) and demiclosedness principle for non-

expansive mapping, we have

(I−λB?(I−T F2
r )B)ω = ω,

which implies that

B?(I−T F2
r )Bω = 0.

Thus, using (2.1), we obtain that Bω = T F2
r ω , hence Bω ∈ EP(F2). In addition, from (3.27), we

get

lim
n→∞
‖xn−T F1

s (I−λB?(I−T F2
r )B)xn‖= lim

n→∞
‖xn− zn‖= 0.

Hence, since T F1
s (I−λB?(I−T F2

r )B) is nonexpansive, from the demiclosedness of nonexpan-

sive mapping, we obtain that

T F1
s (I−λB?(I−T F2

r )B)ω = ω.
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This, with the fact that Bω = T F2
r Bω, gives ω = T F1

s ω and hence ω ∈EP(F1). Therefore, ω ∈Ω.

On the other hand, from (3.33) we have

lim
n→∞
‖zni− Jtzn‖= lim

n→
‖zn− yn‖= 0

Since zni ⇀ ω and Jt is nonexpansive, then (I− Jt) is demiclosed at zero and so, we get that

ω = Jtω and hence ω ∈ V I(C,A). Therefore, ω ∈ Θ. Thus, since αq = PΘ(u) and xni+1 ⇀ ω,

from the property of metric projection PC given in (2.2), we have

limsup
n→∞

〈u−αq,xn+1−αq〉 = lim
n→∞
〈u−αq,xn+1−αq〉

= 〈u−αq,xn+1−αq〉 ≤ 0(3.37)

Furthermore, since α p was arbitrary, αq ∈ Θ, then from (3.36), (3.37) and lemma 2.5, we get

that

‖xn−αq‖= 0 as n→ ∞

Consequently xn→ αq = PΘ(u).

Case 2. Suppose there exists a subsequence n j of n such that

‖xn j −α p‖ ≤ ‖xn j+1−α p‖,

for all j ∈ N. Then, by lemma 2.7, there exists a nondecreasing sequence {mk} ⊂ N such that

mk→ ∞ and

(3.38) ‖xmk−α p‖ ≤ ‖xmk+1−α p‖ and ‖xk−α p‖ ≤ ‖xmk+1−α p‖,

for all k∈N. Thus, from condition (i), (3.14),(3.26), (3.30),(3.38) and the hypothesis that an→ 0

as n→ ∞, we get

‖zmk− xmk‖→ o, ‖ymk− vmk‖→ o and ‖ymk− zmk‖→ o as k→ ∞.

Then, since αq = PΘ(u), following the same procedure as in Case 1, we get

(3.39) limsup
k→∞

〈u−αq,xmk+1−αq〉 ≤ 0
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Now, since αq ∈Θ, from (3.30) and (3.33), we have that

(3.40) ‖xmk+1−αq‖2 ≤ (1−amk)‖xmk−αq‖2 +2amk〈u−αq,xmk+1−αq〉

and hence (3.38) and (3.40) imply that

amk‖xmk−αq‖2 ≤ ‖xmk−αq‖2−‖xmk+1−αq‖2 +2amk〈u−αq,xmk+1−αq〉

≤ 2amk〈u−αq,xmk+1−αq〉.

Hence, in view of the fact that amk > 0, we have that

‖xmk−αq‖2 ≤ 2〈u−αq,xmk+1−αq〉.

Hence, using (3.39), we obtain that ‖xmk−αq‖→ 0 as k→∞. This together with (3.40) implies

that‖xmk+1−αq‖→ 0 as k→∞. Because ‖xk−α p‖≤ ‖xmk+1−α p‖, for all k∈N,we have that

xk → αq. Therefore, from the above two Cases, we deduce that the sequence {xn} converges

strongly to αq = PΘ(u). This completes the proof. �

If, in Theorem 3.2, we assume that S is a single-valued Lipschitz α-hemicontractive mapping,

then we obtain the following results:

Corollary 3.3. Let H1 and H2 be two Hilbert spaces and C,Q be two nonempty, closed and

convex subsets of H1 and H2 respectively. Let F1 : C×C −→ R and F2 : K ×K −→ R be

two bifunctions satisfying Assumption G. Let A : C −→ H1 be a continous monotone map-

ping and B : Q −→ H2 be a bounded linear operator. Let S : C −→ CB(C) be L-Lipschitz

α-hemicontractive mapping. Assume that Θ = F(S)∩Ω∩V I(CA) is nonempty and Sα p = α p

for all p ∈Θ and for some α ≥ 1.Let xo,u ∈C be arbitrary and let xnbe a sequence in C gener-

ated by

zn = T F1
s (1−λB?(1−T F2

r )B)xn

yn = Jtzn

un = (1−δn)yn +δnvn

xn+1 = anu+bn[(1− γn)wn + γnxn]+ cnyn


(3.41)
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for all n ≥ 0, where vn ∈ Syn and wn ∈ Sun are such that ‖vn−wn‖ ≤ 2D(Syn− Sun),s,r, t >

0,λ ∈ (0, 1
d ),d = BB?, where B? is the adjoint of B, an,δn ⊂ (0,1) and bn,cn ⊂ [a,b] for some

a,b ∈ (0,1) satisfying the following conditions:

i. an +bn + cn = 1

ii. an +bn ≤ δn ≤ c < 1√
1+4L2+1

Then, the sequence {xn} converges strongly to α p ∈Θ, where α p = PΘ(u)

If, in Theorem 3.2, we assume that A≡ 0, then we find the following result on split equilib-

rium and fixed point problem for Lipschitz α-hemicontractive multivalued mapping:

Corollary 3.4. Let H1 and H2 be two Hilbert spaces and C,Q be two nonempty, closed and

convex subsets of H1 and H2 respectively. Let F1 : C×C −→ R and F2 : K ×K −→ R be

two bifunctions satisfying Assumption G. Let A : C −→ H1 be a continous monotone map-

ping and B : Q −→ H2 be a bounded linear operator. Let S : C −→ CB(C) be L-Lipschitz

α-hemicontractive mapping. Assume that Θ = F(S)∩Ω is nonempty and Sα p = α p for all

p ∈Θ and for some α ≥ 1.Let xo,u ∈C be arbitrary and let xnbe a sequence in C generated by

zn = T F1
s (1−λB?(1−T F2

r )B)xn

un = (1−δn)yn +δnvn

xn+1 = anu+bn[(1− γn)wn + γnxn]+ cnyn


(3.42)

for all n ≥ 0, where vn ∈ Syn and wn ∈ Sun are such that ‖vn−wn‖ ≤ 2D(Syn− Sun),s,r,>

0,λ ∈ (0, 1
d ),d = BB?, where B? is the adjoint of B, an,δn ⊂ (0,1) and bn,cn ⊂ [a,b] for some

a,b ∈ (0,1) satisfying the following conditions:

i. an +bn + cn = 1

ii. an +bn ≤ δn ≤ c < 1√
1+4L2+1

Then, the sequence {xn} converges strongly to α p ∈Θ, where α p = PΘ(u)

If, in Theorem 3.2, we assume that H1 = H2, C = Q,B ≡ 1 and F2 ≡ 0, then we obtain the

following corollary:
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Corollary 3.5. Let H1 a real Hilbert spaces and C be a nonempty, closed and convex subsets

of H1 . Let F1 : C×C −→ R be a bifunctions satisfying Assumption G and let A : C −→ H1 be

a continous monotone mapping . Let S : C −→CB(C) be L-Lipschitz α-hemicontractive mul-

tivalued mapping. Assume that Θ = F(S)∩EP(F1)∩V I(CA) is nonempty, closed and convex,

Sα p = α p for all p ∈Θ and for some α ≥ 1.Let xo,u ∈C be arbitrary and let xnbe a sequence

in C generated by

zn = T F1
s xn

yn = Jtzn

un = (1−δn)yn +δnvn

xn+1 = anu+bn[(1− γn)wn + γnxn]+ cnyn


(3.43)

for all n≥ 0, where vn ∈ Syn and wn ∈ Sun are such that ‖vn−wn‖ ≤ 2D(Syn−Sun),s,r, t > 0,

an,δn ⊂ (0,1) and bn,cn ⊂ [a,b] for some a,b ∈ (0,1) satisfying the following conditions:

i. an +bn + cn = 1

ii. an +bn ≤ δn ≤ c < 1√
1+4L2+1

Then, the sequence {xn} converges strongly to α p ∈Θ, where α p = PΘ(u)

If, in Corollary 3.3, we assume that S is an identity mapping, then we get the following result

on variational inequality and split equilibrium problems:

Corollary 3.6. Let H1 and H2 be two Hilbert spaces and C,Q be two nonempty, closed and

convex subsets of H1 and H2 respectively. Let F1 : C×C −→ R and F2 : K×K −→ R be two

bifunctions satisfying Assumption G. Let A : C −→ H1 be a continous monotone mapping and

B : Q −→ H2 be a bounded linear operator. . Assume that Θ = Ω∩V I(CA) is nonempty and

Sα p = α p for all p ∈Θ and for some α ≥ 1.Let xo,u ∈C be arbitrary and let xnbe a sequence

in C generated by
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zn = T F1
s (1−λB?(1−T F2

r )B)xn

yn = Jtzn

xn+1 = anu+bnγnxn + cnyn


(3.44)

for all n ≥ 0, where vn ∈ Syn and wn ∈ Sun are such that ‖vn−wn‖ ≤ 2D(Syn− Sun),s,r, t >

0,λ ∈ (0, 1
d ),d = BB?, where B? is the adjoint of B, an,δn ⊂ (0,1) and bn,cn ⊂ [a,b] for some

a,b ∈ (0,1) satisfying the following conditions:

i. an +bn + cn = 1

ii. an +bn ≤ δn ≤ c < 1√
1+4L2+1

Then, the sequence {xn} converges strongly to α p ∈Θ, where α p = PΘ(u)

If, in Corollary 3.5, we assume that F1 ≡ 0, then we obtain the following corollary:

Corollary 3.7. Let H1 a real Hilbert spaces and C be a nonempty, closed and convex subsets of

H1 . let A : C −→ H1 be a continous monotone mapping . Let S : C −→CB(C) be L-Lipschitz

α-hemicontractive multivalued mapping. Assume that Θ = F(S)∩V I(CA) is nonempty, closed

and convex, Sα p = α p for all p ∈Θ and for some α ≥ 1.Let xo,u ∈C be arbitrary and let xnbe

a sequence in C generated by

yn = Jtxn

un = (1−δn)yn +δnvn

xn+1 = anu+bn[(1− γn)wn + γnxn]+ cnyn


(3.45)

for all n≥ 0, where vn ∈ Syn and wn ∈ Sun are such that ‖vn−wn‖ ≤ 2D(Syn−Sun),s,r, t > 0,

an,δn ⊂ (0,1) and bn,cn ⊂ [a,b] for some a,b ∈ (0,1) satisfying the following conditions:

i. an +bn + cn = 1

ii. an +bn ≤ δn ≤ c < 1√
1+4L2+1

Then, the sequence {xn} converges strongly to α p ∈Θ, where α p = PΘ(u)
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If, in Corollary 3.6, we assume that A ≡ 0, the we obtain the following corollary on split

equilibrium problem:

Corollary 3.8. Let H1 and H2 be two Hilbert spaces and C,Q be two nonempty, closed and

convex subsets of H1 and H2 respectively. Let F1 : C×C −→ R and F2 : K×K −→ R be two

bifunctions satisfying Assumption G. Let B : Q−→ H2 be a bounded linear operator. . Assume

that Ω is nonempty and Sα p = α p for all p ∈ Θ and for some α ≥ 1.Let xo,u ∈C be arbitrary

and let xnbe a sequence in C generated by

zn = T F1
s (1−λB?(1−T F2

r )B)xn

yn = Jtzn

xn+1 = anu+bnγnxn + cnyn


(3.46)

for all n ≥ 0, where vn ∈ Syn and wn ∈ Sun are such that ‖vn−wn‖ ≤ 2D(Syn− Sun),s,r, t >

0,λ ∈ (0, 1
d ),d = BB?, where B? is the adjoint of B, an,δn ⊂ (0,1) and bn,cn ⊂ [a,b] for some

a,b ∈ (0,1) satisfying the following conditions:

i. an +bn + cn = 1

ii. an +bn ≤ δn ≤ c < 1√
1+4L2+1

Then, the sequence {xn} converges strongly to α p ∈Ω, where α p = PΩ(u)

We note that, since every α-demicontractive mappings are α-hemicontractive mappings, the

results obtained in this paper for α-hemicontractive (single and multivalued) mapping also hold

for α-demicontractive mappings provided that the indicated conditions are satisfied. Our results

extend, improve and unify several recent results in the existing literature (e.g.,[1, 2, 3, 12, 17,18]

etc) on approximation of common solution of fixed point problem for nonlinear mappings,

classical variational inequality problem and split equilibrium problems. Theorem 3.2 extends

the results of Meche and Zegeye [2] from Lipshitz hemicontractive-type mappings to the more

general classs of Lipshitz α-hemicontractive mappings.
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