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Abstract. Let Γ be a nonempty index set, and X , Y are complex L ∞(Γ)-type spaces. f : SX , SY will denote their

unit spheres. Give a surjective mapping f : SX → SY satisfying the functional equation

{‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= {‖x+ y‖,‖x− y‖} (x,y ∈ SX )

We show that there exists a function ε : SX → {−1,1} such that ε f is an isometry. Moreover, this isometry is the

restriction of a real linear isometry from X to Y .
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1. INTRODUCTION

The famous Tingley’s problem is important on mathematics. In 1987, Tingley raised a ques-

tion in [10], that is, let X and Y be normed spaces, SX and SY denote their unit spheres. Suppose

f : SX → SY is a surjective isometry, whether f can be extended to a real-linear (bijective) isom-

etry F : X → Y between the corresponding space? In [10], Tingley give the positive solution in
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two finite dimensional Banach spaces, which is f (−x) =− f (x) for every x in the unit spheres

of the domain spaces. For the Tingley’s problem was attracted much attention, someone estab-

lished results in a wide range of classical Banach spaces, such as detailed presentation (G. D in

[1]), `p(Γ) spaces, where 1≤ p≤ ∞ (G.D[2,3,4]), C0(L) spaces (R. Wang [11]), L p(Ω.Σ,µ)

spaces, where 1≤ p≤∞ and (Ω,Σ,µ) is a σ -finite measure space (D. Tan in [16, 17] and [18]).

Recently, the Tingley’s problem on operator algebras’ research was started, like compact

linear operators on a complex Hilbert spaces (A.M. Peralta and R. Tanaka in [15]), finite di-

mensional c∗-algebras and finite VonNeumamn algebras (R. Tanaka in [23]), weakly compact

JB∗-triples and atomic JBW ∗-triples (F.J. Fernández-Polo, A.M. Peralta in [12, 13, 14]). Other

important results may be seen in the references.

Wigner’s theorem is another important conclusion related to linear isometries, which also

plays a fundamental role in quantum mechanics. Wigner’s theorem has may forms, Rätz gives

a real version in inner product spaces. It is that suppose X and Y are real inner product spaces,

define a mapping f : X → Y , then f satisfies

|< f (x), f (y)> |= |< x+ y > | (x,y ∈ X).

if and only if there exists a phase function ε take value in module one scalar such that f (x) =

ε(x)U(x), x ∈ X , where U is a linear isometry.

In the complex version, the solution can be considered to phase equivalent to a linear or

conjugate linear isometry (see [19]). In 2013, G. Maksa and Z. Páles gave a equation of real

version in norm spaces of Wigner’s theorem [7]

{‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= {‖x+ y‖,‖x− y‖} (x,y ∈ X) (1)

Meanwhile, they asked the following question: whether the result remains positive solution

when f : X → Y of satisfies the equation (1) with X and Y being normed but not necessarily

inner product spaces? In the real cases, we have got positive solutions in `p(Γ) spaces with

p≥ 1 and L ∞(Γ) spaces [20].

Combining with the Tingley’s problem and the Wigner’s theorem, we begin to consider a

question: suppose X and Y are complex Banach spaces, define a mapping f : SX→ SY satisfying

the equation (1), where x,y∈ SX , is it phase equivalent to an isometry which is just the restriction
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of a linear isometry from X to Y ? The aim of this paper is to answer the question in complex

L ∞(Γ)-type spaces. Our most results in this paper comes from [5].

2. RESULTS

Throughout this section, we consider the spaces all over the complex field. Let X and Y be

complex Banach spaces, SX and SY will denote their unit spheres respectively. BX will denote

the closed unit ball. Meanwhile, R will denote the real sets, C will denote the complex sets and

T will denote the unit sphere of C. In this paper, the symbols Γ,∆ will be used by nonempty

sets. For a,b ∈ R, we write a∨b = max{a,b} and a∧b = min{a,b}.

Let Γ will be a nonempty set. The space of all bounded complex-valued functions on an index

set Γ equipped with the supremum norm is denoted by `∞(Γ) and any of its subspaces containing

all eγ
′s (γ ∈ Γ) are called L ∞(Γ)-type spaces. For example, the space c0(Γ),c(Γ), `∞(Γ) are

L ∞(Γ)-type spaces. The `∞(Γ)-space is

`∞(Γ) = {x = {ξγ}γ∈Γ : ‖x‖= sup
γ∈Γ

|ξγ |< ∞, ξγ ∈ C, γ ∈ Γ}.

For arbitrary x = {xγ}γ∈Γ ∈ L ∞(Γ), we write x = {xγ}, and omit the subscripts γ ∈ Γ for

simplicity of notation. We use Γx to express the support of x , i.e.,

Γx = {γ ∈ Γ : xγ 6= 0}.

When working with L ∞(Γ) one has to be particulary careful with the meaning of the notations.

The eγ is the vector in L ∞(Γ) having 1 at the γ-th entry and otherwise 0. Given x ∈L ∞(Γ), we

denote the γ-th function value of x by xγ ∈C. The canonical notion of (algebraic) orthogonality

in L ∞(Γ) reads as follows: x,y ∈ L ∞(Γ) are said to be orthogonal or disjoint if xy = 0, or

equivalently Γx∩Γy = /0. The star of x with respect to SL ∞(Γ) is defined by

St(x) = {y : y ∈ SL ∞(Γ),‖y+ x‖= 2}.

Before proving the main Theorem, we will give some Lemmas.

Lemma 2.1. Let X and Y be complex Banach spaces. Suppose that f : SX → SY is a surjective

phase-isometry. Then f (−x) =− f (x) for each x ∈ SX .
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Proof: Fix y in SX and let f (y) =− f (x), since f is phase-isometry mapping, we have

{‖x+ y‖,‖x− y‖}= {‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= {2,0},

which implies y ∈ {x,−x}.

If y = x, then f (x) =− f (x), which means f (x) = 0, leads to contradiction.

So the only positive solution is y =−x. The proof is completed. 2

Our next Lemma gives a characterization of norm-one element in L ∞(Γ) with a single sup-

port.

Lemma 2.2. Let x be a norm-one element in L ∞(Γ). Then Γx is a singleton if and only if the

inequality ‖y− x‖ ≤ 1 holds for all y ∈ St(x).

The idea of the next Lemma comes from [5], whose proof is similar.

Lemma 2.3. Let X =L ∞(Γ) and Y =L ∞(∆). Suppose that f : SX → SY is a surjective phase-

isometry. Then for each γ0 ∈ Γ and α ∈ T, we have ∆ f (αeγ0)
= ∆ f (eγ0)

is a singleton. Moreover,

one the following statements holds:

(1) f (αeγ0) =±α f (eγ0) for every α ∈ T;

(2) f (αeγ0) =±ᾱ f (eγ0) for every α ∈ T.

Proof: We fix γ0 ∈ Γ, α ∈ T. Let us take x ∈ SX such that f (x) ∈ St( f (αeγ0)). Since f is a

phase-isometry,

‖x+αeγ0‖∨‖x−αeγ0‖= ‖ f (x)+ f (αeγ0)‖∨‖ f (x)− f (αeγ0)‖= 2,

which shows that x ∈ ±St(αeγ0).

It follows from Lemma 2.2 that

‖ f (x)− f (αeγ0)‖= ‖x+αeγ0‖∧‖x−αeγ0‖ ≤ 1,

and so ∆ f (αeγ0)
is a singleton. Clearly,

4 = ‖αeγ0 + eγ0‖
2 +‖αeγ0− eγ0‖

2 = ‖ f (αeγ0)+ f (eγ0)‖
2 +‖ f (αeγ0)− f (eγ0)‖

2,
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which assures that ∆ f (αeγ0)
= ∆ f (eγ0)

is a singleton. Suppose that f (αeγ0) = β f (eγ0) for some

β ∈ T. Then it follows from

{|α +1|, |α−1|}= {‖αeγ0 + eγ0‖,‖αeγ0− eγ0‖}

= {‖ f (αeγ0)+ f (eγ0)‖,‖ f (αeγ0)− f (eγ0)‖}

= {|β +1|, |β −1|}

that β ∈ {±α,±α}.

We have shown above that f (ieγ0) =±i f (eγ0) and f (−eγ0) =− f (eγ0) (by Lemma 2.3). Let

us assume that f (αeγ0) = ±α f (eγ0) and f (βeγ0) = ±β f (eγ0) for some α,β ∈ T \ {±1,±i}.

By the assumptions we have

2+2|Re(αβ )|= ‖αeγ0 +βeγ0‖
2∨‖αeγ0−βeγ0‖

2

= ‖ f (αeγ0)+ f (βeγ0)‖
2∨‖ f (αeγ0)− f (βeγ0)‖

2

= |α +β |2∨|α−β |2 = 2+2|Re(αβ )|,

equivalently

|Re(α)Re(β )+ Im(α)Im(β )|= |Re(α)Re(β )− Im(α)Im(β )|

which is impossible because α,β ∈ T \ {±1,±i}. It follows that f (αeγ0) = ±α f (eγ0) for all

α ∈ T, or f (αeγ0) =±α f (eγ0) for all α ∈ T. 2

The next result describes the behaviour of surjective phase-isometries on complex L ∞(Γ)-

type spaces.

Proposition 2.4. Let X = L ∞(Γ) and Y = L ∞(∆). Suppose that f : SX → SY is a surjective

phase-isometry. Then there exists a bijection σ : Γ→ ∆ such that for every x = {xγ} ∈ SX , we

have f (x) = {yσ(γ)} ∈ SY , where
yσ(γ)

|yσ(γ)|
eσ(γ) =± f ( xγ

|xγ |eγ) for every γ ∈ Γx and yσ(γ) = 0, γ /∈ Γx.

Proof: We can define a mapping σ : Γ→ ∆ by Lemma 2.3 (2) that

f (eγ) = αγeσ(γ), αγ ∈ T, ∀γ ∈ Γ.
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First, We shall show that σ is bijective. Let us take γ1,γ2 ∈ Γ and write f (eγ1) = αγ1eσ(γ1) and

f (eγ2) = αγ2eσ(γ2) with αγ1 ,αγ2 ∈ T. If γ1 6= γ2, then

‖ f (eγ1)+ f (eγ2)‖
2 +‖ f (eγ1)− f (eγ2)‖

2

= ‖eγ1 + eγ2‖
2 +‖eγ1− eγ2‖

2

= 1+1 = 2

This implies that σ(γ1) 6= σ(γ2), and thus σ is injective. Next, we would consider that σ is

surjective. Indeed, given δ ∈ ∆, by applying Lemma 2.3 (2) to f−1, we can find some γ ∈ Γ and

α ∈ T such that f (αeγ) = eδ . Therefore, σ is a surjective mapping.

Set

Γ1 := {γ ∈ Γ : f (αeγ) =±α f (eγ),∀α ∈ T}

Γ2 := {γ ∈ Γ : f (αeγ) =±α f (eγ),∀α ∈ T}.

From Lemma 2.3(b), we know that Γ = Γ1∪Γ2 and Γ1∩Γ2 = /0. Fix γ ∈ Γx∩Γ1, the proof of

the case of γ ∈ Γx∩Γ2 holds is same to it. We have shown that

f (αeγ) =±α f (eγ) =±ααγeσ(γ)

for some αγ ∈ T, and so f ( xγ

|xγ |eγ) = seσ(γ), where s = ± xγ

|xγ |αγ . What’s more, for every x =

{xγ} ∈ SX , we have f (x) = {yσ(γ)} ∈ SY . Therefore,

|xγ |+1 = ‖x+
xγ

|xγ |
eγ‖∨‖x−

xγ

|xγ |
eγ‖

= ‖ f (x)+ f (
xγ

|xγ |
eγ)‖∨‖ f (x)− f (

xγ

|xγ |
eγ)‖

= |yσ(γ)+ s|∨ |yσ(γ)− s| ≤ |yσ(γ)|+1,

which shows that |xγ | ≤ |yσ(γ)|. By applying the same argument to f−1, we can obtain |yσ(γ)| ≤

|xγ |, and so |xγ |= |yσ(γ)|. So the previous inequality can become an equality

|yσ(γ)+ s|∨ |yσ(γ)− s|= |yσ(γ)|+ |s|= |yσ(γ)|+1,
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and so yσ(γ) = ± s
|s| |xγ | = ±xγαγ for every γ ∈ Γx ∩Γ1. It is easily to see when γ ∈ Γx ∩Γ2,

s = ± xγ

|xγ |αγ and yσ(γ) = ± s
|s| |xγ | = ±xγαγ . The above argument also shows that yσ(γ ′) = 0 for

every γ ′ ∈ Γ\Γx. The proof is completed. 2

For every x = {xγ} ∈L ∞(Γ), define a mapping τ : L ∞(Γ)→L ∞(Γ).

τ(x)(γ) =


xγ

|xγ | if γ ∈ Γx;

0 if γ ∈ Γ\Γx.

Then we have

τ(x+ y) = τ(x)+ τ(y) and τ(αx) = ατ(x)

for arbitrary two nonzero orthogonal vectors x,y ∈L ∞(Γ) and α ∈ T. It is obviously that x = y

if and only if τ(x) = τ(y) and xγ =±yγ for each γ ∈ Γ, where x,y ∈L ∞(Γ) and x, y nonempty.

The following result will be used to prove a property of f .

Lemma 2.5. Let X =L ∞(Γ) and Y =L ∞(∆). Suppose that f : SX → SY is a surjective phase-

isometry. Then τ ◦ f (x) =± f ◦ τ(x) for every x ∈ SX .

Proof: Proposition 2.4 implies that σ : Γ→ ∆ is bijectiv. For every γ ∈ Γ and x ∈ SX , we can

suppose f (eγ) = αγeσ(γ) with αγ ∈ T. Also, we can get

f (x)σ(γ ′) = f ◦ τ(x)σ(γ ′) = 0, x ∈ SX

for every γ ′ ∈ Γ\Γx. Let us fix γ ∈ Γx. For f is a phase-isometry mapping, we can get

‖ f (x)+ f ◦ τ(x)‖∧‖ f (x)− f ◦ τ(x)‖

= ‖x+ τ(x)‖∧‖x− τ(x)‖

= 1− inf
γ∈Γx
{|xγ |}.

By Proposition 2.4, for every x = {xγ} ∈ SX , f (x) = {yσ(γ)} ∈ SY , we have |yσ(γ)|= |xγ |. Com-

bining with the Proposition 2.4 and the property of τ , we can get

τ ◦ f (x) =± f ◦ τ(x).

2
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Lemma 2.6. Let X =L ∞(Γ) and Y =L ∞(∆). Suppose that f : SX → SY is a surjective phase-

isometry. Then for every x,y ∈ SX with Γx ∩Γy = ∅, and two positive real numbers a, b with

ax+by ∈ SX , there exist two real numbers α and β with |α|= |β |= 1 such that

f (ax+by) = aα(ax,by) f (x)+bβ (ax,by) f (y),

Proof: By Proposition 2.4 and the properties of τ , we should only prove that there exist

α,β ∈ {−1,1} such that

τ ◦ f (ax+by) = ατ ◦a f (x)+βτ ◦b f (y) = ατ ◦ f (x)+βτ ◦ f (y).

for α,β ∈ {−1,1}.

Meanwhile, Lemma 2.5 implies that the equality is equivalent to

f ◦ τ(ax+by) = f ◦ (τ(x)+ τ(y)) = α(x,y) f ◦ τ(x)+β (x,y) f ◦ τ(y),

where α(x,y),β (x,y) ∈ {−1,1}.

Let σ : Γ→ ∆ be the bijection from Proposition 2.4. We can write

f ◦ τ(x) = {wσ(γ)}, f ◦ τ(y) = {vσ(γ)}, f ◦ τ(x+ y) = {w′
σ(γ)+ v′

σ(γ)},

where wσ(γ)=±w′
σ(γ) ∈T for every γ ∈Γx and vσ(γ)=±v′

σ(γ) ∈T for every γ ∈Γy respectively.

Thus

‖ f ◦ τ(x+ y)+ f ◦ τ(x)‖∧‖ f ◦ τ(x+ y)− f ◦ τ(x)‖= ‖τ(x+ y)+ τ(x)‖∧‖τ(x+ y)− τ(x)‖= 1.

It follows that {w′
σ(γ)}=± f ◦ τ(x), and similarly {v′

σ(γ)}=± f ◦ τ(y). This shows that

f ◦ τ(x+ y) = α(x,y) f ◦ τ(x)+β (x,y) f ◦ τ(y)

for some α(x,y),β (x,y) ∈ {−1,1}, which completes the proof. 2

Lemma 2.7. Let X =L ∞(Γ) and Y =L ∞(∆). Suppose that f : SX → SY is a surjective phase-

isometry. For every x,y ∈ SX with Γx∩Γy =∅, we write f (x+ y) = α(x,y) f (x)+β (x,y) f (y),

where α(x,y),β (x,y) ∈ {−1,1}. Then

α(x,y)β (x,y) = α(−x,y)β (−x,y) = α(x,−y)β (x,−y).
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Proof: For this conclusion, we only need to check

α(x,y)β (x,y) = α(−x,y)β (−x,y).

From Lemma 2.5, we have known

τ ◦ f (x) =± f ◦ τ(x),

where x ∈ SX . Therefore,

τ ◦ f (x+ y) = α(x,y)τ ◦ f (x)+β (x,y)τ ◦ f (y), α(x,y),β (x,y) ∈ {−1,1},

τ ◦ f (−x+ y) = α(−x,y)τ ◦ f (−x)+β (−x,y)τ ◦ f (y), α(−x,y),β (−x,y) ∈ {−1,1}.

Combining with Lemma 2.1 and Lemma 2.5, we can get

2 = ‖τ(x+ y)+ τ(−x+ y)‖∧‖τ(x+ y)− τ(−x+ y)‖

= ‖ f ◦ τ(x+ y)+ f ◦ τ(−x+ y)‖∧‖ f ◦ τ(x+ y)− f ◦ τ(−x+ y)‖

= ‖τ ◦ f (x+ y)+ τ ◦ f (−x+ y)‖∧‖τ ◦ f (x+ y)− τ ◦ f (−x+ y)‖

= ∧{‖β (x,y)τ ◦ f (x+ y)±β (−x,y)τ ◦ f (−x+ y)‖}

= ‖α(x,y)β (x,y)τ ◦ f (x)−α(−x,y)β (−x,y)τ ◦ f (−x)‖

= |α(x,y)β (x,y)+α(−x,y)β (−x,y)|,

which shows that α(x,y)β (x,y) = α(−x,y)β (−x,y). The proof is completed. 2

Define a mapping F , which is the natural extension of f from X to Y . For arbitrary x ∈ X ,

defined by

F(x) =


‖x‖ f ( x

‖x‖), if x 6= 0,

0, if x = 0.

Theorem 2.8. Let X =L ∞(Γ) and Y =L ∞(∆), suppose that f : SX → SY is a surjective phase

isometry. Then its extension mapping which on the whole space is phase equivalent to a real

linear isometry.
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Proof: In order to complete the proof, we should prove that F , the extension of f , is phase

equivalent to a real linear isometry. Lemma 2.3 implies that for every γ0 ∈ Γ and all α ∈ T, we

have f (αeγ0) = ±α f (eγ0) for all α ∈ T or f (αeγ0) = ±ᾱ f (eγ0) for all α ∈ T. We shall only

prove the case in which f (αeγ0) =±α f (eγ0) for all α ∈ T, the other statement is very similar.

Set

Z := {x ∈ X : x · eγ0 = 0} and W := {y ∈ Y : y · f (eγ0) = 0}.

Clearly,

X = Z⊕∞ Ceγ0 and Y =W ⊕∞ C f (eγ0).

We can also define the unit spheres of Z and W are

SZ := {x ∈ SX : x · eγ0 = 0} and SW := {y ∈ SY : y · f (eγ0) = 0}.

It is easily to see

SX = {az+beγ0 : z ∈ SZ,a ∈ R,b ∈ C, |a|∨ |b|= 1}

and

SY = {a f (z)+b f (eγ0) : f (z) ∈ SW ,a ∈ R,b ∈ C, |a|∨ |b|= 1}.

By Proposition 2.4, the restricted mapping f |SZ : SZ → SW is a surjective phase-isometry.

Lemma 2.6 implies that

f (z+ eγ0) = α(z,eγ0) f (z)+β (z,eγ0) f (eγ0), α(z,eγ0),β (z,eγ0) ∈ {−1,1}

for each z ∈ SZ . Define a mapping g : SZ → SW given by

g(z) = α(z,eγ0)β (z,eγ0) f (z)

for each z ∈ SZ . It is easily seen that g(z) = ± f (z) for each z ∈ SZ . Applying Lemma 2.7 we

have

α(z,eγ0)β (z,eγ0) = α(−z,eγ0)β (−z,eγ0), (z ∈ SZ).

This shows that g(−z) = −g(z), and so g is surjective. We will prove that g is a surjective

isometry. Given z1,z2 ∈ SZ , we can write



EXTENSION OF PHASE-ISOMETRIES BETWEEN THE UNIT SPHERES OF COMPLEX L ∞(Γ) SPACES 11

f (z1 + eγ0) = α(z1,eγ0) f (z1)+β (z1,eγ0) f (eγ0), α(z1,eγ0),β (z1,eγ0) ∈ {−1,1},

f (z2 + eγ0) = α(z2,eγ0) f (z2)+β (z2,eγ0) f (eγ0), α(z2,eγ0),β (z2,eγ0) ∈ {−1,1},

then

‖g(z1)−g(z2)‖ = ‖z1 + z2 +2eγ0‖∧‖z1− z2‖

= ‖ f (z1 + eγ0)+ f (z2 + eγ0)‖∧‖ f (z1 + eγ0)− f (z2 + eγ0)‖

= ∧‖β (z1,eγ0) f (z1 + eγ0)±β (z2,eγ0) f (z2 + eγ0)‖

= ‖α(z1,eγ0)β (z1,eγ0) f (z1)−α(z2,eγ0)β (z2,eγ0) f (z2)‖

= ‖z1− z2‖,

which shows that g is an isometry.

Give a mapping G : Z→W

G(z0) = α(
z0

‖z0‖
,eγ0)β (

z0

‖z0‖
,eγ0)F(z0),

where z0 ∈ Z. Since g is a surjective isometry, by [21,Theorem 1.1], G, the extension of g, is a

real linear isometry.

Define a mapping f̃ : SX → SY , given by

f̃ (az+beγ0) = ag(z)+b f (eγ0),

where z ∈ SZ , a ∈ R, b ∈ C, |a| ∨ |b| = 1. We will show f̃ (x) is a surjective isometry. We first

prove f̃ (x) is an isometry.

Assume x1 = a1z1 + b1eγ0 , x2 = a2z2 + b2eγ0 , where x1,x2 ∈ SX , z1,z2 ∈ SZ , |a1| ∨ |b1| = 1,

|a2|∨ |b2|= 1, a1,a2 ∈ R, b1,b2 ∈ C. Then
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‖ f̃ (x1)− f̃ (x2)‖

= ‖a1g(z1)−a2g(z2)‖∨ |b1−b2|

= ‖G(a1z1)−G(a2z2)‖∨ |b1−b2|

= ‖a1z1−a2z2‖∨ |b1−b2|

= ‖x1− x2‖,

Then we will prove f̃ (x) is surjective. It remains to prove that f (x) = ± f̃ (x) for every x ∈ SX .

Given z ∈ SZ , by Lemma 2.6, we have

f̃ (az+beγ0) = aα(z,eγ0)β (z,eγ0) f (z)+b f (eγ0), α(z,eγ0),β (z,eγ0) ∈ {−1,1},

f (az+beγ0) = aα(az,beγ0) f (z)+bβ (az,beγ0) f (eγ0), α(az,beγ0),β (az,beγ0) ∈ {−1,1},

where a ∈ R, b ∈ C, |a|∨ |b|= 1 and z ∈ SZ .

Next we want to know that

α(az,beγ0)β (az,beγ0) = α(z,eγ0)β (z,eγ0).

We need two steps to finish this conclusion.

We first to show α(az,beγ0)β (az,beγ0) = α(z, b
|b|eγ0)β (z,

b
|b|eγ0).

{|1+a|∨ |b|+1, |1−a|∨1−|b|}

= {‖(az+beγ0)+(z+
b
|b|

eγ0)‖,‖az+beγ0− (z+
b
|b|

eγ0)‖}

= {‖ f (az+beγ0)+ f (z+
b
|b|

eγ0)‖,‖ f (az+beγ0)− f (z+
b
|b|

eγ0)‖}

= {‖β (az,beγ0) f (az+beγ0)±β (z,
b
|b|

eγ0) f (z+
b
|b|

eγ0)‖}

= {‖(aα(az,beγ0)β (az,beγ0) f (z)+b f (eγ0))± (α(z,
b
|b|

eγ0)β (z,
b
|b|

eγ0) f (z)+
b
|b|

f (eγ0))‖}

= {|aα(az,beγ0)β (az,beγ0)+α(z,
b
|b|

eγ0)β (z,
b
|b|

eγ0)|∨1+ |b|,

|aα(az,beγ0)β (az,beγ0)−α(z,
b
|b|

eγ0)β (z,
b
|b|

eγ0)|∨1−|b|}
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which shows α(az,beγ0)β (az,beγ0) = α(z, b
|b|eγ0)β (z,

b
|b|eγ0).

Next we will show α(z,eγ0)β (z,eγ0) = α(z, b
|b|eγ0)β (z,

b
|b|eγ0). If | b

|b| +1| 6= | b
|b| −1| or b 6= it

for t ∈ R, |t| ≤ 1, then we get the desired equation

{2, |1− b
|b|
|}= {‖(z+ eγ0)+(z+

b
|b|

eγ0)‖,‖z+ eγ0− (z+
b
|b|

eγ0)‖}

= {‖ f (z+ eγ0)+ f (z+
b
|b|

eγ0)‖,‖ f (z+ eγ0)− f (z+
b
|b|

eγ0)‖}

= {‖β (z,eγ0) f (z+ eγ0)±β (z,
b
|b|

eγ0) f (z+
b
|b|

eγ0)‖}

= {‖(α(z,eγ0)β (z,eγ0) f (z)+ f (eγ0))± (α(z,
b
|b|

eγ0)β (z,
b
|b|

eγ0) f (z)+
b
|b|

f (eγ0))‖}

= {|α(z,eγ0)β (z,eγ0)+α(z,
b
|b|

eγ0)β (z,
b
|b|

eγ0)|∨ |1+
b
|b|
|,

|aα(z,eγ0)β (z,eγ0)−α(z,
b
|b|

eγ0)β (z,
b
|b|

eγ0)|∨ |1−
b
|b|
|},

which shows α(z,eγ0)β (z,eγ0) = α(z, b
|b|eγ0)β (z,

b
|b|eγ0).

Now assume that b = it for t ∈ R, |t| ≤ 1. Choose θ ∈ T \ {±1,±i}. Following a similar

argument as above, we get

{2, | b
|b|
−θ |}= {‖(z+ b

|b|
eγ0)+(z+θeγ0)‖,‖

b
|b|

eγ0−θeγ0‖}

= {‖ f (z+
b
|b|

eγ0)+ f (z+θeγ0)‖,‖ f (z+
b
|b|

eγ0)− f (z+θeγ0)‖}

= {‖β (z, b
|b|

eγ0) f (z+
b
|b|

eγ0)±β (z,θeγ0) f (z+θeγ0)‖}

= {|α(z,
b
|b|

eγ0)β (z,
b
|b|

eγ0)+α(z,θeγ0)β (z,θeγ0)|∨ |
b
|b|

+θ |,

|α(z,
b
|b|

eγ0)β (z,
b
|b|

eγ0)−α(z,θeγ0)β (z,θeγ0)|∨ |
b
|b|
−θ |}.

Since | b
|b| −θ | 6= | b

|b| +θ |, we obtain

α(z,
b
|b|

eγ0)β (z,
b
|b|

eγ0) = α(z,θeγ0)β (z,θeγ0).

Thus we get α(z,eγ0)β (z,eγ0) = α(az,beγ0)β (az,beγ0), which shows f (x) = ± f̃ (x) for every

x ∈ SX .
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What’s more,

f̃ (−x) = f̃ (−az−beγ0)

= ag(−z)+b f (−eγ0)

= −ag(z)−b f (eγ0)

= − f̃ (x),

which shows f̃ (−x) =− f̃ (x) for every x ∈ SX . Thus f̃ (x) is a surjective isometry.

By [21,Theorem 1.1], we have known F̃(x), the extension of f̃ (x) is a real linear isometry,

and F(x) is phase equivalent to F̃(x), the proof is completed. 2
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