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Abstract. We apply Sadovskii fixed point theorem for the existence of solutions of the operator equation x−T x =

f .
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1. INTRODUCTION AND PRELIMINARIES

We recall some definitions.

Definition 1. [1] Let (M,ρ) denote a complete metric space and let B denote the collection

of nonempty and bounded subsets of M. Define the Kuratowski measure of noncompactness

α : B→ R+ by taking for A ∈B,

α(A)=inf{ε > 0 A is contained in the union of a finite number of sets in B each

having diameter less than ε}.

If M is a Banach space the function α has the following properties for A,B ∈B
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1. α(A) = 0⇔ A is compact,

2. α(A+B)≤ α(A)+α(B).

Definition 2. [2] Let K be a subset of a metric space M. A mapping T : K →M is said to be

condensing if T is bounded and continuous and if

α(T (D)) < α(D)

for all bounded subsets D of M for which α(D) > 0.

We state the Sadovskii fixed point theorem.

Theorem 1. [2] Let K be a nonempty, bounded closed and convex subset of a Banach space

and let T : K→ K be a condensing mapping, then T has a fixed point.

2. MAIN THEOREM

The main result of this paper is the following:

Theorem 2. Let X be an arbitrary Banach space, let f ∈ X and T : X → X be a condensing

mapping, then the operator equation

x−T x = f

has a solution if and only if for any x0 ∈ X, the sequence of Picard iterates {xn} in X, defined

by xn+1 = T xn + f , n ∈ N0 is bounded.

Proof. Let the mapping Tf : X → X be defined by

Tf (u) = Tu+ f .

Then u is a solution of the operator equation

x−T x = f

if and only if u is a fixed point of Tf .

Since T is bounded and continuous, Tf is also bounded and continuous. Using the properties of

the Kuratowski measure of noncompactness, for all bounded subsets D of X , we have

α(Tf (D)) = α(T (D)+{ f}) ≤ α(T (D))+α({ f}).
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Since { f} is compact, { f} is compact, implying α({ f}) = 0, giving

α(Tf (D)) ≤ α(T (D)) < α(D).

Since T is condensing mapping and it follows that Tf is a condensing mapping.

Suppose Tf has a fixed point u in X . Then for all n ∈N, since Tf is a continuous mapping being

condensing, we get

‖xn+1−u‖= ‖T xn + f −u‖= ‖Tf (xn)−Tf (u)‖ ≤ ‖xn−u‖.

Hence {xn} is bounded.

Conversely, suppose that {xn} is bounded. Let d = diam({xn}) and for each x ∈ X

Bd[x] = {y ∈ X : ‖x− y‖ ≤ d}.

Set Cn =
⋂

i≥n Bd[xi], then Cn is a nonempty convex set for each n. Using that T is a continuous

mapping and the given Picard iteration, we have

y ∈ Bd[xn]⇒‖y− xn‖ ≤ d

⇒‖Ty−T xn‖ ≤ d

⇒‖Ty− [xn+1− f ]‖ ≤ d

⇒‖(Ty+ f )− xn+1‖ ≤ d

⇒ (Ty+ f ) ∈ Bd[xn+1].

Applying this, we get the following

Tf (Cn) = Tf (
⋂
i≥n

Bd[xi])

⊆
⋂
i≥n

Tf (Bd[xi])

=
⋂
i≥n

{Tf (y) : ‖y− xi‖ ≤ d}

=
⋂
i≥n

{(Ty+ f ) : ‖y− xi‖ ≤ d}

⊆
⋂

i≥n+1

Bd[xi] =Cn+1.
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Let us define

C =
⋃

n∈N
Cn.

Since Cn increases with n,

Cn ⊂Cn+1 ⊂Cn+2 ⊂ .......,

it follows that C is a closed, convex and bounded subset of X . Now we have

Tf (C) = Tf

(⋃
n∈N

Cn

)
⊆ Tf

(⋃
n∈N

Cn

)
=
⋃

n∈N
Tf (Cn)⊆

⋃
n∈N

Cn+1 =C

giving Tf : C→C since Tf is continuous mapping.

Finally, applying the Sadovskii fixed point theorem to Tf and C, we obtain that Tf has a fixed

point in C which proves the theorem. �
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