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1. INTRODUCTION AND PRELIMINARIES

It well known that Banach contraction principle was published in 1922 by S. Banach as

follows:

Theorem 1. Let (X ,d) be a complete metric space and a self mapping T : X −→ X . T is said

to be contraction if there exist k ∈ [0,1) such that for all x,y ∈ X, d(T x,Ty) ≤ kd(x,y) then T

has a unique fixed point in X .

The Banach contraction principle has been extensively studied in various spaces and different

generalizations were proposed. See for example [1,3,9,10,13,14,15] .

In 2006, Mustapha and Sims[4] introduced a new concept of generalized metric space called

G-metric space and studied the fixed point result for a self-mapping in G-metric space.
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In 2020 Sabiri and all [12] introduced a new concept of the measure between p-points where

p≥ 2 and studied convergence and existence results of best proximity points for p-cyclic con-

traction in (S) convex metric space.

In 2021 Sabiri and all [13] proved the existence and uniqueness for a fixed point for various

types of tricyclic contractions.

In 1970 W. Takahashi [2] intoduced the notion of convex structure in meric space as follows :

Definition 2. ([2]) Let (X ,d) be metric space, a mapping W : X×X× I −→ X is to be a convex

structure on X provided that

d (u,W (x,y,λ ))≤ λd (u,x)+(1−λ )d (u,y) for all u,x,y ∈ X and λ ∈ I := [0,1] .

A metric space (X ,d) with a convex structure W is called a convex metric space and is

denoted by (X ,d,W ) .

In 2019 Isa Yildirim and al ([8]) gave an analogue to definition of convex structure in G-

metric space of Takahashi as follows:

Definition 3. ([8])Let (X ,G) be a G-metric space. A mapping W : X2× I2 −→ X is termed as a

convex structure on X if

G(W (x,y;λ ,β )u,v) ≤ λG(x,u,v)+ βG(y,u,v) for real numbers λ and β in I = [0,1] sat-

isfying λ +β = 1 and x,y,u and v ∈ X .

In 2008, 2009 and 2010 Mustapha, Z. and all in [([5]) ,([6]) ,([7])] studied existence and

uniquness of fixed point of contractive mapping defined on a G-metric space.

Theorem 4. ([5])Let (X ,G) be a G-metric space and let T : X −→ X be a mapping such that

T satisfies the following conditions:

G(T x,Ty,T z)≤ aG(x,y,z)+bG(x,T x,T x)+ cG(y,Ty,Ty)+dG(z,T z,T z)

or

G(T x,Ty,T z)≤ aG(x,y,z)+bG(x,x,T x)+ cG(y,y,Ty)+dG(z,z,T z)

for all x,y,z ∈ X where 0 < a+b+ c+d < 1.

Then T has a unique fixed point (say u,i.e., Tu = u), and T is G-continuous at u.
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Theorem 5. ([6])Let (X ,G) be a G-metric space and let T : X −→ X be a mapping such that

T satisfies the following conditions:

(1) G(T x,Ty,T z) ≤ aG(x,T x,T x)+ bG(y,Ty,Ty)+ cG(z,T z,T z) for all x,y,z ∈ X where

0 < a+b+ c < 1,

(2) T is G-continuous at u ∈ X ,

(3) there is x ∈ X ; {T nx} has a subsequence {T nix} G-converges to u.

Then u is the unique fixed point of T.

Very recently with d the standard metric, we define a new distance as follows.

Definition 6. ([12])Let a metric space (X ,d), and anteger p > 2,

Dp : X p −→ R+,(x1,x2, ....,xp) 7−→ Dp (x1,x2, ....,xp) =
∑
i< j

d(xi,x j) for 1≤ i, j ≤ p.

We have:

Dp (x1,x2, ....,xp) = 0⇐⇒ xi = xi+1 for all xi ∈ X and 1≤ i≤ p−1

0 < Dp (x,x, ....x,y) = Dp (y,y, ....y,x) = (p−1)d(x,y) for all x,y ∈ X with x 6= y

Dp (x1,x2, ....,xp)=Dp
(
xp,xp−1, ....,x1

)
=Dp

(
xp,x1, ....,xp−1

)
= ....(symetry in all p-variables)

Dp (x1,x1, ....,x2)≤ Dp (x1,x2, ....,xp) for all xi ∈ X and 1≤ i≤ p with xi 6= x2,3≤ i≤ p.

Then the fonction Dp is called a generelized metric or more specifically, Dp-metric space on X ,

and the pair (X ,Dp) is called a Dp-metric space.

Definition 7. Let (X ,Dp) be a Dp-metric space and let {xn} a sequence in X and let x ∈ X . We

say that {xn} converge to x if lim
n−→+∞

Dp (x,xn,xn+i....,xn+i) = 0 for all i≥ 1.We say that {xn} is

Dp-convergent to x.

Proposition 8. Let (X ,Dp) be a Dp-metric space, then the following are equivalent.
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[i] {xn} is Dp-convergent to x.

[ii] lim
n−→+∞

Dp(xn,x....,x) = 0

[iii] lim
n−→+∞

Dp(xn,xn, ....xn,x) = 0.

In this work, using the famous definition of convexity of Takahashi [2] and inspired by the

ideas given in [4,5,6,7,8]. we give a new and more pratical definition of convex structure and

we generalize some results and give some fixed point results in Dp-metric space, where p≥ 3.

2. MAIN RESULTS

Theorem 9. Let (X ,d) a complete metric space and a map T : X −→ X such that

Dp (T x1,T x2, ....,T xp) ≤ a0Dp (x1,x2, ....,xp) +
p∑

i=1
aiDp (xi,T xi, ....,T xi) for all xi ∈ X and 0

≤ ai and 0≤
p∑

i=0
ai < 1. Then T has a unique fixed point z ∈ X : T z = z and T is continuous at

z.

Proof. Let x,y ∈ X , we have:

Dp (T x,Ty, ....,Ty)≤ a0Dp (x,y, ....,y)+a1Dp (x,T x, ....,T x)+
p∑

i=2

aiDp (y,Ty, ....,Ty)

and

Dp (Ty,T x, ....,T x)≤ a0Dp (y,x, ....,x)+a1Dp (y,Ty, ....,Ty)+
p∑

i=2

aiDp (x,T x, ....,T x)

implies that

2(p−1)d(T x,Ty)≤ a02(p−1)d(x,y)+
p∑

i=1

aiDp (x,T x, ....,T x)+
p∑

i=1

aiDp (y,Ty, ....,Ty)

then

d(T x,Ty)≤ a0d(x,y)+
1
2

p∑
i=1

ai(d(x,T x)+d(y,Ty)) for all x,y ∈ X .

Let x0 ∈ X and put xn+1 = T xn n = 0,1,2....

We have

d(xn,xn+1)= d(T nx0,T n+1x0)≤ a0d(T n−1x0,T nx0)+
1
2

p∑
i=1

ai(d(T nx0,T n+1x0)+d(T n−1x0,T nx0))

⇐⇒ d(T nx0,T n+1x0)(1−
1
2

p∑
i=1

ai)≤ (a0 +
1
2

p∑
i=1

ai)d(T n−1x0,T nx0))
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⇐⇒ d(T nx0,T n+1x0)(2−
p∑

i=1

ai)≤ (2a0 +

p∑
i=1

ai)d(T n−1x0,T nx0))

⇐⇒ d(T nx0,T n+1x0)≤ td(T n−1x0,T nx0) with t =
2a0 +

p∑
i=1

ai

2−
p∑

i=1
ai

< 1.

Then

d(T nx0,T n+1x0)≤ tnd(x0,T x0)

implies that

∀m > n,d(T mx0,T nx0)≤
tn

1− t
d(x0,T x0).

Then {xn} is a Cauchy sequence in a complete metric space (X ,d). So there exist z ∈ X such

that lim
n−→+∞

T nx0 = z.

Now we will show that lim
n−→+∞

T n+1x0 = T z.

We have

d(T n+1x0,T z)≤ a0d(T nx0,z)+
1
2

p∑
i=1

ai(d(T nx0,T n+1x0)+d(z,T z))

implies that

lim
n−→+∞

d(T n+1x0,T z) = d(z,T z)≤ 1
2

p∑
i=1

ai(d(z,T z))< d(z,T z)

then lim
n−→+∞

T n+1x0 = T z.

Now we prove the uniqueness fixed point. Let z1,z2 be two fixed points such that z1 6= z2.

Then

d(z1,z2) = d(T z1,T z2)≤ a0d(z1,z2)+
1
2

p∑
i=1

ai(d(z1,T z1)+d(z2,T z2)) = a0d(z1,z2).

As d(z1,z2)> 0 we have 1 < a0, a contradiction.

To show that T is continuous at z, let (zn)⊆ X be a sequence such that lim
n−→+∞

(zn) = z.

We have

d(z,T zn) = d(T z,T zn)≤ a0d(z,zn)+
1
2

p∑
i=1

ai(d(z,T z)+d(zn,T zn))
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⇐⇒

d(z,T zn)≤ a0d(z,zn)+
1
2

p∑
i=1

aid(zn,T zn)

≤ a0d(z,zn)+
1
2

p∑
i=1

ai(d(zn,z)+d(z,T zn)).

Then

d(z,T zn)≤
(a0 +

1
2

p∑
i=1

ai)

(1− 1
2

p∑
i=1

ai)

d(z,zn).

Us lim
n−→+∞

(zn) = z, then T is continuous at z. �

Corollary 10. Let (X ,d) a complete metric space and a map T : X −→ X such that

Dp (T x1,T x2, ....,T xp) ≤ a0Dp (x1,x2, ....,xp) + a1

p∑
i=1

Dp (xi,T xi, ....,T xi) for all xi ∈ X and 0

≤ a0 + pa1 < 1 then T has a unique fixed point z ∈ X : T z = z.

Example 11. For p = 3 let X = R the complete metric space with d the standard metric

d(x,y) = |x− y| where x,y ∈ X and the self map

T : X −→ X such that T x =
x
6

we take

a0 =
1

12
, a1 = a2 = a3 = a4 =

1
5
.

We have

D3 (T x1,T x2,T x3) =
1
6

(
∑

1≤i< j≤3

∣∣xi− x j
∣∣)

a0D3 (x1,x2,x3) =
1

12
(
∑

1≤i< j≤3

∣∣xi− x j
∣∣)

and

a1

3∑
i=1

D3 (xi,T xi,T xi,) =
1
3
(

3∑
i=1

|xi|)

us |x− y| ≤ |x|+ |y| for all x,y ∈ R we have:

1
6

(
∑

1≤i< j≤3

∣∣xi− x j
∣∣)≤ 1

12
(
∑

1≤i< j≤3

∣∣xi− x j
∣∣)+ 1

3
(

3∑
i=1

|xi|)
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So

D3 (T x1,T x2,T x3)≤ a0D3 (x1,x2,x3)+a1(
3∑

i=1

D3 (xi,T xi,T xi)

for all xi ∈ X and 0 ≤ a0 +4a1 < 1.

Then T has a unique fixed point z = 0 : T z = z.

Corollary 12. Let (X ,d) a complete metric space and a map T : X −→ X such that

d(T x,Ty) ≤ a0d(x,y)+a1(d(x,T x)+d(y,Ty)) for all x,y ∈ X and 0 ≤ a0 +2a1 < 1 then T

has a unique fixed point z ∈ X : T z = z.

In the following theorem we will prove the existence and the uniquness of fixed point without

completeness property in a metric space (X ,d) .

Theorem 13. Let (X ,d) a metric space and a map T : X −→ X such that:

(1) Dp (T x1,T x2, ....,T xp) ≤
p∑

i=1
aiDp (xi,T xi, ....,T xi) for all xi ∈ X where 0 ≤ ai and 0 <

p∑
i=1

ai < 1 .

(2) There is x ∈ X such that {T nx} has a subsequence {T nkx} converge to z.

(3) T is continuous at point z ∈ X .

Then T has a unique fixed point z ∈ X : T z = z.

Proof. We have T is continuous at point z and {T nkx} converge to z wich implies that {T nk+1x}

converge to T z. Assume T z 6= z. For 0 < ε < 1
3d(z,T z) there exist N0 ∈ N such that if k > N0

we have

d(z,T nkx)< ε and d(T z,T nk+1x)< ε.

Then

ε <
1
3

d(z,T z)≤ 1
3
[
d(z,T nkx)+d(T nkx,T nk+1x)+d(T z,T nk+1x)

]
=⇒ 3ε < 2ε +d(T nkx,T nk+1x)

ε < d(T nkx,T nk+1x)≤ Dp
(
T nkx,T nk+1x, ....,T nk+1x

)
for k > N0.
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(1) implies

Dp
(
T nk+1x,T nk+2x, ...,T nk+px

)
≤ a1Dp

(
T nkx,T nk+1x, ...,T nk+1x

)
+

p∑
i=2

aiDp
(
T nk+i−1x,T nk+1x, ...,T nk+1x

)

≤ a1Dp
(
T nkx,T nk+1x, ...,T nk+1x

)
+

p∑
i=2

aiDp
(
T nk+1x,T nk+2x, ...,T nk+px

)
.

Then

Dp
(
T nk+1x,T nk+2x, ...,T nk+px

)
≤ tDp

(
T nkx,T nk+1x, ...,T nk+1x

)
with 0 < t = a1

1−
p∑

i=2
ai

< 1, since 0 <
p∑

i=1
ai < 1.

Then

Dp
(
T nk+1x,T nk+2x, ...,T nk+2x

)
≤ Dp

(
T nk+1x,T nk+2x, ...,T nk+px

)
≤ tDp

(
T nk x,T nk+1x, ...,T nk+1x

)

Consequently

d
(
T nk+1x,T nk+2x

)
≤ td

(
T nkx,T nk+1x

)
for k > N0.

Similarly we have

d
(
T nk+ jx,T nk+ j+1x

)
≤ td

(
T nk+ j−1x,T nk+ jx

)
for k > N0 and j ≥ 1.

Then For l > k > N0 we have:

d
(
T nl x,T nl+1x

)
≤ td

(
T nl−1x,T nl x

)
≤ t2d

(
T nl−2x,T nl−3x

)
≤ ....≤ t l−kd

(
T nkx,T nk+1x

)
Then

lim
l−→+∞

d
(
T nl x,T nl+1x

)
= 0⇐⇒ d(z,T z) = 0

which a contradiction, hence T z = z.

�

Theorem 14. Let (X ,d) a complete metric space and a map T : X −→ X such that

Dp (T x1,T x2, ...,T xp)≤ k max
1≤i≤p

Dp (xi,T xi, ...,T xi) for all xi ∈ X and 0 ≤ k < 1, then T has a

unique fixed point z ∈ X : T z = z.
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Proof. Let x,y ∈ X we have:

Dp (T x,Ty, ...,Ty)≤ k max(Dp (x,T x, ...,T x) ,Dp (y,Ty, ...,Ty))

⇐⇒

d (T x,Ty)≤ k max(d (x,T x) ,d (y,Ty)).

If d (x,T x)≥ d (y,Ty) let x0 ∈X and put y=T nx0 and x=T n−1x0 for n≥ 1. Then d
(
T nx0,T n+1x0

)
≤

kd(T n−1x0,T nx0)≤ knd(x0,T x0).

Implies that the sequence {T nx0} is a Cauchy in a complete metric space (X ,d),

If d (y,Ty) ≥ d (x,T x) ,we put x = T nx0 and y = T n−1x0 and we have olso the sequence

{T nx0} is a Cauchy in a complete metric space (X ,d) , then there exist z∈X such that lim
n−→+∞

T nx0 =

z.

Now we will show that z = T z.

We have

d
(
T n+1x0,T z

)
≤ k max(d(T nx0,T n+1x0),d(z,T z))

as T is continuous and lim
n−→+∞

T nx0 = z. Then d(z,T z)≤ kd(z,T z), this implies that z = T z.

Now we prove the uniqueness fixed point. Let z1,z2 be two fixed points.

Then d(z1,z2) = d(T z1,T z2)≤ k max(d(z1,T z1),d(z2,T z2)) = 0 =⇒ z1 = z2. �

Example 15. For p = 3 let X = [0,1] the metric space with the usiel norme d(x,y) = |x− y| ,

and the self map

T : X −→ X such that T x =
x
3

we have

D3 (T x1,T x2,T x3) =
1
3

(
∑

1≤i< j≤3

∣∣xi− x j
∣∣)

and

maxD3 (xi,T xi,T xi) = D3 (1,T (1) ,T (1)) =
4
3

for all xi ∈ X

For k = 3
4 , we have

D3 (T x1,T x2,T x3)≤ k maxD3 (xi,T xi,T xi)∀xi ∈ X .

Then T has a unique fixed point z = 0 : T z = z.
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Definition 16. Let a (X ,Dp) be Dp-metric space a map

W : X p−1× Ip−1 −→ X

is to be a convex structure on X if:

Dp
(
W
(
x1,x2, ....,xp−1;λ 1,λ 2, ...,λ p−1

)
),u2, ....,up

)
≤

p−1∑
i=1

λ iDp(xi,u2....,up)

with
p−1∑
i=1

λ i = 1, λ i ∈ I := [0,1] and xi ∈ X for i = 1, ...p−1 ; u j ∈ X for j = 2, ..., p.

(X ,Dp,W ) is called a convex Dp-metric space. A subset C of a convex Dp-metric space is said

to be a convex if W
(
x1,x2, ....,xp−1;λ 1,λ 2, ...,λ p−1

)
∈C for all xi ∈C , λ i ∈ I , i = 1, ...p−1.

Definition 17. Let (X ,Dp,W ) be convex Dp-metric space and T : X −→ X be a mapping. Let

α i
n ∈ [0,1] with

p−2∑
i=0

α i
n = 1 and n ∈ N. For x0 ∈ X, we define the sequence {xn} by :

((1)) xn+1 =W (xn,T xn, ....T xn;α
0
n,α

1
n, ...,α

p−2
n )

is called Mann iterative process in the convex metric space (X ,Dp,W ) .

Then we have :

Dp(xn+1,u2,u3, ....up) = Dp(W (xn,T xn, ....T xn;α
0
n,α

1
n, ...α

p−2
n ),u2,u3, ....,up)

≤ α
0
nDp(xn,u2,u3, ....up)+

p−2∑
i=1

α
i
nDp(T xn,u2, ....,up)

= α
0
nDp(xn,u2,u3, ....,up)+

(
1−α

0
n
)

Dp(T xn,u2....,up)

Theorem 18. Let (X ,Dp,W ) be a convex Dp-metric space and T : X −→ X be a mapping such

that Dp (T x1,T x2, ....,T xp) ≤ a0Dp (x1,x2, ....,xp)+
p∑

i=1
aiDp (xi,T xi, ....,T xi) for all xi ∈ X , 0

≤ ai, and 0 ≤
p∑

i=0
ai < 1 and let z a fixed point for T . Let {xn} defined by :(1) with

∞∑
n=0

α i
n = ∞

and
p−2∑
i=0

α i
n = 1 then {xn} converges to fixed point of T.
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Proof. We have:

Dp(xn+1,z,z, ....,z) = Dp(W (xn,T xn, ....T xn;α
0
n,α

1
n, ...,α

p−2
n ),z,z, ...,z))

≤ α
0
nDp(xn,z,z, ....z)+

p−2∑
i=1

α
i
nDp(T xn,z....,z)

We know that

Dp(T xn,z....,z) = Dp(T xn,T z....,T z)≤ a0Dp (xn,z, ....,z)+a1Dp(xn,T xn, ....T xn)

≤ a0Dp (xn,z, ....,z)+a1(Dp(xn,z, ....,z)+Dp(z,z, ...,z,T xn))

≤ a0Dp (xn,z, ....,z)+a1(Dp(xn,z, ....,z)+(p−1)Dp(z,z, ...,z,T xn))

implies that

Dp(T xn,z....,z)≤
a0 +a1

1− (p−1)a1
Dp(xn,z, ....,z).

Then

Dp(xn+1,z,z, ....z)≤ α
0
nDp(xn,z,z, ....z)+

p−2∑
i=1

α
i
n

a0 +a1

1− (p−1)a1
Dp(xn,z, ....,z)

= (α0
n +

p−2∑
i=1

α
i
n

a0 +a1

1− (p−1)a1
)DP(xn,z, ....,z)

= (1−
p−2∑
i=1

α
i
n +

p−2∑
i=1

α
i
n

a0 +a1

1− (p−1)a1
)DP(xn,z, ....,z)

= (1−
p−2∑
i=1

α
i
n(1−

a0 +a1

1− (p−1)a1
)DP(xn,z, ....,z)

= (1−
p−2∑
i=1

α
i
n(1−δ ))Dp(xn,z, ....,z) with 0≤ δ =

a0 +a1

1− (p−1)a1
< 1.

That implies .

Dp(xn+1,z,z, ....z)≤
n∏

k=0

(1−
p−2∑
i=1

α
i
k(1−δ ))DP(x0,z, ....,z).

As

δ < 1,
p−2∑
i=1

α
i
k ∈ [0,1] and

∞∑
n=0

α
i
n = ∞
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then

lim
n−→+∞

n∏
k=0

(1−
p−2∑
i=1

α
i
k(1−δ ) = 0

which implies that

lim
n−→+∞

Dp(xn+1,z,z, ....z) = 0.

Hence the sequence {xn} converge to z fixed point for T . �
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