

Available online at http://scik.org

Advances in Fixed Point Theory, 3 (2013), No. 1, 70-76

ISSN: 1927-6303

A UNIQUE COMMON FIXED POINT THEOREM IN CONE

METRIC SPACES

K. PRUDHVI

Department of Mathematics, University College of Science, Saifabad, Osmania University,

Hyderabad, Andhra Pradesh, INDIA

Abstract: In this paper we prove a unique common fixed point theorem in cone metric spaces which

generalize and extend metric space into cone metric spaces. Our result generalizes and extends some

recent results.

Keywords: Cone metric space; fixed point; asymptotically regular.

2000 AMS Subject Classification: 47H10, 54H25.

1. Introduction

In 2007 Huang and Zhang [5] have generalized the concept of a metric space,

replacing the set of real numbers by an ordered Banach space and obtained some fixed

point theorems for mapping satisfying different contractive conditions. Subsequently,

Abbas and Jungck [1] and Abbas and Rhoades [2] have studied common fixed point

theorems in cone metric spaces (see also [3,4] and the references mentioned therein).

In this paper we extend the fixed point theorem of S.L.Singh et .al. [8] in metric space

into cone metric spaces.

Throughout this paper, E is a real Banach space, $N = \{1, 2, 3, \ldots \}$ the set of all

natural numbers. For the mappings f, g: $X \rightarrow X$, let C(f,g) denotes set of coincidence

Received October 9, 2012

70

points of f, g, that is $C(f, g) := \{z \in X : fz = gz \}$.

2. Preliminaries

We recall some definitions of cone metric spaces and some of their properties [5].

Definition 1.1. Let E be a real Banach Space and P a subset of E . The set P is Called a cone if and only if:

- (a) P is closed, nonempty and $P \neq \{0\}$;
- (b) $a,b \in R$, $a,b \ge 0$, $x,y \in P$ implies $ax + by \in P$;
- (c) $x \in P$ and $-x \in P$ implies x = 0.

Definition 1.2. Let P be a cone in a Banach Space E, define partial ordering ' \leq ' on E with respect to P by $x\leq y$ if and only if $y-x\in P$. We shall write x< y to indicate $x\leq y$ but $x\neq y$ while X<< y will stand for $y-x\in Int\ P$, where $Int\ P$ denotes the interior of the set P. This Cone P is called an order cone.

Definition 1.3. Let E be a Banach Space and $P \subset E$ be an order cone .The order cone P is called normal if there exists L>0 such that for all $x, y \in E$,

$$0 \le x \le y$$
 implies $||x|| \le L ||y||$.

The least positive number L satisfying the above inequality is called the normal constant of P.

Definition 1.4. Let X be a nonempty set of E .Suppose that the map

d: $X \times X \rightarrow E$ satisfies :

(d1)
$$0 \le d(x, y)$$
 for all $x, y \in X$ and
$$d(x, y) = 0 \quad \text{if and only if} \quad x = y ;$$

K. PRUDHVI 72

(d2)
$$d(x, y) = d(y, x)$$
 for all $x, y \in X$;

(d3)
$$d(x, y) \le d(x, z) + d(z, y)$$
 for all $x, y, z \in X$.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

It is obvious that the cone metric spaces generalize metric spaces.

Example 1.1. ([5]). Let $E = R^2$, $P = \{ (x, y) \in E \text{ such that } : x, y \ge 0 \} \subset R^2$,

X = R and d: $X \times X \rightarrow E$ such that $d(x, y) = (|x - y|, \alpha |x - y|)$, where $\alpha \ge 0$ is a constant .Then (X, d) is a cone metric space.

Definition 1.5. Let (X, d) be a cone metric space .We say that $\{x_n\}$ is

- (a) a Cauchy sequence if for every c in E with 0 << c , there is N such that $\text{for all } n \ , \ m > N, \ d(x_n, x_m) << c \ ;$
- (b) a convergent sequence if for any 0 << c, there is N such that for all n > N, $d(x_n, x) << c$, for some fixed $x \in X$.

A Cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

Lemma 1.1. ([5]) .Let (X, d) be a cone metric space, and let P be a normal cone with normal constant L .Let $\{x_n\}$ be a sequence in X .Then

- (i). $\{x_n\}$ converges to x if and only if $d(x_n, x) \rightarrow 0 \ (n \rightarrow \infty)$.
- (ii). $\{x_n\}$ is a Cauchy sequence if and only if $d(x_n, x_m) \rightarrow 0$ $(n, m \rightarrow \infty)$.

Definition 1.6. ([8]). Let f, g: $X \rightarrow X$. Then the pair (f, g) is said to be (IT)-Commuting at $z \in X$ if f(g(z)) = g(f(z)) with f(z) = g(z).

3. Main results

In this section we obtain a unique common fixed point theorem in cone metric spaces, which extend a metric space into cone metric spaces.

The following theorem is extend and improves the theorem 2.3. [8]

Theorem 3.1. Let (X, d) be a cone metric space P be an order cone and f, g: $X \rightarrow X$ be self-maps. Let

(f, g) be asymptotically regular at $x_0 \in X$ and the following conditions are satisfied:

(C1):
$$f(X) \subseteq g(X)$$
;

(C2): $d(fx, gy) \le \varphi(m(x, y))$ for all $x, y \in X$.

Where
$$m(x, y) = d(gx, gy) + \gamma [d(gx, fx) + d(gy, fy)], o \le \gamma \le 1$$
.

If f(X) or g(X) is a complete sub space of X. Then

- (i). C (f, g) is non-empty. Further,
- (ii). f and g have a unique common fixed point provided that f and g are (IT)-

Commuting at a point $u \in C(f, g)$.

Proof.

Let x_0 be an arbitrary point in X. Since if (f, g) is asymptotically regular at $x_0 \in X$,

Then there exists a sequence $\{x_n\}$ in X, such that

$$f x_n = g x_{n+1}$$
, $n = 0, 1, 2, \dots$ and

$$\lim_{n \to \infty} d(gx_n, gx_{n+1}) = 0.$$

First we shall show that $\{gx_n\}$ is a Cauchy sequence.

Suppose $\{gx_n\}$ is not a Cauchy sequence. Then there exists $\mu>0$ and increasing sequences $\{m_k\}$ and $\{n_k\}$ of positive integers such that m_k even and n_k odd and for all k, $m_k < n_k$,

$$d(gx_{m_{b}}, gx_{n_{b}}) \ge \mu \text{ and } d(gx_{m_{b}}, gx_{n_{b}-1}) < \mu$$
 (2.1.)

By the triangle inequality,

$$d(gx_{m_k}, gx_{n_k}) \le d(gx_{m_k}, gx_{n_{k-1}}) + d(gx_{n_{k-1}}, gx_{n_k})$$
. Letting k $\to \infty$, we get that
$$\lim_{k \to \infty} d(gx_{m_k}, gx_{n_k}) < \mu + 0.$$

(Since,
$$\lim_{n \to \infty} d(gx_n, gx_{n+1}) = 0$$
, We get $\lim_{k \to \infty} d(gx_{n_k-1}, gx_{n_k}) = 0$.)

Therefore there exists k₀ such that

$$d(gx_{m_k}, gx_{n_k}) < \mu \ \forall \ k \ge k_0$$
 (2.2)

By (2.1) and (2.2), we get that

$$\mu \le d(gx_{m_k}, gx_{n_k}) < \mu \ \forall \ k \ge k_0$$
.

Implies
$$\lim_{k\to\infty} d(fx_{m_k}, fx_{n_k}) = \mu.$$

By (C2), we have

$$\begin{split} d(gx_{m_k+1}, & gx_{n_k+1}) &= d(fx_{m_k}, fx_{n_k}) \leq \varphi(m(x_{m_k}, x_{n_k})) \\ &= \varphi(d(gx_{m_k}, gx_{n_k}) + \gamma \left[d(fx_{m_k}, gx_{m_k}) + d(gx_{n_k}, fx_{n_k})\right]). \end{split}$$

Letting $k \rightarrow \infty$, we get that

 $\mu \le \varphi(\mu)$ and as per definition of φ -map, $\varphi(\mu) < \mu$.

Hence $\mu \le \varphi(\mu) < \mu$, a contradiction.

Thus $\{gx_n\}$ is Cauchy sequence. Suppose g(X) is a complete sub space of X. Then $\{gx_n\}$ being contained in g(X) has a limit in g(X). Call it z. Let $u=g^{-1}z$.

Thus gu = z for some $u \in X$.

By using (C2), we have

$$d(fu, fx_{n_k}) \leq \varphi(m(u, x_{n_k}))$$

$$\leq \varphi(d(gu, gx_{n_k}) + \gamma [d(fu, gu) + d(fx_{n_k}, gx_{n_k})])$$

Letting $n \rightarrow \infty$, we get that

$$d(fu, z) \le \varphi(\gamma[d(fu, z)]) \le d(fu, z)$$
, a contradiction.

Therefore,
$$fu = z = gu$$
. (2.3)

Thus C (f, g) is non-empty. This proves (i).

And the pair (f, g) is (IT) - Commuting at u, then

fgu = gfu and ffu = fgu = gfu = ggu. In view of (C2) it follows that

$$d(fu, ffu) \leq \varphi(m(u, x_{n_k}))$$

$$\leq \varphi (d(gu, gfu) + \gamma [d(fu, gu) + d(ffu, gfu)])$$

<d(fu, ffu), a contradiction.

Therefore, ffu = fu and fgu = ffu == fu = z.

Therefore, f and g have a common fixed point.

Uniqueness, let w be another fixed point of f and g.

Consider,
$$d(z, w) = d(fz, fw) \le \varphi(m(z, w))$$

$$= \varphi(d(gz, gw) + \gamma [d(gz, fz) + d(gw, fw)])$$

$$\le \varphi(d(z, w) + \gamma [d(z, z) + d(w, w)])$$

$$\le \varphi(d(z, w) < d(z, w) \text{ (Since } \varphi\text{-map}, \varphi(\omega) < \omega),$$

a contradiction.

Therefore, f and g have a unique common fixed point.

REFERENCES

- [1] M.Abbas and G.Jungck, Common fixed point results for non commuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl. 341(2008) 416-420.
- [2] M.Abbas and B.E.Rhoades, Fixed and periodic point results in cone metric spaces. Appl.Math . Lett. 22(2009), 511-515.

K. PRUDHVI 76

- [3] V.Berinde, A common fixed point theorem for compatible quasi contractive self mappings in metric spaces ,Appl.Math .Comput.,213(2009),348-354.
- [4] B.Fisher, Four mappings with a common fixed point J.Univ .Kuwait Sci., (1981), 131-139.
- [5] L.G.Huang, X.Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J.Math.Anal.Appl.332(2)(2007)1468-1476.
- [6] G.Jungck, Common fixed points for non continuous non self maps on non- metric spaces, Far East J. Math. Sci. (FJMS) 4(1996) 199-215.
- [7] S.Rezapour and Halbarani, Some notes on the paper "cone metric spaces and fixed point theorem of contractive mappings", J.Math. Anal. Appl., 345(2008), 719-724.
- [8] S.L.Singh, Apichai Hematulin and R.P.Pant, New coincidence and common fixed point theorem, Applied General Topology 10(2009), no.1, 121-130.