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Abstract. In this paper, Suppose that f : SX → SY is a surjective phase-isometry between the unit spheres of two

real `p(Γ,H)-type spaces X and Y . We prove that the mapping f is phase equivalent to an isometry. Otherwise,

this isometry is the restriction of a linear isometry between the whole spaces, i.e., this isometry on the unit sphere

can be linearly extended into isometry in the whole space.
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1. INTRODUCTION

Let X and Y be real normed spaces. A mapping f : X → Y is called a phase-isometry if it

satisfies the functional equation

{‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= {‖x+ y‖,‖x− y‖} (x,y ∈ X).

We say that the mapping f is a plus-minus linear isometry if and only if there exists a phase

function ε : X →{1,−1} such that ε f (·) is a linear isometry. Then we called the mapping f is

phase equivalent to a linear isometry. We can say that linear isometry is g, g = ε f .
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The famous Wigner’s theorem plays a very important role in quantum mechanics and in

representation theory in physics. We refer the reader to the papers [1, 2, 3, 4, 5, 6] for more

information and background on Wigner’s theorem. Rätz[5, Corollary 8(a)] presented the real

version of Wigner’s theorem, which implies that any phase-isometry between two real inner

product spaces is a plus-minus linear isometry. Recently, Zeng and Huang[7] showed that every

surjective phase-isometry between real `p(Γ,H)-type spaces for p > 1 is equivalent to a linear

isometry, which generalizes Wigner’s theorem to real `p(Γ,H)-type spaces for p6 1.

The relationship between the metric structure and linear structure of normed space had been a

problem that many scholars in the space theory field pay attention to. In 1987, Tingley proposed

the following question in [8]: Let X and Y be normed spaces, whose unit spheres are denoted by

SX and SY , respectively. Suppose f : SX → SY is a surjective isometry. Whether or not exist F ,

the extend of f , is a real linear (bijective) isometry from X onto Y ? This problem is known as

the Tingly’s problem or isometric extension problem. We refer the reader to the introduction of

[9, 11] for more information and recent development on this problem. The survey of Ding[10]

is one of the good reference for understanding the history of the problem. We could consider

the natural positive homogeneous extension F of f from X to Y defined by

F(x) =


‖x‖ f ( x

‖x‖) , x 6= 0,

0 , x = 0.

is the desired extension of f on the whole space X . For this we need to present a property of F .

This property that holds for general normed spaces may be of independent interest.

Problem 1.1 Let f be a surjective phase-isometry between the unit spheres SX and SY of real

normed spaces X and Y respectively. Is it true that the natural positive homogeneous extension

F is a phase-isometry?

In this paper, we answer Problem 1.1 in positive for real `p(Γ,H)-type spaces for p> 1. That

is for every phase-isometry from the unit sphere S`pΓ,H onto S`p∆,K of real `p(Γ,H)-type spaces

for p> 1, the natural positive homogeneous extension is phase equivalent to a linear isometry,

and therefore actually a phase-isometry. We also show that the Problem 1.1 is solved in positive

for real inner product spaces.
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2. MAIN RESULTS

Throughout this section, we consider the spaces all over the real field and denote by R the

set of reals. The spaces X and Y are used to denote real normed spaces. We use SX and SY to

denote the unit spheres of X and Y , respectively. This paper mainly discusses the `p(Γ,H)-type

spaces with 1 ≤ p < ∞, p 6= 2, where Γ is a nonempty index set and H is a real inner product

space. Let’s describe the `p(Γ,H) space.

`p(Γ,H) = {x = ∑
γ∈Γ

xγ ⊗ eγ | xγ ∈ H,‖x‖p = ∑
γ∈Γ

‖xγ‖p <+∞}

For the elements on the unit sphere S`pΓ,H , a restriction ‖x‖ = 1 is added. For each x =

∑γ∈Γ xγ ⊗ eγ ∈ S`p(Γ,H), we denote the support of x by Γx, i.e.,

supp(x) = Γx = {γ ∈ Γ : xγ 6= 0}.

So we can write x = ∑γ∈Γ xγ ⊗ eγ = ∑γ∈Γx xγ ⊗ eγ . For any x,y ∈ S`p(Γ,H), we say x is p−

orthogonal to y if

Γx∩Γy =∅,

we also can write by x⊥p y.

In first lemma, we simply explain the relationship between orthogonality in S`p(Γ,H) and

orthogonality in S`p(∆,K).

Lemma 2.1 Let X = `p(Γ,H),Y = `p(∆,K), 1 ≤ p < ∞, p 6= 2. Suppose that f : SX → SY is

a surjective phase-isometry. Then f is a norm-preserving map. Moreover, we have x ⊥p y⇔

f (x)⊥p f (y) for any two elements x,y ∈ SX .

Proof. An important conclusion had been proved in the [7, Lemma2.1], which is applicable to

the whole `p(Γ,H) space

x⊥p y⇔‖x+ y‖p +‖x− y‖p = 2(‖x‖p +‖y‖p).

Obviously, it is also true in unit spherical space. Next, we prove that f is a norm-preserving

map. It only needs to make x = y in the definition of phase-isometry and they are non-zero

elements.

{‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= {‖x+ y‖,‖x− y‖}
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{‖ f (x)+ f (x)‖,‖ f (x)− f (x)‖}= {‖x+ x‖,‖x− x‖}

{2‖ f (x)‖,0}= {2‖x‖,0}

Then f is a norm-preserving map, ‖ f (x)‖= ‖x‖. Finally,

{‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= {‖x+ y‖,‖x− y‖} (phase− isometry)

2(‖ f (x)‖p +‖ f (y)‖p) = 2(‖x‖p +‖y‖p) (norm− preserving)

If x⊥p y ,then the above two equations are equal, imply that f (x)⊥p f (y).

�

Lemma 2.2 Let X = `p(Γ,H),Y = `p(∆,K), 1≤ p < ∞, p 6= 2. Suppose that f : SX → SY is a

surjective phase-isometry. Let γ ∈ Γ and denote by ∆ f (eγ ) the support of f (eγ). For every Γx is

a singleton, x ∈ SX , then ∆ f (x) is a singleton.

Proof. We defined x := u⊗eγ0 , u∈ SH . If ∆ f (x) is not a singleton, set δ1,δ2 ∈ ∆ f (x) and δ1 6= δ2.

There is exist four nonzero elements y,z ∈ SX , u1,u2 ∈ SK , with Γy and Γz is a singleton, such

that f (y) = u1
‖u1‖ ⊗ eδ1 and f (z) = u2

‖u2‖ ⊗ eδ2 . Obvious, f (y) ⊥p f (z), by Lemma 2.1, we have

y⊥p z, then x⊥p y or x⊥p z. By Lemma 2.1 again, we get f (x)⊥p f (y) or f (x)⊥p f (z), it is

a contradiction, so we get the result. �

Theorem 2.3 Let X = `p(Γ,H),Y = `p(∆,K), 1 ≤ p < ∞, p 6= 2. Suppose that f : SX → SY

is a surjective phase-isometry. Then there is a bijection π : Γ→ ∆ such that for each x =

∑γ∈Γ xγ ⊗ eγ ∈ SX , f (x) = ∑γ∈Γ x
′
π(γ)⊗ eπ(γ) ∈ SY . Where x

′
π(γ) ∈ K with ‖xγ‖= ‖x

′
π(γ)‖ for all

γ ∈ Γ.

Proof. The proof of this theorem is divided into two aspects. On one hand we need show the

π : Γ→ ∆ is a bijective mapping, on the other hand x and f (x) have the same norm values of

elements on the corresponding indexes. First, we show the one point. Defined the mapping

π : Γ→ ∆ by π(γ) = ∆ f (u⊗eγ ), u ∈ SH . If γ1 6= γ2 ∈ Γ, u⊗ eγ1 ⊥p u⊗ eγ2 , by Lemma 2.1,

f (u⊗ eγ1)⊥p f (u⊗ eγ2), thus π is a injective mapping. Next, we prove its surjective property.

We can set up δ ∈ ∆/π(Γ),v ∈ SK . Because f is a surjective phase-isometry, there is exist

x ∈ SX , such that f (x) = v⊗ eδ . For each γ ∈ Γ and u ∈ SH , f (x)⊥p f (u⊗ eγ), by Lemma 2.1,
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we get x ⊥p u⊗ eγ . By the arbitrariness of u and γ , we only reach x = 0, it is a contradiction.

Then π is a bijective mapping.

For all x=∑γ∈Γ xγ⊗eγ ∈ SX , by the first part of the proof, we have f (x)=∑γ∈Γ x
′
π(γ)⊗eπ(γ) ∈

SY . For each γ ∈ Γx, there exist vπ(γ) ∈ SK such that f (
xγ⊗eγ

‖xγ‖ ) = vπ(γ)⊗ eπ(γ). Then

1−‖xγ‖p +(1+‖xγ‖)p

= {1−‖xγ‖p +‖xγ +
xγ

‖xxγ
‖
‖p}∨{1−‖xγ‖p +‖xγ −

xγ

‖xxγ
‖
‖p}

= {‖x+
xγ ⊗ eγ

‖xγ‖
‖p}∨{‖x−

xγ ⊗ eγ

‖xγ‖
‖p}

= {‖ f (x)+ f (
xγ ⊗ eγ

‖xγ‖
)‖p}∨{‖ f (x)− f (

xγ ⊗ eγ

‖xγ‖
)‖p}

= {1−‖x′
π(γ)‖

p +‖x′
π(γ)+ vπ(γ)‖p}∨{1−‖x′

π(γ)‖
p +‖x′

π(γ)− vπ(γ)‖p}

6 1−‖x′
π(γ)‖

p +(1+‖x′
π(γ)‖)

p

We note that the function ϕ(t) = (1+ t)p− t p is strictly increasing on (0,+∞) when p > 1,

we have ‖xγ‖ 6 ‖x′π(γ)‖ for each γ ∈ Γx. Then the equation ‖ f (x)‖ = ‖x‖ = 1 implies that

‖xγ‖= ‖x′π(γ)‖ for each γ ∈ Γx.

�

Remark 2.4 From Theorem 2.3, we know for every x∈ SX ,xγ ∈H,x′
π(γ) ∈K, x=∑γ∈Γ xγ⊗eγ ∈

SX , f (x) = ∑γ∈Γ x
′
π(γ)⊗ eπ(γ) ∈ SY , there have ‖xγ‖ = ‖x′π(γ)‖. We can take any y ∈ SX with

Γx∩Γy = /0,yγ ∈ H,y′
π(γ) ∈ K, it is clear that ‖yγ‖= ‖y

′
π(γ)‖. For λ ∈ R, we can structure

x+λy
‖x+λy‖

= ∑
γ∈Γx

xγ

‖x+λy‖
⊗ eγ + ∑

γ∈Γy

λyγ

‖x+λy‖
⊗ eγ

We can get z = 1
‖x+λy‖x+

λ

‖x+λy‖y, so we have

f (
x+λy
‖x+λy‖

) := ∑
γ∈Γx

x′′γ
‖x+λy‖

⊗ eγ + ∑
γ∈Γy

λy′′γ
‖x+λy‖

⊗ eγ .

By T heorem2.3, f (z) = ∑
γ∈Γx

x′γ
‖x+λy‖

⊗ eγ + ∑
γ∈Γy

λy′γ
‖x+λy‖

⊗ eγ .

This means ‖x′γ‖= ‖x′′γ‖,‖y′γ‖= ‖y′′γ‖, for every γ ∈ Γx∪Γy.
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Lemma 2.5 Let X = `p(Γ,H),Y = `p(∆,K), 1 ≤ p < ∞, p 6= 2. Suppose that f : SX → SY is

a surjective phase-isometry. Then for all x,y ∈ SX , Γx ∩Γy = /0, there exist two real numbers

α(x,λy) and β (x,λy) in R with |α(x,λy)|= |β (x,λy)|= 1 such that

‖x+λy‖ f (
x+λy
‖x+λy‖

) = α(x,λy) f (x)+β (x,λy)λ f (y),

for all λ ∈ R with λy ∈ X. Otherwise, α(x,y)β (x,y) = α(x,λy)β (x,λy)

Proof. Suppose that x = ∑γ∈Γx xγ ⊗ eγ and y = ∑γ∈Γy yγ ⊗ eγ . By Theorem 2.3 and Remark 2.4,

set λ ∈ R, we can write that

f (x) = ∑
γ∈Γx

x′
π(γ)⊗ eπ(γ), f (y) = ∑

γ∈Γy

y′
π(γ)⊗ eπ(γ)

‖x+λy‖ f (
x+λy
‖x+λy‖

) = ∑
γ∈Γx

x′′γ ⊗ eγ +λ ∑
γ∈Γy

y′′γ ⊗ eγ

with ‖xγ‖ = ‖x′γ‖ = ‖x′′γ‖ and ‖yγ‖ = ‖y′γ‖ = ‖y′′γ‖ for all γ ∈ Γx ∪Γy. We can analyze this

constant t = 1
‖x+λy‖ =

1

(‖x‖p+|λ |p‖y‖p)
1
p
≤ 1, obvious t > 0. Because f is a phase-isometry, we

have

{(t +1)p,(1− t)p}

={‖ x+λy
‖x+λy‖

+ x‖p−|λ t|p,‖ x+λy
‖x+λy‖

− x‖p−|λ t|p}

={‖ f (
x+λy
‖x+λy‖

)+ f (x)‖p−|λ t|p,‖ f (
x+λy
‖x+λy‖

)− f (x)‖p−|λ t|p}

={∑
γ∈Γx

‖x′γ + tx′′γ‖p, ∑
γ∈Γx

‖x′γ − tx′′γ‖p}.

So (t + 1)p = ∑γ∈Γx ‖x
′
γ + x′′γ‖p or ∑γ∈Γx ‖x

′
γ − tx′′γ‖p. By norm triangle inequality, we have

∑γ∈Γx ‖x
′
γ ± tx′′γ‖p ≤ ∑γ∈Γx(‖x

′
γ‖+ ‖tx′′γ‖)p = (t + 1)p. It follows that ∑γ∈Γx x′′γ ⊗ eγ = ± f (x).

The same reason is available

∑
γ∈Γy

y′′γ ⊗ eγ =± f (y).

Next, we will show that α(x,y)β (x,y) = α(x,λy)β (x,λy). Using the first conclusion, we get

‖x+ y‖ f (
x+ y
‖x+ y‖

) = α(x,y) f (x)+β (x,y) f (y), |α(x,y)|= |β (x,y)|= 1

‖x+λy‖ f (
x+λy
‖x+λy‖

) = α(x,λy) f (x)+β (x,λy)λ f (y), |α(x,λy)|= |β (x,λy)|= 1
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Reference t, we set t0 = 1
‖x+y‖ =

1
2 . By Theorem 2.3 we have

{|t0 + t|p + |t0 +λ t|p, |t0− t|p + |t0−λ t|p}

= {‖ x+ y
‖x+ y‖

+
x+λy
‖x+λy‖

‖p,
x+ y
‖x+ y‖

− x+λy
‖x+λy‖

‖p}

= {‖ f (
x+ y
‖x+ y‖

)+ f (
x+λy
‖x+λy‖

)‖p,‖ f (
x+ y
‖x+ y‖

)− f (
x+λy
‖x+λy‖

)‖p}

= {‖α(x,y)β (x,y)t0 f (x)+ t0 f (y)+α(x,λy)β (x,λy)t f (x)+λ t f (y)‖p,

‖α(x,y)β (x,y)t0 f (x)+ t0 f (y)−α(x,λy)β (x,λy)t f (x)−λ t f (y)‖p}

= {|α(x,y)β (x,y)t0 +α(x,λy)β (x,λy)t|p + |t0 +λ t|p,

|α(x,y)β (x,y)t0−α(x,λy)β (x,λy)t|p + |t0−λ t|p}.

It follows that α(x,y)β (x,y) = α(x,λy)β (x,λy) and the proof is complete.

�

Theorem 2.6 Let X = `p(Γ,H),Y = `p(∆,K), 1 ≤ p < ∞, p 6= 2. Suppose that f : SX → SY is

a surjective phase-isometry. Then it is phase equivalent to an isometry of the unit sphere which

is the restriction of a surjective linear isometry between the whole spaces.

Proof. When p = 2, X and Y are real inner product spaces. Though the famous Wigner’s theo-

rem, we can show F is a plus-minus linear isometry. we only consider the case p≥ 1, p 6= 2.

By the theorem 2.3, we can define a bijection π : Γ→ ∆, for fixed γ0 ∈ Γ and correspond-

ing the π(γ0) = δ0 ∈ ∆. Thus we can define two proper subsets of SX and SY , which are

also unit spheres. SU = {x ∈ SX : γ0 /∈ Γx}, SV = { f (x) ∈ SY : δ0 /∈ ∆ f (x)}. Then we know

SX =
SU⊕pH⊗eγ0
‖SU⊕pH⊗eγ0‖

, SY =
SV⊕pK⊗eδ0
‖SV⊕pK⊗eδ0

‖ . From the theorem 2.3, we obtain f (SU) = SV . For any

h ∈ H,u ∈ SU , exist v ∈ Sv,k ∈ K, such that ‖ h
u⊕ph⊗eγ0

‖ = ‖ h
v⊕pk⊗eδ0

‖. By ‖u‖ = ‖v‖ = 1,

we can get ‖h‖ = ‖k‖. According to the definition of S`p(Γ,H) type-spaces, when only γ0 po-

sition has elements, we can see x0 =
h⊗eγ0
‖h⊗eγ0‖

, λx0 ∈ H ⊗ eγ0 , λ ∈ R. Then f (x0) =
k⊗eδ0
‖k⊗eδ0

‖ .

By ‖h‖ = ‖k‖ =⇒ ‖h⊗ eγ0‖ = ‖k⊗ eδ0‖, then f (
h⊗eγ0
‖h⊗eγ0‖

) = f (x0) =
k⊗eδ0
‖k⊗eδ0

‖ =
k⊗eδ0
‖h⊗eγ0‖

. So

‖h⊗eγ0‖ f (
h⊗eγ0
‖h⊗eγ0‖

)= k⊗eδ0 . We apply Wigner’s Theorem to mapping f :
H⊗eγ0
‖H⊗eγ0‖

→
K⊗eδ0
‖K⊗eδ0

‖ to

obtain a phase function ε :
H⊗eγ0
‖H⊗eγ0‖

→{1,−1} with ε(x0) = 1 such that ε f :
H⊗eγ0
‖H⊗eγ0‖

→
K⊗eδ0
‖K⊗eδ0

‖
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is a linear isometry.

By Lemma 2.5 for each u ∈ SU , we have

‖u+λx0‖ f (
u+λx0

‖u+λx0‖
) = α(u,λx0) f (u)+β (u,λx0)λ f (x0), |α(u,λx0)|= |β (u,λx0)|= 1.

Define a mapping g : SU → SV given by

g(u) = α(u,λx0)β (u,λx0) f (u)

for all u ∈ SU and x0 ∈ H⊗ eγ0 . Obviously, g is a phase-isometry. Through proving that g is a

surjective isometry, we can get that g : SU → SV is a linear isometry by Mazur-Ulam Theorem.

From the defined of g, we can get g(u) = ± f (u) for each u ∈ SU . Let u1,u2 be in SU and

λx0 ∈ H⊗ eγ0 , we have

{‖u1 +u2‖p +(2λ )p,‖u1−u2‖p}

= (1+λ
p){‖ u1 +λx0

‖u1 +λx0‖
+

u2 +λx0

‖u2 +λx0‖
‖p,‖u1 +λx0

u2 +λx0
− u2 +λx0

‖u2 +λx0‖
‖p}

= (1+λ
p){‖g( u1 +λx0

‖u1 +λx0‖
)+g(

u2 +λx0

‖u2 +λx0‖
)‖p,‖g(u1 +λx0

u2 +λx0
)−g(

u2 +λx0

‖u2 +λx0‖
)‖p}

= {‖g(u1)+g(u2)‖p +(2λ )p,‖g(u1)−g(u2)‖p}

This implies ‖g(u1)− g(u2)‖ = ‖u1− u2‖ for all u1,u2 ∈ SU . Otherwise, we just need to let

u1 =−u2,λ = 1, then g(−u) =−g(u) for all u ∈ SU . So g is a surjective isometry.

Next we define a linear isometry f̃ : SX → SY by ‖u+λx0‖ f̃ ( u+λx0
‖u+λx0‖) = g(u)+ ε(x0)λ f (x0)

for each u ∈ SU and x0 ∈ H⊗ eγ0 . We only need to show that ‖u+λx0‖ f̃ ( u+λx0
‖u+λx0‖) = ±‖u+

λx‖ f ( u+λx
‖u+λx‖) for each 0 6= u ∈ SU and 0 6= λx ∈ H⊗ eγ0 . From the definition of f̃ and Lemma

2.5, we can have

‖u+λx0‖ f̃ (
u+λx0

‖u+λx0‖
) = α(u,λx0)β (u,λx0) f (u)+ ε(x0)λ f (x0),

‖u+λx‖ f (
u+λx
‖u+λx‖

) = α(u,λx) f (u)+β (u,λx)λ f (x),

where |α(u,λx0)|= |β (u,λx0)|= |α(u,λx)|= |β (u,λx)|= |ε(x0)|= 1. We need to show that

ε(x0)α(u,λx0)β (u,λx0) = α(u,λx)β (u,λx)
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The proof of the equation can be referred to [7, Theorem2.8]. Then we get the f̃ is phase

equivalent to f . Finally, by[12] we can know that f̃ can be extended from the unit sphere to the

isometric operator of the whole space.

This completes the proof.

�
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[3] M. Györy, A new proof of Wigner’s theorem, Rep. Math. Phys. 54 (2004), 159-167.

[4] L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of

Uhlhorns version of Wigner’s theorem, Funct. Anal. 194 (2) (2002), 248-262.

[5] J. Rätz, On Wigner’s theorem: remarks, complements, comments, and corollaries, Aequationes Math. 52

(1-2) (1996), 1-9.
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