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Abstract. In this paper we have shown that under certain assumptions an arbitrary family of mappings will have a
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1. Introduction

The Banach contraction mapping principle is widely recognized as the source of metric fixed
point theory. This contraction principle has further several generalizations in metric spaces as
well as in cone metric spaces. Huang and Zhang [12] introduced the concept of cone metric
space, where every pair of elements is assigned to an element of a Banach space and defined a
partial order on the Banach space with the help of a subset of the Banach space called cone
which satisfy certain properties. Fixed point studies were initiated in such spaces in the same
work. After that, fixed point theory has experience the rapid growth in cone metric spaces. A
review of this development is given in [14]. References [3, 16, 17, and 22] are some more recent

examples of this work.
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Weak contraction principle is a generalization of Banach's contraction principle which
was first given by Alber et al. in Hilbert spaces [2]. It was subsequently extended to metric
spaces by Rhoades [19]. In weak contraction results the contractive inequality involves a control
function. The concept of control function in metric fixed point theory was introduced by Khan et
al. [21] as Altering distance function. This function and its generalizations have been used in
fixed and coincidence point problems in a large number of works; some of these works are in [4,
5, 20]. In particular, Choudhury et al.[6, 7, 8] established some fixed point results in cone metric
spaces with the help of control functions.

In this paper we establish some point of coincidence theorems for an arbitrary family of
self mappings with another self mapping in cone metric spaces with the help of three different
control functions ,n and ¢. The existence of the common fixed point is ensured by imposing,
amongst other conditions, the condition of weak compatibility. It may be mentioned that some
fixed point results for weakly compatible maps in cone metric spaces have been deduced by
Abbas and Jungck [1]. An illustrative example is given to support our main results.

Before coming to our main result we give some preliminaries of cone metric space which

was firstly introduced by Huang and Zhang [12].

2. Mathematical preliminaries

Definition 2.1 [12] Let E be a real Banach space and 6 is the zero of the Banach space E. Let P
be a subset of E. P is called a cone if

Q) P is closed, non-empty and P # {6}

(i)  ax+ by € P forall x,y € P and non negative real numbers a, b

@iy Pn(—P)={6}

For a given cone P we can define a partial ordering < with respect to P by x < y if and only if
y —x € P. Here x < y will stand for x < y and x # y,while x < y will stand for y — x € intP,
where intP denotes the interior of P. x < yissameasy = x and x < y is same as y > x.

A cone P is called normal if there is a real number K > 0 such that for all x,y € E,

0 < x < yimplies||x|| < K|lyll.
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The least positive number satisfying the above inequality is called the normal constant of cone P.
The cone P is called regular if every increasing and bounded above sequence {x,} in E is
convergent. Equivalently, the cone P is regular if and only if every decreasing and bounded
below sequence is convergent. It is well known that a regular cone is a normal cone.
In the following we always suppose that E is a real Banach space withcone P in E with intP # @
and < is the partial ordering with respect to P.
Definition 2.2 [12] Let X be a non-empty set. Suppose the mapping d : X X X — E satisfies:

Q) 0 <d(x,y), forall x,y € Xand d(x,y) =@ ifandonly if x = y,

(i) d(x,y) =d(y,x), forall x,y € X,

(i) d(x,y) < d(x,z) +d(z,y), forallx,y,z € X.
Then d is called a cone metric on X and (X, d) is called a cone metric space.
Definition 2.3 [12] Let (X, d) be a cone metric space and {x,,} a sequence in X. Then

(i) {x,} converges to x € X if for every c € E with 8 « c there exists

ngy € N such that for all n > n,, d(x,,, x) < c.We denote this by
lim, x, =xo0rx, - xasn — oo.
(i) {x,}is called a Cauchy sequence if for every c € E with 8 « c there exists n, € N
such that for all n,m > ny, d(x,, x,) < c.
A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.
It is known that if P is a normal cone, then {x,} converges to x if and only if d(x,,x) — 6 as
n — o and {x,} is a Cauchy sequence if and only if
d(x,, x,) = 0 asn,m — «.[12]

Definition 2.4 Lety : intP U {8} — intP U {6} be a function.

(1) We say v is strongly monotone increasing if for x, y € intP U {6},

x<y @) <yp).
(i) 1 issaid to be continuous at x, € intP U {8} if for any sequence {x,} in intP U {6},
Xn = X = Y(xn) < P(x0).

The following is the definition of Altering distance function in cone metric space.
Definition 2.5 A function ¢ :intP U {8} — intP U {6} is called an Altering distance function if
the following properties are satisfied:

Q) Y is strongly monotone increasing and continuous,

@) yY@)=¢0ifandonlyift = 6.
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Lemma 2.1 Let E be a real Banach space with cone P in E. Then

Q) ifa<band b < c,thena < ¢ [13],

(i) ifa <K band b < c,thena < ¢ [13],

@) if0 <x <yanda > 0, where a is real number, then 0 < ax < ay [13],

@iv) if0<x, <y, forneNandlim, x, = x, lim, y, = y,then 0 < ax < ay [13],

(V) P is normal iff x, <y, < z, and lim,, x,, = lim,, z, = x imply lim,, y, = x [9].
Lemma 2.2 [7] Let (X, d) be a cone metric space with regular cone P such that d(x,y) € intP,
for x,y € Xwith x #y. Let ¢ : intP U {68} - intP U {6} be a function with the following
properties:

Q) ¢(t) =06 ifandonlyift =0,

(i)  ¢(t) < t, fort €intP and

(iif)  eitherp(t) < d(x,y)ord(x,y) < ¢(t),fort €intP U {f}and x,y € X.
Let {x,} be a sequence in X for which {d(x,,x,+1)}iS monotonic decreasing. Then
{d(x,, xn+1)} IS CcONvergent to either r = 6 or r € intP.
Lemma 2.3 [8] Let(X, d) be a cone metric space. Let ¢ :intP U {6} — intP U {6} be a function
such that

Q) ¢(t)=0ifandonlyift =0,

(i) () K<t fort €intP
Then a sequence {x,,} in X is a Cauchy sequence if and only if for every ¢ € E with 6 « c there
exists n, € N such that d(x,, x,,) < ¢(c), forall n,m > n,.
Definition 2.6 [15] Let g and f be two self-maps of a set X. If w = gx = fx for some x € X,
then x is called a coincidence point of g and f, and w is called a point of coincidence of g and f.
Self-maps g and f are said to be weakly compatible if they commute at their coincidence point;
that is, if

gx = fx forsome x € X, then gfx = fgx.

Lemma 2.4 [1] Let g and f be weakly compatible self maps of a set X. If g and f have a unique

point of coincidence w = gx = fx, then w is the unique common fixed point of g and f.
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3. Main Results

Theorem 3.1. Let (X, d) be a cone metric space with regular cone P such that d(x,y) € intP ,
forx,y € Xwithx # y. Letg: X — X be a mapping such that g(X) is a complete subspace
of X. Let{f,: X = X : a € A} be a family of mappings. Suppose that there exists @, € A such
that f, (X) € g(X) and forx,y € X,

¥ (@ f2)) <1 (5[l for) + oy, )]

¢ (5 [d(gx, fupx) + d(gy. fu3)]) (1)

where a € A and ¥, n, ¢: intP U {8} - intP U {6} are such that y» and n are continuous, ¢
is lower semicontinuous and also

Q) Y is strongly monotonic increasing,

@M Yy =nt)=¢@) =0ifandonlyift =0,

@)  Y@) — n) + o(t) > 6 forallt €intP,

(iv) ¢(t) «tfort €intP and

(V) either ¢p(t) < d(x,y) ord(x,y) < ¢(t),fort €intP U{f}and x,y € X.
Then g and {f, : « € A} have a unique point of coincidence in X. Moreover, if g and £, are

weakly compatible, then g and {f,, : @ € A} have a unique common fixed point in X.

Proof: First we establish that any point of coincidence of g and f, is a point of coincidence of g
and {f, : @ € A} and conversely. Suppose that p € X be a point of coincidence of g and f;, .
Then there exists a z € X such that p = gz = f; z. From (1) and using the monotone property of
Y, we have

1
Y (Ed(gz, faZ)> < (d(92 fu2)) = ¥ (d(fay2 fuz))

1 1
<7 (E | d(92. fo2) + d(gz, faz)]> - (5 (92 fay2) + d(g2, f“Z)])

=1 (51dGgz f21) - ¢ (5 G2 fo1)

That is,

¥ (3d092.12)) - 1 (31dCgz £1) + ¢ (3 [d (o fu)]) < 0,
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which by (ii) and (iii) implies that d(gz, f,z) = 0, that is, gz = f,z, for all @« € A. Hence we
have p = gz = f,z, for all @ € A, that is, p is a point of coincidence of g and {f,, : @« € A}. The
converse part is trivial.

Now, it is sufficient to prove that g and f,, have a unique point of coincidence. Let x, € X.
Since f,,(X) < g(X), we can construct a sequence {x,} in X such that f, x, = gx,.,, for all
n = 0. If there exists an integer N > 0 such that f, xy = fo,Xn+1, then gxyi1 = fo XN+t
which means that g and f,, have a point of coincidence. Hence we will assume that

faoXn F fayXn+1, foralln = 0.

Fora = ag,x = x4 andy = x,.,, from (1), we have
Y (A(fuyXner fagXnez) ) < 1 ([ A(9%na1 farpXnsn) + d(Gnszs frgnsz)])
= (5[d(9%n1, fupXner) + 9Tz fuyXns2)])
that is,
¥ (d(faynsns fagnsz) ) <1 ([ A g Xnen) + Afarg s frg Tns2)])
= (3[d(fags fronss) + d(fagnsns fatniz)]) (@)
For all n > 0, we have
W (3[d(fuag o frtontn) + AfirgXns1: fargXns2)]) = W (A(foagXs firg Xn2))
2 9 (G[A(fugXn fagnen) + d(fagnsns fagXns2)]) =1 (5] A(fag s frynss) + A(fugXnsn frgnrz)]) +
& (Gl (f gy X f oy Xnt1) + A (f g Xn1, f o Xnr2)]) 2 6 (by (i) and (iii).

This implies that
Y (A(fugnens froXnez) ) < W (5[d (g fargXnsn) + o Xns g Xnsz)])
= d(faoxn+1' faoxn+2) < %[d(faoxn' faoxn+1) + d(faoxn+1' faoxn+2)](by (l))

= d(faoxn+1J faoxn+2) < d(faoxn'faoxn+1) foralln = 0.

This implies that the sequence {d(faoxn, faoxn+1)} IS monotone decreasing and bounded below

by 6. Then by Lemma 2.2, there exists r € intP U {6} such that d(fy xn, fayXn+1) = T @S

n — oo,
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Letting n — oo. in equation (2) and using the lower semi continuity of ¢ and continuities of ¥
and n, we have
Y() < n() — ¢(r)

Sy -+ ¢(r)<6=>r =96 (by (ii) and (iii)).
Then, limy,,e0 d(fo Xn, fagXn+1) = 0 (3)
Next we show that {f, x,} is a Cauchy sequence. If {f, x,} is not a Cauchy sequence, then by
Lemma 2.3, there exists a ¢ € E with 6 «< ¢ such that Vny € N,I3n,m € Nwithn >m > n,
such that d(faoxn, faoan) <<« ¢(c). Hence by a property of ¢ in (v) of the theorem,
() < d(fugXns fay¥nsr).

Therefore, there exist sequences {n(k)} and {m(k)} in M such that for all positive integers k,
n(k) > m(k) > kand d(fy, Xney, fuyXmy) = P(C).
Assuming that n(k) is the smallest such positive integer, we get

d(fayXngioy fagXmao) = (c)
and
A(fao X0 -1 fagXm@y) < P(€)
Now,
P () < d(fagXnioy fagXmao)) < A(fagXnoy fagXngor-1) + A(fagXnte)-1s fagXmi))
that is,

¢(C) < d(faoxn(k)'faoxm(k)) < d(focoxn(k)» faoxn(k)—l) + ¢(C)
Letting k — ooin the above inequality, using (3) and property (v) of Lemma 2.1, we have

My 00 d(fy Xngiey fagXma) = P(C) (4)
Again,
A(fagXntoy fagXmo) < AfagXnior fagXnto+1) + A(fagXni)+1s fagXmay+1)
+d(fa0xm(k)+1vfa0xm(k))
and

d(faoxn(k)+1jfaoxm(k)+1) < d(faoxn(k)+1'fa0xn(k)) + d(faoxn(k)'faoxm(k))

+d(fa0xm(k)» faoxm(k)+1)-
Letting k — oo in above inequalities, using (3) and (4), we have

limy,_, d(faoxn(k)+1r faoxm(k)+1) = ¢(c) (5)
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Fora = ag, X = Xpgy41 aNdy = Xpgy+1, from (1), we have

¥ (d(faoxn(k)+1'faoxm(k)+1))
1
< n (E [ d(-gxn(k)+1' faoxn(k)+1) + d(gxm(k)+1’faoxm(k)+1)])

1
- d) (E [d(gxn(k)+1r faoxn(k)+1) + d(gxm(k)+1' faoxm(k)+1)])

That is,
1/) (d(faoxn(k)+1r faoxm(k)+1))

1
<7 (E [ d(faoxn(k)+1' faoxn(k)+1) + d(faoxm(k)'faoxm(k)+1)]>

1
- ¢ (E [d(faoxn(k)r faoxn(k)+1) + d(faoxm(k)J faoxm(k)+1)])

Letting k — oo in the above inequality and using (3) and (5) with the properties of y,n and ¢ we

obtain
Y(p(0) <= ¢pc)=6
which is a contradiction. Hence {f, x,} is a Cauchy sequence in g(X).
From the completeness of g(X), there exists z € g(X) such that
fagXn 2> zaSN > (6)
Since z € g(X), we can find p € X such that z = gp.

Fora = ay, x = x,4+1 and y = p, and using the monotone property of i, from (1), we have
¥ (3dfarxnrs fugp)) < ¥ (Afagknras foop)
<1 (La(gner faynen) + AP fugp)]) = & (3 [A(0%ns1 fary¥ns1) + AP furyP)])
= (§dlfatnrs fuop) ) < 1 (3L farrs) + d2 forp)])
¢ (d(fay X froXnsr) + (2 fiop)])

Letting n — oo in the above inequality, using (6) and the properties of y,n and ¢, we have

b (%d(z.faop)> < (51d( fep)]) - 6 (5 12( £eop)])

that is,

0 (396G fup)) <1 (510 o)) = 0 (310G 1))
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= d(z, faop) =0 (by (ii) and (iii))
i z = faop
Therefore, we have
Z=gp = fo,P (7)

Hence p is a coincidence point and z is a point of coincidence of g and £, .

For uniqueness, suppose that there exists another point g € X such that

zy = gq = fa,q and z # z;. For a = @y, x = p and y = q, from (1), we have
1
P (d(faop fuo)) <1 (5 | d(gp. fu,p) + d(gp. faoq)])
¢ (5[d(gp fuop) + d(gp. fuy)])

=1 (d(z fop)) <0 = d(z,2,) = 6
= Z = Al
Therefore, z is the unique point of coincidence of g and f, . By what we have already proved z

is the unique point of coincidence of g and {f, : a € A}.

Now, we establish that any common fixed point of g and £, is a common fixed point of g and
{fo : @ € A} and conversely. Suppose that p € X be a common fixed point of g and f, . Then

P = gp = fa,p- From (1) and using the monotone property of i, we have
¥ (340, 10)) < (A, o) = ¥ (d(faop fo))
1 1
<7 (E [ d(gp, fa,p) + d(gp, fap)]) —¢ <§ [d(gp, fayp) + d(gp, fap)]>
1 1
=0 (514w, fp)) - & (5140, 2]
that is,

0(306.5) 1 (51 102) + 6 (514011 < 6

which by (ii) and (iii) implies that d(p, f,p) = 0, that is, p = f,p, for all « € A. Hence we have
p =gp = fup, for all « € A, that is, p is a common fixed point of g and {f, : « € A}. The

converse part is trivial.
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We have proved that z is the unique point of coincidence of g and f, . Now, if g and f, ~are
weakly compatible, then by Lemma 2.4, z is the unique common fixed point of g and f, . By
what we have proved z is the unique common fixed point of g and {f,:a € A}.
Theorem 3.2. Let (X, d) be a cone metric space with regular cone P such that d(x, y) € intP, for
x,y € Xwithx #y. Let g : X - X be a mapping such that g(X) is a complete subspace of X.
Let{f,: X - X : a € A} be a family of mappings. Suppose that there exists a, € A such that
fa,(X) € g(X)andforx,y € X,

Y (d(fugt, fay)) <1 (% [ dgx, foy) + d(gy. faox)])
¢ (5 [d(gx. fuy) + d(gy, fuy¥)]) (8)

where a € A and the conditions upon (Y, n, ¢) are the same as in Theorem 3.1. Then g and

{fy : « € A} have a unique common fixed point in X.

Proof: Arguing like in the proof of Theorem 3.1, we establish that any point of coincidence of g
and f, is a point of coincidence of g and {f, : « € A} and conversely. We take the same
sequence {x,} as in the proof of Theorem 3.1. Arguing like in the proof of Theorem 3.1, by the
condition (8) we prove that {d(faoxn, faoxnﬂ)} IS monotone decreasing and
im0 d(faoXns fagXni1) = 6 (9)

Next we show that {f x,}is a Cauchy sequence. If {faoxn} is not a Cauchy sequence, then using
an argument similar to that given in Theorem 3.1, we can find two sequences of positive integers
{n(k)} and {m(k)} for which

imy 00 d(forg Xni)s faro Xmaiy) = H(€) (10)

imy o0 d(fary Xy +1 farg Xmay+1) = H(C) (11)
Again,

A(faoXntoy fagXmo) < Afag Xy fagXmaor+1) + A(fag Xm0 +10 fagXmae))

and

d(faoxn(k)Jfaoxm(k)+1) < d(faoxn(k)rfaoxm(k)) + d(faoxm(k)'faoxm(kHl)
Further,

d(faoxn(k)Jfaoxm(k)) = d(faoxn(k)'faoxn(kHl) + d(faoxn(k)+1'faoxm(k))
and
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d(faoxn(k)+1' faoxm(k)) < d(faoxn(k)+1vfa0xm(k)+1) + d(faoxm(k)+1vfaoxm(k))
Letting k — oo in above four inequalities, using (9), (10) and (11), we have

limy,_, d(faoxn(k)r faoxm(k)+1) = ¢(c) (12)

and
limy, o d(faoxn(k)+1» faoxm(k)) = ¢(c) (13)

Fora = ag,x = Xpgoy+1 aNd Yy = Xpy(xy41, from (8), we have
1
1/) (d(faoxn(k)+1r faoxm(k)+1)) < n (E [ d(gxn(k)+1» faoxm(k)+1) + d(gxm(k)+1l faoxn(k)+1)]>

—¢ (% [d(gxn(k)+1’f“0xm(k)+1) + d(gxm(k)+1' faoxn(k)+1)])’
that is,

1
Y (d(faoxn(k)+1'faoxm(k)+1)) <7 (5 | d(9%nci)s fagXmao+1) + d(gxm(k)ffaoxn(k)+1)])

¢ (5 [A(%ngo fuoXmaos1) + A(GXmaor fuong+)]):
Letting k — oo in the above inequality, using (11), (12) and (13) and the properties of i, and ¢

we have

Y(#(©) < n(p(0)) = P (),
which is a contradiction by virtue of a property of ¢. Therefore, {f x,}is a Cauchy sequence in
g(X). From the completeness of g(X) there exists z € g(X) such that
fagXn = Zasn - oo, (14)
Since z € g(X), we can find p € X such that z = gp.

For a = ay, x = x,,,and y = g and using the monotone property of i, from (8), we have
1 1
Y (Ed(faoxrwl' faop)> <y (d(faoxn+1' faop)) =7 (E [ d(gxn+1J faop) + d(gp' faoxn+1)]>

—¢ G [d(gxn+1'faop) + d(gp, faox"+1)])
that is,

1 1
v (5 d(faoxnﬂ,faop)) <1 (5[ Alfug s fagb) + A2 faynsn)])

—¢ (% [d(faoxn:faop) + d(Z,faoan)])-

Letting n — oo in the above inequality, using (14) and the properties of ,n and ¢ we have
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v (%d(z.faop)> < (51d( fep)]) - 6 (5 12( £eop)])

= (30 fep)) =1 (514G o)) + 0 (31 fe)]) <

= d(z, fo,p) = 0 = fo,p = z(by (ii) and (iii) ).

Therefore, we have
Z=gp = fa,P- (15)

Hence p is a coincidence point and z is a point of coincidence of g and f, . Like in the proof of
Theorem 3.1, by the condition (8), we prove that z is the unique point of coincidence of g and
fay,- Then, by what we have already proved z is the unique point of coincidence of g and
{fo : @ € 4},
Arguing in the same manner as in the proof of Theorem 3.1, we establish that any common fixed
point of g and £, is a common fixed point of g and {f, : « € A} and conversely. Now, if g and
fa, are weakly compatible, then by Lemma 2.4, z is the unique common fixed point of g and f,
and hence z is the unique common fixed point of g and {f, : a € A}.
Considering {f, : « € A} = f in Theorem 3.1, we have the following corollary.
Corollary 3.1 Let (X, d) be a cone metric space with regular cone P such that d(x, y) € intP, for
x,y € Xwithx #y. Letg : X - X be a mapping such that g(X) is a complete subspace of X.
Let f : X = X be amapping such that f(X) € g(X) and for x,y € X,

1 1
Y (5 a(f, fy)> < (5Ld(gx f) + d(gy, 1)

¢ (5[d(gx, fx) + d(gy, f3)]) (16)
where the conditions upon (y,n,¢ ) are the same as in Theorem 3.1. Then g and f have a
unique point of coincidence in X. Moreover, if g and f are weakly compatible, then g and f
have a unique common fixed point in X.
Considering {f, : @« € A} = f in Theorem 3.2, we have the following corollary.
Corollary 3.2 Let (X, d) be a cone metric space with regular cone P such that d(x, y) € intP, for
x,y € Xwithx #y. Letg: X — X be a mapping such that g(X) is a complete subspace of X.
Let f : X — X be a mapping such that f(X) < g(X) and for x,y € X,
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1
W(d(x ) < n(51dlgx, ) +d(gy,0])
~¢ (3 1d(gx, fy) + d(gy, f0))) (17)

where the conditions upon (y¥,n, ¢ ) are the same as in Theorem 3.1. Then g and f have a
unique point of coincidence in X. Moreover, if g and f are weakly compatible, then g and f
have a unique common fixed point in X.

Considering {f, : @« € A} = f and n to be the function ¥ in Theorem 3.1, we have the following
corollary.

Corollary 3.3 Let (X, d) be a cone metric space with regular cone P such that d(x, y) € intP, for
x,y € Xwithx #y. Let g : X = X be a mapping such that g(X) is a complete subspace of X.
Let f : X — X be a mapping such that f(X) < g(X) and for x,y € X,

1
Y(d(rx, ) < ¥ (5 1dlgx, f0) + dlgy, 1))
¢ (51d(gx, fx) + d(gy, f)]) (18)

where y, ¢ : intP U {6} —intP U {6} are such that v is continuous, ¢ lower semi-continuous and
also

Q) Y is strongly monotonic increasing,

(i) Y(t) = ¢(t) =0 ifandonlyift =0,

(i)  ¢(t) < t, fort €intP and

(iv) either ¢(t) < d(x,y) ord(x,y) < ¢(t), fort €intP U{f}andx,y € X.
Then g and f have a unique point of coincidence in X. Moreover, if g and f are weakly compatible,
then g and f have a unique common fixed point in X.
Considering {f,, : @ € A} = f and n to be the function ¥ in Theorem 3.2, we have the following

corollary.

Corollary 3.4 Let(X d) be a cone metric space with regular cone P such that d(x y) € intP, for
x,y € X with x # y. Let g: X - X be a mapping such that g(X) is a complete subspace of X.
Let f : X — X be a mapping such that f(X) € g(X) and for x,y € X,

w(d(fx ) < (GLd(gx f3) + dgy, f0]) - ¢ (5 [d(gx. fy) + d(gy. f01)  (19)

where the conditions upon (¥, ¢) are the same as in corollary 3.5. Then g and f have a unique
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point of coincidence in X. Moreover, if g and f are weakly compatible, then g and f have a
unique common fixed point in X.

Example 3.1 Let X = [0,220),E = R?,0 = (0,0) with usual norm, be a real Banach space. We
define P = {(x,y) € E : x,y = 0}. The partial ordering = with respect to the cone P be the

partial ordering in E. It is obvious that P is a regular cone.
Letd: X XX - Ebegivenasd(x,y) = (lx —yl|, |x —y]|), forx,y € X.

Then (X, d) is a cone metric space with the required properties of Theorems 3.1 and 3.2.

X
{—, ifo<x<1
gx =2
200,ifx > 1
Then g has the properties mentioned in Theorems 3.1 and 3.2.
Let A = {1,2,3, ... }. Let the family of mappings {f, : X = X: a € A} be defined as follows:
fix =0,forx € X, and fora > 2

0, if0<x<1
fax:{ 2a

a+1’
Then f;(X) € g(X) and the pair (g, f1) is weakly compatible.

if x>1

Lety,n, ¢ :intP U {8} — intP U {6} be defined respectively as follows:
fort = (x,y) €intP U {6},

( 0, ifx =0andy =0
x,y), if0<x<1land0 <y <1

Y(x) =1 x%y), ifx > 1land0 < y <1
L(X,yz), if0 <x<1landy > 1
(x%,y2), ifx > landy > 1

and for t = (x,y) € intP U {8} withv = min {x, y},

) = @AvYand g = (%,5)

Then ¥, n and ¢ have the properties mentioned in Theorems 3.1 and 3.2, conditions (1) and (8)
are satisfied for all x,y € X. Hence the conditions of Theorems 3.1 and 3.2 are satisfied. Here it
is found that 0 is the unique point of coincidence and also the unique common fixed point of g
and {f, : a € A}.
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Remark 3.1 In the above example the family of mapping {f, : @ € A} contains infinitely many
mappings. So it is applicable to corollaries 3.1, 3.2, 3.3 and 3.4. Hence Theorem 3.1 properly
contains corollaries 3.1 and 3.3 and Theorem 3.2 properly contains corollaries 3.2 and 3.4.
Remark 3.2 In some recent works [10, 11, 14, 18] it has been pointed out that a cone metric
generates a metric in a natural way and several fixed point problems on the cone metric space are
reducible to the corresponding problems in the associated metric space. This is particularly true
with the contraction mapping principle. But this cannot be claimed in general. Particularly, weak
contraction is not transferable to a corresponding weak contraction in the generated metric space
and, therefore, cannot be claimed to have been derived from the results of weak contractions in
metric spaces. This is the reason why the fixed point problems of weak contractions and their
generalizations conceived an cone metric space are relevant. Also, in our case a weak contraction
in a cone metric space is not a weak contraction in the corresponding metric space. In fact there
IS even no assurance that a cone metric space inequality will generate an inequality condition in
metric spaces, although, as pointed out in [10, 11, 14, 18], it does in several important cases. Our
problem in this paper is outside this category.
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