
Available online at http://scik.org

Advances in Fixed Point Theory, 2 (2012), No. 3, 273-285

ISSN: 1927-6303

A COMMON FIXED POINT THEOREM OF COMPATIBLE
MAPPINGS OF TYPE (A) IN MENGER SPACES

R. A. RASHWAN1 AND AMIT SINGH2,∗

1Department of Mathematics, Faculty of Science, Assiut University,Assiut-71516 Egypt

2Department of Mathematics, Govt. Degree College Billawar, Jammu and Kashmir-184202, India
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1. Introduction

There have been a number of generalizations of metric space. One such generalization

is Menger space introduced in 1942 by Menger [6] who was use distribution functions in-

stead of non-negative real numbers as values of the metric. Schweizer and Sklar [11] and

[12] studied this concept and gave some fundamental results on this space. The important

development of fixed-point theory in Menger spaces was due to Sehgal and Bharucha-Reid

[13]. The theory of probabilistic metric spaces is of fundamental importance in probabilis-

tic functional analysis. For the detailed discussions of these spaces and their applications
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we refer to [3],[16],[17],[18],[19].

Sessa [14] introduced weakly commuting maps in metric spaces. Jungck [4] enlarged this

concept to compatible maps. The notion of compatible maps in Menger spaces has been

introduced by Mishra [7]. In 1993, Jungck, Murthy and Cho [5] generalize the concept of

compatible mappings into compatible mappings of type (A). Recently, some fixed point

theorems in Menger spaces have been proved by many, authors, Radu [8]-[10], Stojakovic

[20],[21], Dedeic and Sarapa [2], Cho, Murthy and Stojakovic [1] and others under various

contractive conditions.

In this paper, a common fixed point theorem is proved for four compatible mappings

of type (A) in Menger space, which satisfy a new contraction condition and a fixed point

theorem in a metric space as a corollary.

2. Preliminaries

Let R denote the set of reals, R+ the nonnegative reals and N denote the set of all

natural numbers. A mappings F : R+ → R+ is called a distribution function if it is

nondecreasing and left continuous with inf F = 0 and supF = 1. We will denote 4 by

the set of all distribution functions.

A probabilistic metric space (briefly, PM-space) is a pair (X, ξ) where X is a nonempty set

and ξ is a mapping from X×X to4. For (u, v) ∈ X×X, the distribution function F (u, v)

is denoted by Fu,v. The function Fu,v. are assumed to satisfy the following conditions:

(P1) Fu,v(x) = 1 for every x > 0 iff u = v,

(P2) Fu,v(0) = 0 for every u, v ∈ X,

(P3) Fu,v(x) = Fv,u(x) for every u, v ∈ X,

(P4) if Fu,w(x) = 1 and Fw,v(y) = 1 then Fu,v(x+ y) = 1 for every u, v, w ∈ X.

In a metric space (X, d) the metric d induces a mapping F : X ×X →4 such that

F (u, v)(x) = Fu,v(x) = H(x− d(u, v)),
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for every u, v ∈ X and x ∈ R, where H is a specific distribution function defined by

H(x) =


0, x ≤ 0,

1, x > 0.

The following definitions and lemmas are needed in the sequel.

Definition 2.1[11]. A T -norm is a function t : [0, 1]× [0, 1]→ [0, 1] which satisfies:

(T1) t(a, 1) = a and t(0, 0) = 0,

(T2) t(a, b) = t(b, a),

(T3) t(c, d) ≥ t(a, b), c ≥ a, d ≥ b,

(T4) t(t(a, b), c) = t(a, t(b, c)).

Definition 2.2[11]. A Menger space is an order triple (X, ξ, t) where (X, ξ) is a proba-

bilistic metric space and t is T -norm satisfying:

(P4)′ Fu,v(x+ y) ≥ t(Fu,w(x), Fw,v(y)) for all u, v, w ∈ X and x, y ≥ 0.

B. Schweizer and A. Sklar [11] introduced particular spaces of PM-spaces which are called

simple spaces.

Definition 2.3 An PM-space (X, ξ) is said to be a simple space if and only if there exists

a metric d on X and a distribution function G satisfying G(0) = 0, such that for every

x, y in X

Fx,y(u) =


G( u

d(x,y)
), x 6= y,

H(u), x = y.

Furthermore, we say that (X, ξ) is the simple space generated by the metric space (X, d)

and the distribution function G.

Theorem 2.4[11]. A simple space is a Menger space under any choice of T satisfying

(T1), (T2), (T3)and(T4).
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Schweizer and Sklar [11] pointed out, if T -norm t of Menger space (X,F, t) is continuous,

then there exists a topology on X such that X, τ is a Hausdorff topological space in the

topology τ induced by the family of neighbourhoods {Ux(ε, λ) : x ∈ X, ε > 0, λ > 0} where

Ux(ε, λ) = {y ∈ X;Fx,y(ε) > 1− λ}.

Definition 2.5. A sequnce {xn} in a Menger space X is said to be convergent to a point

x ∈ X if for every ε > 0 and λ > 0, there is an integer N(ε, λ) such that

Fxn,x(ε) > 1− λ for all n ≥ N(ε, λ).

The sequence {xn} is called a Cauchy sequence if for each ε > 0 and λ > 0, there is an

integer N(ε, λ) such that Fxn,xm(ε) > 1− λ for all n,m ≥ N(ε, λ).

An important T−norm is the T -norm t(a, b) = min{a, b}, a, b ∈ [0, 1] and this is the unique

T−norm such that t(a, a) ≥ a for every a ∈ [0, 1]. Indeed if it satisfies this condition, we

have

min{a, b} ≤ t(min{a, b}, {a, b}) ≤ t(a, b)

≤ t(min{a, b}, 1) = min{a, b}

Therefore, t = min .

Theorem 2.6 [8]. Let t be a T -norm defined by t(a, b) = min{a, b}. Then an induced

Menger space {X, ξ, t} is complete if a metric space (X, d) is complete.

For complete topological preliminaries on Menger spaces see, for example [12].

G. Jungck [4] introduced more generalized commuting mappings, called compatible map-

pings, which are more general than those of weakly commuting mappings. In general,

commuting mappings are weakly commuting mappings and weakly commuting mappings

are compatible mappings but the converse is not true.

Recently, G. Jungck et al. [5] defined the concept of compatible mappings of type (A)
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which is equivalent to the concept of compatible mappings under some conditions and

proved a common fixed point theorem for compatible mappings of type (A) in metric

spaces.

Further, S. N. Mishra [7] and Y. J. Cho et al. [1] introduced the concept of compatible

mappings and compatible mappings of type (A) respectively in Menger spaces as follows.

Definition 2.7 [7]. Two self mappings S and T of Menger space (X, ξ, t), where t is con-

tinuous will be called compatible if and only if FSTxn,TSxn(u)→ 1 for all u > 0, whenever

{xn} is a sequence in X such that Sxn, Txn → z for some z ∈ X.

Definition 2.8 [1]. Let (X, ξ, t)be a Menger space such that T -norm t is continuous and

S, T be mappings from X into itself. S and T are said to be compatible of type (A) if

lim
n→∞

FTSxn,SSxn(u) = 1 and lim
n→∞

FSTxn,TTxn(u) = 1, for u > 0,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some

z ∈ X.

The following Proposition 2.9 and 2.10 show that the Definitions 2.7 and 2.8 are equivalent

under some condition [1].

Proposition 2.9. Let (X, ξ, t)be a Menger space such that T -norm t is continuous and

t(x, x) ≥ x for all x ∈ [0, 1], and let S, T : X → X be continuous. If S and T are

compatible, then they are compatible of type (A).

Proposition 2.10. Let (X, ξ, t)be a Menger space such that T -norm t is continuous and

t(x, x) ≥ x for all x ∈ [0, 1], and let S, T : X → X be compatible of type (A). If one of S

and T is continuous, then S and T are compatible.

As a direct consequence of Proposition 2.9 and 2.10 we have the following [1].

Proposition 2.11 Let (X, ξ, t)be a Menger space such that T -norm t is continuous and

t(u, u) ≥ u for all u ∈ [0, 1], and let S, T : X → X be mappings. If S and T are compatible

mappings of type (A) and Sz = Tz for some z ∈ X, then STz = TTz = TSz = SSz.

Proposition 2.12.Let (X, ξ, t) be a Menger space such that T -norm t is continuous and

t(u, u) ≥ u for all u ∈ [0, 1], and S, T : X → X be mappings. Let S and T be compatible

mappings of type (A) and limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X. Then we have
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(1) limn→∞ TSxn = Sz if S is continuous at z.

(2) STz = TSzandSz = Tz if S and T are continuous at z.

3. A Common Fixed Point Theorem

Before proving our main theorem, we need the following lemma.

Lemma 3.1 [16]. Let {xn} be a sequence in Menger space (X, ξ, t), where t is continuous

and

t(u, u) ≥ u for all u ∈ [0, 1]. If there exists a constant k ∈ (0, 1) such that

Fxn,xn+1(kx) ≥ Fxn−1,xn(x),

for all x > 0 and n ∈ N, then {xn} is a Cauchy sequence. Now, we are ready to give our

main theorem.

Theorem 3.2. Let (X, ξ, t) be a complete Menger space with t(x, y) = min{x, y} for all

x, y ∈ [0, 1] and A,B, S, T be mappings from X into itself such that

(3.1) A(X) ⊂ T (X) and B(X) ⊂ S(X),

(3.2) the pair {A, S} and {B, T} are compatible of type (A),

(3.3) one of A,B, S and T is continuous,

(3.4) there exists a constant k ∈ (0, 1) such that

(FAx,By(ku))2 ≥ min {FSx,Ax(u)FTy,By(u), FSx,By(2u)FTy,Ax(u), FSx,Ax(u)FSx,By(2u),

FTy,Ax(u)FTy,By(u), FSx,Ax(u)FTy,Ax(u), FSx,By(2u)FTy,By(u),

(FSx,Ax(u))2, (FTy,By(u))2, (FSx,Ty(u))2},

for all x, y ∈ X and u > 0. Then A, B, S and T Have a unique common fixed point in X.

Proof. By (3.1), since A(X) ⊂ T(X), for any x0 ∈ X, there exists a point x1 ∈ X such

that Ax0 = Tx1. Since B(X) ⊂ S(X), for this point x1, we can choose a point x2 ∈ X
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such that Bx1 = Sx2 and so on. Inductively, one can define a sequence {yn} such that

y2n = Tx2n+1 = Ax2n

y2n+1 = Sx2n+2 = Bx2n+1, n ≥ 0.

Now, we prove Fy2n,y2n+1(ku) ≥ Fy2n−1,y2n(u) for all u > 0, where k ∈ (0, 1). Suppose that

Fy2n,y2n+1(ku) < Fy2n−1,y2n(u) for some u > 0. Then by using (3.4) and Fy2n,y2n+1(ku) ≤

Fy2n−1,y2n(u), we have

(Fy2n,y2n+1(ku))2 ≥ (FAx2n,Bx2n+1(ku))2

> min{FSx2n,Ax2n(u)FTx2n+1,Bx2n+1(u), FSx2n,Bx2n+1(2u)FTx2n+1,Ax2n(u),

FSx2n,Ax2n(u)FSx2n,Bx2n+1(2u), FTx2n+1,Ax2n(u)FTx2n+1,Bx2n+1(u),

FSx2n,Ax2n(u)FTx2n+1,Ax2n(u), FSx2n,Bx2n+1(2u)FTx2n+1,Bx2n+1(u),

(FSx2n,Ax2n(u))2, (FTx2n+1,Bx2n+1(u))2, (FSx2n,Tx2n+1(u))2}

= min{Fy2n−1,y2n(u)Fy2n,y2n+1(u), Fy2n−1,y2n+1(2u)Fy2n,y2n(u),

Fy2n−1,y2n(u)Fy2n−1,y2n+1(2u), Fy2n,y2n(u)Fy2n,y2n+1(u),

Fy2n−1,y2n(u)Fy2n,y2n(u), Fy2n−1,y2n+1(2u)Fy2n,y2n+1(u),

(Fy2n−1,y2n(u))2, (Fy2n,y2n+1(u))2, (Fy2n−1,y2n(u))2}

> min{Fy2n−1,y2n(u)Fy2n,y2n+1(u), t(Fy2n−1,y2n(u), Fy2n,y2n+1(u)),

Fy2n−1,y2n(u)t(Fy2n−1,y2n(u), Fy2n,y2n+1(u)), Fy2n,y2n+1(u),

Fy2n+1,y2n(u)t(Fy2n−1,y2n(u), Fy2n,y2n+1(u)), Fy2n,y2n+1(u),

(Fy2n−1,y2n(u))2, (Fy2n,y2n+1(u))2, (Fy2n−1,y2n(u))2}

> min{(Fy2n,y2n+1(ku))2, Fy2n,y2n+1(ku), (Fy2n,y2n+1(ku))2,

Fy2n,y2n+1(ku), Fy2n,y2n+1(ku), (Fy2n,y2n+1(ku))2,

(Fy2n,y2n+1(u))2, (Fy2n,y2n+1(u))2, (Fy2n,y2n+1(u))2}

= (Fy2n,y2n+1(u))2,
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which is a contradiction. Thus, we have

Fy2n,y2n+1(ku) ≥ Fy2n−1,y2n(u).

Similarly, we obtain

Fy2n+1,y2n+2(ku) ≥ Fy2n,y2n+1(u).

Therefore

Fyn,yn+1(ku) ≥ Fyn−1,yn(u),

for all n ∈ N and u > 0.

Hence by Lemma 3.1, it follows that {yn} is a Cauchy sequence in X. Since the Menger

space (X, ξ, t) is complete, {yn} converges to a point z in X and the subsequences

Ax2n,Sx2n, Bx2n+1 and Tx2n−1 also converges to z.

Now suppose that T is continuous, Since B and T are compatible of type (A), then by

Proposition 2.12, we have

BTx2n+1, TTx2n+1 → Tz as n→∞.

Putting x = x2n and y = Tx2n+1 in (3.4), we have

(FAx2n,BTx2n+1(ku))2 ≥ min{FSx2n,Ax2n(u)FTTx2n+1,BTx2n+1(u), FSx2n,BTx2n+1(2u)FTTx2n+1,Ax2n(u),

FSx2n,Ax2n(u)FSx2n,BTx2n+1(2u), FTTx2n+1,Ax2n(u)FTTx2n+1,BTx2n+1(u),

FSx2n,Ax2n(u)FTTx2n+1,Ax2n(u), FSx2n,BTx2n+1(2u)FTTx2n+1,BTx2n+1(u),

(FSx2n,Ax2n(u))2, (FTTx2n+1,BTx2n+1(u))2, (FSx2n,TTx2n+1(u))2}

Taking limit as n →∞, we have

(Fz,Tz(ku))2 ≥ min{Fz,z(u)FTz,Tz(u), Fz,Tz(2u)FTz,z(u), Fz,z(u)Fz,Tz(2u),

FTz,z(u)FTz,Tz(u), Fz,z(u)FTz,z(u), Fz,Tz(2u)FTz,Tz(u),

(Fz,z(u))2, (FTz,Tz(u))2, (Fz,Tz(u))2}

= (Fz,Tz(u))2,
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which implies that Tz = z. Again replacing x by x2n and y by z in (3.4), we have

(FAx2n,Bz(ku))2 ≥ min{FSx2n,Ax2n(u)FTz,Bz(u), FSx2n,Bz(2u)FTz,Ax2n(u),

FSx2n,Ax2n(u)FSx2n,Bz(2u), FTz,Ax2n(u)FTz,Bz(u),

FSx2n,Ax2n(u)FTz,Ax2n(u), FSx2n,Bz(2u)FTz,Bz(u),

(FSx2n,Ax2n(u))2, (FTz,Bz(u))2, (FSx2n,T z(u))2}

Taking limit as n →∞ and using Tz = z, we have

(Fz,Bz(ku))2 ≥ min{Fz,z(u)Fz,Bz(u), Fz,Bz(2u)Fz,z(u), Fz,z(u)Fz,Bz(2u),

Fz,z(u)Fz,Bz(u), Fz,z(u)Fz,z(u), Fz,Bz(2u)Fz,Bz(u),

(Fz,z(u))2, (Fz,Bz(u))2, (Fz,z(u))2}

= (Fz,Bz(u))2,

which implies that Bz = z. Since B(X) ⊂ S(X), there exists a point w in X such that Bz

= Sw = z.

Again by using (3.4), we have

(FAw,z(ku))2 = (FAw,Bz(ku))2

≥ min{FSw,Aw(u)FTz,Bz(u), FSw,Bz(2u)FTz,Aw(u), FSw,Aw(u)FSw,Bz(2u),

FTz,Aw(u)FTz,Bz(u), FSw,Aw(u)FTz,Aw(u), FSw,Bz(2u)FTz,Bz(u),

(FSw,Aw(u))2, (FTz,Bz(u))2, (FSw,Tz(u))2}

= min{Fz,Aw(u)Fz,z(u), Fz,z(2u)Fz,Aw(u), Fz,Aw(u)Fz,z(2u),

Fz,Aw(u)Fz,z(u), Fz,Aw(u)Fz,Aw(u), Fz,z(2u)Fz,z(u),

(Fz,Aw(u))2, (Fz,z(u))2, (Fz,z(u))2}

= (Fz,Aw(u))2,

which implies that Aw = z. Since A and S are compatible of type (A) and Aw = Sw = z

by Proposition 2.12, we have
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Az = ASw = SSw = Sz.

By using (3.4) again, we have Az = z. Therefore Az = Bz = Sz = Tz = z, that is z is

a common fixed point of A, B, S and T. For uniqueness, let ź be another common fixed

point such that ź 6= z. Then by (3.4), we have

(Fz,ź(ku))2 = (FAz,Bź(ku))2

≥ min{FSz,Az(u)FT ź,Bź(u), FSz,Bź(2u)FT ź,Az(u), FSz,Az(u)FSz,Bź(2u),

FT ź,Az(u)FT ź,Bź(u), FSz,Az(u)FT ź,Az(u), FSz,Bź(2u)FT ź,Bź(u),

(FSz,Az(u))2, (FT ź,Bź(u))2, (FSz,T ź(u))2}

= (Fz,ź(u))2,

which means that z = ź. Thus z is a unique common fixed point of A, B, S and T.

As a consequence of Theorem 2.6 and Theorem 3.2, we have the following corollary in a

metric space.

Corollary 3.3. Let A, B, S, T be mappings from a complete metric space (X, d) into

itself such that

(3.5) A(X) ⊂ T (X) and B(X) ⊂ S(X),

(3.6) the pair {A, S} and {B, T} are compatible of type (A),

(3.7) one of A,B, S and T is continuous,

(3.8) there exists a constant k ∈ (0, 1) such that

(d(Ax,By))2 ≤ k max{d(Sx,Ax)d(Ty,By),
1

2
d(Sx,By)d(Ty,Ax),

1

2
d(Sx,Ax)d(Sx,By),

d(Ty,Ax)d(Ty,By), d(Sx,Ax)d(Ty,Ax),
1

2
d(Sx,By)d(Ty,By)

(d(Sx,Ax))2, (d(Ty,By))2, (d(Sx, Ty))2},

for all x, y ∈ X. Then A, B, S and T have a unique common fixed point in X.
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Now we give an example of a PM-space and two pairs of mappings which satisfy all

axioms of Theorem 3.2.

Example 3.4. Let X = [0, 1] with the Euclidean metric d and let ξ : X × X → D be

defined as

Fx,y(u) =

 G( u
d(x,y)

), x 6= y,

H(u), x = y

for all x, y ∈ X, where G(X) is any distribution function such that G(0) = 0. Then, (X,

ξ) is a simple space and using Theorem 2.4, the space (X, ξ, t) will be Menger space with

‘t = min’.

Define the mappings A, B, S and T as the following:

Ax =

 0, 0 ≤ x < 1,

1
12
, x = 1,

Sx =
x

4
, 0 ≤ x ≤ 1

Bx =

 0, 0 ≤ x < 1,

1
4
, x = 1,

Tx = x, 0 ≤ x ≤ 1.

These mappings satisfy the conditions (3.1), (3.2) and (3.3). Moreover, for k = 3
4

and

u ≥ 0, A, B, S and T satisfying (3.4) as follows:

(I) If x = y = 1, then

L.H.S. of (3.4) = (F 1
12

, 1
4
(3u

4
))2 = (G(9u

2
))2.

R.H.S. of (3.4) = min{F 1
4
, 1
12

(u)F 1
4
, 1
4
(u), F 1

4
, 1
4
(2u)F 1

4
, 1
12

(u), F 1
4
, 1
12

(u)F 1
4
, 1
4
(2u),

F1, 1
12

(u)F1, 1
4
(u), F 1

4
, 1
12

(u)F1, 1
12

(u), F 1
4
, 1
4
(2u)F1, 1

4
(u),

(F 1
4
, 1
12

(u))2, (F1, 1
12

(u))2, (F 1
4
,1(u))2}

≤ (F1, 1
4
(u))2 = (G(

4u

3
))2.

Hence (3.4) is satisfied.

(II) If 0 ≤ x, y < 1, then (3.4) is trivially satisfied.
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(III) If x = 1, 0 ≤ y < 1, then

L.H.S. of (3.4) = (F 1
12

,0(3u
4

))2 = (G(9u))2.

R.H.S. of (3.4) = min{F 1
4
, 1
12

(u)Fy,0(u), F 1
4
,0(2u)Fy, 1

12
(u), F 1

4
, 1
12

(u)F 1
4
,0(2u),

Fy, 1
12

(u)Fy,0(u), F 1
4
, 1
12

(u)Fy, 1
12

(u), F 1
4
,0(2u)Fy,0(u),

(F 1
4
, 1
12

(u))2, (Fy,0(u))2, (F 1
4
,y(u))2}

≤ (F 1
4
, 1
12

(u))2 = (G(6u))2.

Hence (3.4) is satisfied.

(IV) If 0 ≤ x < 1, y = 1then

L.H.S. of (3.4) = (F0, 1
4
(3u

4
))2 = (G(4u))2.

R.H.S. of (3.4) = min{Fx,0(u)F1, 1
4
(u), Fx, 1

4
(2u)F1,0(u), Fx,0(u)Fx, 1

4
(2u),

F1,0(u)F1, 1
4
(u), Fx,0(u)F1,0(u), Fx, 1

4
(2u)F1, 1

4
(u),

(Fx,0(u))2, (F1, 1
4
(u))2, (Fx,1(u))2}

≤ (F1, 1
4
(u))2 = (G(

4u

3
))2.

Hence (3.4) is satisfied. Note that 0 is the unique common fixed point of A, B, S and T.
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