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Abstract. In this paper, we propose and study an inexact generalized proximal point algorithm with alternated

inertial steps for solving monotone inclusion problem and obtain weak convergence results under some mild con-

ditions. In the case when the operator T is such that T−1 is Lipschitz continuous at 0, we prove that the sequence

of the iterates is linearly convergent. Fejér monotonicity of even subsequences of the iterates is also obtained.

Finally, we give some priori and posteriori error estimates of our generated sequences.
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1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈,〉 and induced norm ‖ · ‖. Given a maximal

monotone set-valued operator, T : H→ 2H , we consider the following inclusion problem

(1) find x ∈ H such that 0 ∈ T (x).
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We denote by zer(T ) the set of solutions of (1), and assume throughout this paper that zer(T ) 6=

/0. It is well known that (1) serves as a unifying model for many problems of fundamental im-

portance, including fixed point problem, variational inequality problem, minimization of closed

proper convex functions, and their variants and extensions. Therefore, its efficient solution is of

practical interest in many situations.

The proximal point algorithm (PPA), which was first studied by Martinet and further developed

by Rockafella and others ( see e.g., [1, 2, 3]) , has been used for many years for studying

problem(1). Let c > 0 be a constant, the resolvent operator of T is defined by JcT := (I+cT )−1,

i.e., for any x ∈ H, JcT (x) is the unique solution of 0 ∈ x+ cT (x). It is a single valued operator

(see [4]). Starting from an arbitrary point z0 ∈H, the exact form of the PPA iteratively generates

its sequence {zk} by the scheme

(2) zk+1 = JcT (zk)

which is equivalent to

(3) 0 ∈ cT (zk+1)+ zk+1− zk

where c, called proximal parameter, is a positive real number. The inexact version of the PPA

is defined as:

(4) zk+1 ≈ JcT (zk)

In (64), the tolerance of accuracy is zero, and so (4) contains (64). However, (64) is of interest

in its own right, since it requires estimating the resolvent accurately. Under different settings,

both the exact and inexact versions of the PPA have been investigated in the literature. In [5],

the convergence of both the exact and inexact versions of PPA was comprehensively studied.

It turns out that the PPA is a very powerful algorithmic tool and contains many well known

algorithms as special cases, including the classical augmented Lagrangian method [6, 7], the

Douglas-Rachford splitting method [8] and the alternating direction method of multipliers [9,

10]. For more facts about the PPA and generalizations of the PPA, one can consult the references

[4, 11, 12]. The equivalent representation of the PPA (3), can be written as
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(5) 0 ∈ zk+1− zk

c
+T (zk+1).

This can be viewed as an implicit discretization of the evolution differential inclusion problem

(6) 0 ∈ dx
dt

+T (x(t))

It has been shown that the solution trajectory of (6) converges to a solution of (1) provided that

T satisfies certain conditions (see e.g., [13]). To speed up convergence, the following second

order evolution differential inclusion problem was introduced in the literature:

(7) 0 ∈ d2x
dt2 + c

dx
dt

+T (x(t)),

where c > 0 is a friction parameter. If T = ∇ f , where f : R2 → R is a differentiable convex

function with attainable minimum, the system (7) characterizes roughly the motion of a heavy

ball which rolls under its own inertia over the graph of f until friction stops it at a stationary

point of f . In this case, the three terms in (7) denote, respectively, inertial force, friction force

and gravity force. Consequently, the system (7) is usually referred to as the heavy-ball with

friction (HBF) system. In theory, the convergence of the solution trajectories of the HBF system

to a solution of (1) can be faster than those of the first-order system (6), while in practice the

second order inertial term d2x
dt2 can be exploited to design faster algorithms (see e.g., [14, 15]) .

As a result of the properties of (7), an implicit discretization method was proposed in [16, 17]

as follows, given zk−1 and zk, the next point zk+1 is determined via

(8) 0 ∈ zk+1−2zk + zk−1

h2 + γ
zk+1− zk

h
+T (zk+1),

which results to an iterative algorithm of the form

(9) zk+1 = JcT (zk +α(zk− zk−1))

where c = h2

1+ch and α = 1
1+ch . Observe that (9) is the proximal point step applied to the extrap-

olated point zk +α(zk− zk−1), rather than xk itself as in the classical PPA. Hence the iterative

algorithm (9) is a two-step method generally called inertial PPA (iPPA). Convergence properties
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of (9) were studied in [16, 17] under some assumptions on the parameters α and c.

Since the introduction of the iPPA, inexact and other forms of iPPAs have been studied by many

authors (see e.g., [18, 19, 3] and the references contained therein). Recently, there are increasing

interests in studying inertial type algorithms, for example, inertial forward-backward splitting

methods (see for instance [20, 21, 8, 22]), inertial Douglas-Rachford splitting method [23, 24],

inertial alternating method of multipliers, and inertial forward-backward-forward method (see

the refernces [25, 26, 24, 10, 11]).

A major drawback of the iPPA is that Fejér monotonicity of ‖zk− z∗‖, z∗ ∈ zer(T ) is lost in

many cases and hence, makes the sequence {zk} generated by the methods to swing back and

forth around zer(T ). This situation makes these methods sometimes not converge faster than

their counterpart non-inertial methods (see, e.g., [27, 28, 32]). Furthermore, no linear conver-

gence rate of iPPA has been obtained in the literature (see, for example, [31]).

A search to overcome this drawback led to introduction of the so-called alternated iPPA in the

literature. It has been shown that with the alternated iPPA, some sort of Fejér monotonicity of

‖zk− z∗‖, z∗ ∈ zer(T ) is recovered and that the method out-performs their non-inertial counter-

parts. Please, refer to [32, 34] for more details. In [12], the authors studied the generalized PPA

for maximal monotone set-valued operator T such that T−1 is Lipschitz continuous at 0 in real

Hilbert space and obtained both weak and linear convergence results.

Motivated by the results mentioned above, Shehu and Ezeora [29] proposed and studied an

alternated inertial exact generalized PPA for solving monotone inclusion problem in real Hilbert

space. They obtained the following results:

• Fejér monotonicity of ‖zk− z∗‖,z∗ ∈ zer(T ) to some extent, which is not obtained for

iPPA in [16, 17] and other related works;

• weak convergence of the generated sequence {zk} to a point in zer(T ) and thereby

generalizes the results obtained in [34];
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• linear convergence of the generated sequence {zk} to a unique point z∗ under the con-

dition that T is maximal monotone and T−1 is Lipschitz continuous at 0, which has not

been obtained for iPPA in [16, 17, 34] and other related works

• priori and posteriori error estimates of the generated sequence {zk}.

As we mentioned earlier, the inexact PPA is more general than the exact PPA.

Question of Interest: Can an inexact generalized PPA with alternated inertial terms be devel-

oped for solving problem (1) such that some or all the results of [29] are recovered?

It is our aim in this article to answer the question in the positive.

2. PRELIMINARIES

In this section, we present some definitions and known results needed for further discussions.

2.1. Some Definitions. Let T : H→ 2H be a set-valued map. T is said to be :

(i) nonexpansive if

(10) ||u− v|| ≤ ||x− y|| ∀ x,y ∈ H, u ∈ T (x), v ∈ T (y).

(ii) firmly nonexpansive if

(11) ||u− v|| ≤ 〈u− v,x− y〉∀ x,y ∈ H, u ∈ T (x), v ∈ T (y).

(iii) θ− strongly monotone if there exists θ > 0 such that

(12) 〈u− v,x− y〉 ≥ θ ||x− y||2 ∀ x,y ∈ H, u ∈ T (x), v ∈ T (y).

Definition 2.1. Let T : H → 2H be a set-valued map. T−1 is called Lipschitz continuous at O

with modulus α ≥ 0 if there is a unique solution z∗ to 0 ∈ T (z) (i.e.T−1(0) = z∗), and for some

τ > 0, we have ||x− x∗|| ≤ α||w|| whenever x ∈ T−1(w) and ||w|| ≤ τ.

Definition 2.2. A sequence {zk} in H is said to converge weakly to z∗ ∈ H if

(13) for all q ∈ H, lim
k→∞
〈zk,q〉= 〈z∗,q〉.

Definition 2.3. Suppose a sequence {xn} in H converges in norm to x∗ ∈ H. We say that {xn}

converges to x∗ R− linearly if limsupn→∞ ||xn− x∗|| < 1. {xn} is said to converge to x∗ Q−

linearly if there exists σ ∈ (0,1) such that ||xn+1− x∗|| ≤ σ ||xn− x∗|| for n sufficiently large.
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It is well known that Q− linear convergence implies R− linear convergence, but the reverse

implication is not true.

Remark 2.1. • Definition (2.1) is as given in [5].

• From the definitions, the following conclusions hold. If T is nonexpansive, then it is

Lipschitz continuous. Furthermore, the problem (1) has a unique solution point when

T−1 is Lipschitz continuous at 0.

• Example of a set-valued map T such that T−1 is Lipschitz continuous at O is given

in [12]. It is also shown in [12] that Lipschitz continuity at O is weaker than strong

monotonicity as assumed in the results of many authors (see e.g., [33]).

2.2. Some Known Results.

Lemma 2.1. We have the following facts.

(i) All firmly nonexpansive operators are nonexpansive.

(ii) An operator T is firmly nonexpansive if and only if 2T − I is nonexpansive.

(iii) An operator is firmly nonexpansive if and only if it is of the form 1
2(K + I), where K is

nonexpansive.

iv) An operator T is firmly nonexpansive if and only if I−T is firmly nonexpansive.

Lemma 2.2. (see [12]) Let T : H → 2H be set-valued and maximal monotone, define JλT =

(I +λT )−1 with λ > 0. Then, we have

(i) 〈JλT (z)− JλT (z′),(I− JλT )(z)− (I− JλT )(z′)〉 ≥ 0 ∀z,z′ ∈ H

(ii) ||z− z′||2 ≥ ||JλT (z)− JλT (z′)||2 + ||(I− JλT )(z)− (I− JλT )(z′)||2 ∀z,z′ ∈ H.

Lemma 2.3. The following statements hold in H. (i) ||x+ y||2 = ||x||2 +2〈x,y〉+ ||y||2 ∀ x,y ∈

H.

(ii) ||x+ y||2 ≤ ||x||2 + 〈y,x+ y〉 ∀x,y ∈ H.

(iii) ||αx+βy||2 = α(α +β )||x||2 +β (α +β )||y||2−αβ ||x− y||2 ∀x,y ∈ H, ∀α,β ∈ R.

Lemma 2.4. Let C be a nonempty set of H and {zk} be a sequence in H such that the following

two conditions hold:
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(i). for any x ∈C, limn→∞ ||zk− x|| exists;

(ii) every sequential weak cluster point of {zk} is in C. Then {zk} converges weakly to a point

in C.

3. CONVERGENCE OF INEXACT GPPA WITH ALTERNATED INERTIA

In this section, we introduce and study the following inexact GPPA with alternated inertal

term.

zk+1 = (1− γ)wk + γw̄k ∀ k ≥ 1,

||w̄k− JcT (wk)|| ≤ δk||wk− zk+1|| where(14)

(i) wk =


zk if k = even

zk +α(zk− zk−1) if k = odd,

(ii). δk > 0 : ∑
∞
k=1 δk < ∞.

(iii). 0≤ α < (2−γ)
γ

, γ ∈ (0,2).

To establish the results of this section, we need the following Lemmas.

Lemma 3.1. ([12]) Let {αk} be a sequence of positive real numbers satisfying ∑
∞
k=1 αk < ∞

Then,
∞

∏
k=1

(1+αk)< ∞.

Lemma 3.2. ([12]) Let {δk} be a sequence of positive real numbers satisfying ∑
∞
k=1 δk <

∞ and γ > 0. Then,
∞

∏
k=1

(1+ γδk)

(1− γδk)
< ∞.

Lemma 3.3. (see [12]) Let {ak} and {bk} be sequences of positive real numbers with ∑
∞
k=1 bk <

∞ and

(15) ak+1 ≤ ak +bk, ∀ k.

Then, {ak} is convergent.
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Theorem 3.1. Let {zk} be the sequence defined by (14). Then,

(1) The sequence {z2k} is bounded.

(2) The following limit holds

lim
k→∞
||z2k− z̄2k||= 0.

Proof. Observe that: (a) the operator (I− JcT ), is firmly nonexpansive for any c > 0.

(b) Any zero of T is a zero point of the operator (I− JcT ).

Let z∗ ∈ zer(T ), we estimate as follows:

||zk+1− z∗||2 = ||wk− γ(I− JcT )(wk)− z∗||2

= ||wk− z∗||2−2γ〈wk− z∗,(I− JcT )(wk)〉+ γ
2||(I− JcT )(wk)||2

≤ ||wk− z∗||2− γ(2− γ)||(I− JcT )(wk)||2

≤ ||wk− z∗||2− γ(2− γ)||wk− w̄k||2(16)

Set ẑk+1 = (1− γ)wk + γw̄k. Then ẑk+1− zk+1 = γ(w̄k− w̄k), where w̄k = JcT (wk).

Hence

||ẑk+1− zk+1|| = γ||w̄k− w̄k||

≤ γδk||wk− zk+1|| by (14)(17)

Notice that

||zk+1− z∗|| ≤ ||zk+1− ẑk+1||+ ||ẑk+1− z∗||

≤ γδk||wk− zk+1||+ ||ẑk+1− z∗|| by (17)

≤ γδk
(
||wk− z∗||+ ||zk+1− z∗||

)
+ ||ẑk+1− z∗||.(18)

That is,

||zk+1− z∗|| ≤ γδk||wk− z∗||+ γδk||zk+1− z∗||+ ||wk− z∗||

≤ 1+ γδk

1− γδk
||wk− z∗||(19)
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From (19) we have that

||z2k+2− z∗|| ≤ 1+ γδ2k+1

1− γδ2k+1
||w2k+1− z∗||(20)

Observe that

‖w2k+1− z∗‖2 = ‖z2k+1 +α(z2k+1− z2k)− z∗‖2

= (1+α)‖z2k+1− z∗‖2−α‖z2k− z∗‖2

+ α(1+α)‖z2k+1− z2k‖2.(21)

Also,

‖z2k+1− z∗‖2 ≤ ‖w2k− z∗‖2− γ(2− γ)‖w2k− JcT (w2k)‖2

= ‖z2k− z∗‖2− γ(2− γ)‖w2k− JcT (w2k)‖2.(22)

And

‖z2k+1− z2k‖ = ‖w2k− γ(w2k− JcT (w2k))−w2k‖

= γ‖w2k− JcT (w2k))‖

= γ‖z2k− JcT (z2k))‖.(23)

So,

‖w2k+1− z∗‖2 ≤ (1+α)
[
‖z2k− z∗‖2− γ(2− γ)‖z2k− JcT (z2k)‖2]

− α‖z2k− z∗‖2 +α(1+α)‖z2k+1− z2k‖2 by (22)

= ‖z2k− z∗‖2− (1+α)γ(2− γ)‖z2k− JcT (z2k)‖2

+α(1+α)γ‖z2k− JcT (z2k))‖ by (23)

≤ ‖z2k− z∗‖2− (1+α)γ
(
(2− γ)−αγ

)
‖z2k− JcT (z2k))‖

≤ ‖z2k− z∗‖2(24)

That is,

(25) ‖w2k+1− z∗‖ ≤ ‖z2k− z∗‖
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Using (25) in (20), gives

||z2k+2− z∗|| ≤ 1+ γδ2k+1

1− γδ2k+1
||w2k+1− z∗||

≤ 1+ γδ2k+1

1− γδ2k+1
‖z2k− z∗‖

...

≤
k+1

∏
j=1

1+ γδ2 j−1

1− γδ2 j−1
||z0− z∗||

≤
∞

∏
j=1

1+ γδ j

1− γδ j
||z0− z∗||(26)

By Lemma 3.2, we conclude that {z2k} is bounded establishing (1). That is, there exists M > 0

such that ||z2k− z∗|| ≤M ∀k ≥ 1.

Observe that

γ
2
δ

2
k ||wk− zk+1||2 ≤ γ

2
δ

2
k
(
||wk− z∗||+ ||zk+1− z∗||

)2

(27)

Hence,

γ
2
δ

2
2k+1||w2k+1− z2k+2||2 ≤ γ

2
δ

2
2k+1

(
||w2k+1− z∗||+ ||z2k+2− z∗||

)2

≤ 4M2
γ

2
δ

2
2k+1(28)

On the other hand, from (16),

||z2k+2− z∗||2 = ||ẑ2k+2− z∗+(z2k+2− ẑ2k+2)||2

≤ ||ẑ2k+2− z∗||2 + ||ẑ2k+2− z2k+2||2 +2〈ẑ2k+2− z∗, ẑ2k+2− z2k+2〉

≤ ||ẑ2k+2− z∗||2 +2||ẑ2k+2− z∗||2||ẑ2k+2− z2k+2||+ ||ẑ2k+2− z2k+2||2

≤ ||ẑ2k+2− z∗||2 +2Mγδ2k+1||w2k+1− z2k+2||+ γ
2
δ

2
2k+1||w2k+1− z2k+2||2

≤ ||w2k+1− z∗||2− γ(2− γ)||w2k+1− w̄2k+1||2

+ 2Mγδ2k+1||w2k+1− z2k+2||+ γ
2
δ

2
2k+1||w2k+1− z2k+2||2(29)
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Therefore, we have using (24) that

||z2k+2− z∗||2 ≤ ||z2k− z∗||2− γ(2− γ)||w2k+1− w̄2k+1||2

+ 2Mγδ2k+1||w2k+1− z2k+2||+ γ
2
δ

2
2k+1||w2k+1− z2k+2||2(30)

and so by (28),

||z2k+2− z∗||2 ≤ ||z2k− z∗||2 +4M2
γδ2k+1 +4M2

γ
2
δ

2
2k+1.(31)

Applying Lemma 3.3 and condition (ii) to (31), we conclude that limk→∞ ||z2k− z∗|| exists.

From (14) we get z2k+2 = w2k+1− γ(w2k+1− JcT (w2k+1)). So,

‖z2k+2− z∗‖2 = ‖w2k+1− γ(w2k+1− JcT (w2k+1))− z∗‖2

= ‖w2k+1− z∗‖2−2γ〈w2k+1− z∗,w2k+1− JcT (w2k+1)〉

+ γ
2‖w2k+1− JcT (w2k+1)‖2

≤ ‖w2k+1− z∗‖2− γ(2− γ)‖w2k+1− JcT (w2k+1)‖2.

≤ ‖z2k− z∗‖2− (1+α)γ(2− γ)‖z2k− JcT (z2k)‖2

+α(1+α)‖z2k+1− z2k‖2− γ(2− γ)‖w2k+1− JcT (w2k+1)‖2.(32)

‖z2k+1− z2k‖ = ‖w2k− γ(w2k− JcT (w2k))−w2k‖

= γ‖w2k− JcT (w2k))‖

= γ‖z2k− JcT (z2k))‖.(33)

Hence,

‖z2k+2− z∗‖2 ≤ ‖z2k− z∗‖2− (1+α)γ(2− γ)‖z2k− JcT (z2k)‖2

+ α(1+α)γ2‖z2k− JcT (z2k)‖2

− γ(2− γ)‖w2k+1− JcT (w2k+1)‖2

≤ ‖z2k− z∗‖2− (1+α)γ
(
(2− γ)−αγ

)
‖z2k− JcT (z2k)‖2

−γ(2− γ)‖w2k+1− JcT (w2k+1)‖2.(34)
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From (33) and (34), we have that

(35) lim
k→∞
||z2k+1− z2k||= lim

k→∞
γ||z2k− z̄2k||= 0.

That is

||z2k− z̄2k|| → 0 k→ ∞.(36)

This completes the proof. �

3.1. Weak Convergence Results.

Theorem 3.2. Let T : H → 2H be a maximal monotone operator and suppose the following

assumptions hold:

(i) γ ∈ (0,2);

(ii) 0≤ α < 2−γ

γ
;

(iii) T−1(0) 6= /0.

(iv). δk > 0 : ∑
∞
k=1 δk < ∞.

For given z0,z1 ∈ H, let the sequence {zk} be generated by

zk+1 = (1− γ)wk + γw̄k ∀ k ≥ 1,(37)

||w̄k− JckT (wk)|| ≤ δk||wk− zk+1|| where

(i) wk =


zk if k = even

zk +α(zk− zk−1) if k = odd,

Then {zk} converges weakly to z∗ ∈ T−1(0).

Proof. Since the sequence {z2k} is bounded,there exists a subsequence {z2k j} of {z2k} which

converges weakly to some point z∗.

Recall that

c−1
2k

(
z2k− Jc2kT (z2k)

)
∈ T (Jc2kT (z2k)).
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Since T is monotone, we have

(38) 〈z− Jc2kT (z2k),v− c−1
2k

(
z2k− Jc2kT (z2k)

)
〉 ≥ 0,∀ z,v such that v ∈ T (z).

Replacing 2k with 2k j in (38), gives

(39) 〈z− Jc2k j T
(z2k j),v− c−1

2k j

(
z2k j − Jc2k j T

(z2k j)
)
〉 ≥ 0,∀ z,v such that v ∈ T (z).

From Theorem 3.1 (ii), we have

lim
k→∞
‖z2k− z̄2k‖= 0.(40)

Since {z2k j} converges weakly to z∗ and (40) holds, then {z̄2k j} converges weakly to z∗. Hence,

we obtain from (39) that 〈u− z∗,v〉 ≥ 0. Since T is maximal monotone, (see, e.g., [5]), we

conclude that z∗ ∈ T−1(0). Therefore, by Lemma 2.4 we have that {z2k} converges weakly to

an element of T−1(0).

Claim: z∗ is unique.

Assume for contradiction that there exists ξ ∈ H such that z2k j converges weakly to ξ . Then

‖z∗−ξ‖2 = 〈z∗−ξ ,z∗−ξ 〉= 〈z∗,z∗−ξ 〉−〈ξ ,z∗−ξ 〉

= lim
k→∞
〈z2k,z∗−ξ 〉− lim

k→∞
〈z2k,z∗−ξ 〉

= lim
k→∞
〈z2k− z2k,z∗−ξ 〉= 0.(41)

Hence, z∗ is unique. Definition 2.2 of weak convergence gives

(42) lim
k→∞
〈z2k− z∗,µ〉= 0 ∀µ ∈ H.

From (35) and (42), we have that for all µ ∈ H,

|〈z2k+1− z∗,µ〉| = |〈z2k+1− z∗+ z2k− z2k,µ〉|

≤ |〈z2k− z∗,µ〉|+‖z2k+1− z2k‖‖µ‖→ 0, k→ ∞(43)

Hence {zk} converges weakly to z∗ ∈ T−1(0). �
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3.2. linear Convergence.

Lemma 3.4. Let T : H→ 2H be maximal monotone and z∗ be a solution point of (1), let c > 0.

If T−1 is Lipschitz continuous at 0 with modulus a > 0, then there exists a positive number τ

such that

(44) ‖JcT (z)− z∗‖ ≤ a√
a2 + c2

‖z− z∗‖when ‖c−1(z− JcT (z))‖ ≤ τ ∀z ∈ H.

Proof. Applying Property (ii) in Lemma 2.2 with z̄ = z∗ and noticing that c > 0, we get

(45) ‖z− z∗‖2 ≥ ‖JcT (z)− z∗‖2 +‖(I− JcT )(z)‖2

Now, using definition of JcT we get c−1(I−JcT )(z) ∈ T (JcT (z)). Since T−1 is Lipschitz contin-

uous at 0 with modulus a > 0, it follows from definition2.1 that there exists a positive parameter

τ such that

(46) ‖JcT (z)− z∗‖ ≤ a‖c−1(z− JcT (z))‖when ‖c−1(z− JcT (z))‖ ≤ τ ∀z ∈ H.

That is,

(47) ‖(z− JcT (z))‖ ≥
c
a
‖JcT (z)− z∗‖when ‖c−1(z− JcT (z))‖ ≤ τ ∀z ∈ H.

Substituting this inequality (47) into (45), we obtain

‖z− z∗‖2 ≥ ‖JcT (z)− z∗‖2 +
c
a
‖JcT (z)− z∗‖2

=
a2 + c2

a2 ‖JcT (z)− z∗‖2when ‖c−1(z− JcT (z))‖ ≤ τ ∀z ∈ H.(48)

From (48), we get (44). This completes the proof. �

Lemma 3.5. Let {zk} be the sequence generated by the algorithm (37), with γ ∈ (0,2), and

z∗ be a solution point of (1). If T−1 is Lipschitz continuous at 0 with modulus a > 0, and the

proximal parameter c is positive, then there exists an integer k̂ such that

(49) ‖w̄k− z∗‖ ≤ a√
a2 + c2

‖wk− z∗‖ ∀ k > k̂.

Proof. Observe that Lemma 3.4 above holds for all z ∈ H. Set w̄k = JcT (wk), then w̄k ∈ H ∀ k.

Also, wk is in H for all k. Therefore, the proof follows from Lemma 3.4 above . �



INEXACT GENERALIZED PROXIMAL POINT ALGORITHM 15

Lemma 3.6. Let T : H → 2H be a maximal monotone operator and suppose the following

assumptions hold:

(i) γ ∈ (0,2);

(ii) 0≤ α < 2−γ

γ
;

(iii) T−1(0) 6= /0.

(iv) T−1 is Lipschitz continuous at 0 with modulus a > 0, and the proximal parameter c is

positive ( c > 0 ) Given z0,z1 ∈ H, let the sequence {zk} be generated by

wk =


zk, k = even

zk +α(zk− zk−1), k = odd

and

zk+1 = wk− γ(wk− JcT (wk)) ∀ k ≥ 1.(50)

then there exists a positive integer k1 such that

(51) ‖zk+1− z∗‖2 ≤ τ‖wk− z∗‖2 ∀ k > k1with

(52) τ := 1−min
{

γ,2γ− γ
2
} c2

a2 + c2 ∈ (0,1).

and z∗ is the unique solution of (1)

Proof.

‖zk+1− z∗‖2 = ‖wk− γ(wk− JcT (wk))− z∗‖2

= ‖(1− γ)(wk− z∗)+ γ(JcT (wk)− z∗)‖2

= (1− γ)2‖wk− z∗‖2 +2γ(1− γ)〈wk− z∗, w̄k− z∗〉+ γ
2‖w̄k− z∗‖2

= (1− γ)2‖wk− z∗‖2 +2γ(1− γ)‖w̄k− z∗‖2 + γ
2‖w̄k− z∗‖2

+ 2γ(1− γ)〈wk− w̄k, w̄k− z∗〉 with w̄k = JcT (wk)

= (1− γ)2‖wk− z∗‖2 +(2γ− γ
2)‖w̄k− z∗‖2

+ 2γ(1− γ)〈wk− w̄k, w̄k− z∗〉.(53)
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For γ = 1, assertions (51) and (52) follow immediately from Lemma 3.5. For 0 < γ ≤ 1, we

have from (53) the following estimates :

‖zk+1− z∗‖2 = (1− γ)2‖wk− z∗‖2 +(2γ− γ
2)‖w̄k− z∗‖2

+ 2γ(1− γ)〈wk− w̄k, w̄k− z∗〉

= (1− γ)2‖wk− z∗‖2 +(2γ− γ
2)‖w̄k− z∗‖2

+ 2γ(1− γ)〈wk− z∗+ z∗− w̄k, w̄k− z∗〉

= (1− γ)2‖wk− z∗‖2 +(2γ− γ
2)‖w̄k− z∗‖2

+ 2γ(1− γ)〈wk− z∗, w̄k− z∗〉−2γ(1− γ)〈w̄k− z∗, w̄k− z∗〉

= (1− γ)2‖wk− z∗‖2 +(2γ− γ
2)‖w̄k− z∗‖2

+ 2γ(1− γ)〈wk− z∗, w̄k− z∗〉−2γ(1− γ)||w̄k− z∗||2

≤ (1− γ)2‖wk− z∗‖2 +(2γ− γ
2)‖w̄k− z∗‖2

+ γ(1− γ)||wk− z∗||2 + γ(1− γ)||w̄k− z∗||2

− 2γ(1− γ)||w̄k− z∗||2 since 2ab≤ a2 +b2 ∀ a,b ∈ R

= (1− γ)‖wk− z∗‖2 + γ‖w̄k− z∗‖2

≤
(
(1− γ)+ γ

a2

a2 + c2

)
‖wk− z∗‖2 by Lemma 3.5

=
(
1− γ

c2

a2 + c2

)
‖wk− z∗‖2.

That is,

‖zk+1− z∗‖2 ≤
(

1− γ
c2

a2 + c2

)
‖wk− z∗‖2(54)

From Lemma 2.2 (ii) with z = wk, w̄k = JcT (wk),z′ = z∗, we have that

‖wk− z∗‖2 ≥ ‖w̄k− z∗‖2 +‖wk− w̄k‖2.

With this, we have that 〈wk− w̄k, w̄k− z∗〉 ≥ 0. If 1 < γ < 2, we get

(55) 2γ(1− γ)〈wk− w̄k, w̄k− z∗〉 ≤ 0.
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Hence, from (53) and Lemma 3.5 we obtain

(56) ‖zk+1− z∗‖2 ≤
(

1− (2γ− γ
2)

c2

a2 + c2

)
‖wk− z∗‖2 ∀k > k̂.

To verify (52), observe that for γ ∈ (0,2) and c≥ a > 0, we get

0 < 1−min
{

γ,2γ− γ
2
}
≤ τ := 1−min

{
γ,2γ− γ

2
} c2

a2 + c2

< 1−min
{

γ,2γ− γ
2
} a2

a2 +a2 < 1.

Therefore,

(57) ‖zk+1− z∗‖2 ≤
(

1−min
{

γ,2γ− γ
2
} c2

a2 + c2

)
‖wk− z∗‖2.

This establishes (51).

�

Theorem 3.3. Let T : H → 2H be a maximal monotone operator and suppose the following

assumptions hold:

(i) γ ∈ (0,2);

(ii) 0≤ α < 2−γ

γ
;

(iii) T−1(0) 6= /0.

(iv) T−1 is Lipschitz continuous at 0 with modulus a > 0, and the proximal parameter c is

positive ( c > 0 ). Let {zk} be the sequence generated by the scheme (37). Then, {zk} converges

strongly to the unique solution z∗ of (1). Furthermore, there exists an integer k̄ such that

||zk+1− z∗|| ≤ θ ||wk− z∗|| when k > k̄, and

0 < θ :=

√
1−min(γ,(2γ− γ2) c2

a2+c2 )+ γδk

1−δk
< 1.(58)

Moreover, for 0≤ α ≤ 1−θ

1+θ
, the sequence {zk} satisfies

||zk− z∗|| ≤



||z2−z∗||
θ

θ
k
2 if k = even

||z2−z∗||
θ

θ
(k−1)

2 if k = odd,



18 J. N. EZEORA, F. E. BAZUAYE,

That is, {zk} converges R−linearly to the unique element z∗ ∈ zer(T ).

Proof. Set ẑk+1 = (1− γ)wk + γw̄k. Then, ẑk+1− zk+1 = γ(w̄k− w̄k), where w̄k = JcT (wk).

From Lemma 3.6,

(59) ||ẑk+1− z∗||2 ≤ 1−min(γ,(2γ− γ
2))

c2

a2 + c2 ||w
k− z∗||2.

Further, from (37)

||zk+1− z∗|| ≤ γδk
(
||wk− z∗||+ ||zk+1− z∗||

)
+ ||ẑk+1− z∗||

≤ γδk
(
||wk− z∗||+ ||zk+1− z∗||

)
+

√
1−min(γ,(2γ− γ2))

c2

a2 + c2 ||w
k− z∗||

≤

√
1−min(γ,(2γ− γ2)) c2

a2+c2 + γδk

1− γδk
||wk− z∗||(60)

Since δk→ 0, c > 0, there exists k̄ ≥ k1 such that

(61) 0 < θ :=

√
1−min(γ,(2γ− γ2)) c2

a2+c2 + γδk

1− γδk
< 1 ¯when k > k̄.

Consequently,

||zk+1− z∗|| ≤ θ ||wk− z∗|| ∀ k ≥ k̄.(62)

Establishing (58). From (62),

||zk+1− z∗||2 ≤ θ
2||wk− z∗||2 ∀ k ≥ k̄.(63)

Now,

||w2k+1− z∗||2 = ||z2k+1 +α(z2k+1− z2k)− z∗||2

= ||(1+α)(z2k+1− z∗)−α(z2k− z∗)||2

= (1+α)||z2k+1− z∗||2−α||(z2k− z∗)||2

+ α(1+α)||z2k+1− z2k||2 by Lemma 2.3(iii)(64)

Using k = 2k in (63) gives

||z2k+1− z∗||2 ≤ θ
2||w2k− z∗||2 = θ

2||z2k− z∗||2 ∀ k ≥ k̄(65)
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Also, putting k = 2k+1 in (63) and noticing (64) and (65), we have

||z2k+2− z∗||2 ≤ θ
2||w2k+1− z∗||2 ∀ k ≥ k̄

= θ
2[(1+α)||z2k+1− z∗||2−α||z2k− z∗||2 +α(1+α)||z2k+1− z2k||2

]
= θ

2[
θ

2(1+α)||z2k− z∗||2−α||z2k− z∗||2 +α(1+α)||z2k+1− z2k||2
]

≤ θ
2[

θ
2(1+α)||z2k− z∗||2−α||z2k− z∗||2

+ α(1+α)
(
||z2k+1− z∗||+ ||z2k− z∗||

)2]
≤ θ

2[
θ

2(1+α)||z2k− z∗||2−α||z2k− z∗||2 +α(1+α)(1+θ)2||z2k− z∗||2
]

≤ θ
2[

θ
2(1+α)−α +α(1+α)(1+θ)2]||z2k− z∗||2

≤ θ
2||z2k− z∗||2(66)

From (66), we have

||z2k+2− z∗|| ≤ θ ||z2k− z∗||

≤ θ
2||z2k−2− z∗||

...

≤ θ
k||z2− z∗|| ∀ k ≥ k̄.(67)

Therefore,

(68) ||z2k− z∗|| ≤ ||z
2− z∗||

θ
θ

k ∀k ≥ k̄.

Putting (68) into (65), gives

||z2k+1− z∗|| ≤ θ ||z2k− z∗|| ≤ ||z2k− z∗||

≤ ||z2− z∗||
θ

θ
k ∀ k ≥ k̄.(69)

That is

||zk− z∗|| ≤



||z2−z∗||
θ

θ
k
2 if k = even

||z2−z∗||
θ

θ
(k−1)

2 if k = odd,
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Hence, {zk} converges R−linearly to z∗ ∈ zer(T ) as required.

�

CONCLUSION

In this paper, we introduce an alternated inertia inexact generalized PPA for solving monotone

inclusion problem in infinite dimensional real Hilbert spaces. Weak and linear convergence

results are obtained. Fejér monotonicity of ‖zk− z∗‖,z∗ ∈ zer(T ) to some extent, which is not

obtained for iPPA in [16, 17] and other related works is aslo recovered. It has been recently

stated in [31] that one cannot obtain linear convergence result with inertial PPA; here in our

results, we are able to show that linear convergence result for alternated inertial PPA is possible

even for the more general inexact version of alternated inertial PPA.
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