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Abstract. The aim of this work is to prove some results about the existence and regularity of solutions for some

neutral partial functional integrodifferential equations with infinite delay in Banach spaces. The results are based

on semigroup theory and on Banach’s fixed point theorems. The method used treats the equations in its subspace

D(A). One example is given to illustrate the theory.
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1. INTRODUCTION

In this paper, we are interested in the existence and regularity of solutions for the following

neutral partial functional integrodifferential equation with infinite delay

(1)


d
dt
g(t,ut) = Ag(t,ut)+

∫ t

0
K (t− s,g(s,us))ds+F(t,ut), t ≥ 0

u0 = ϕ ∈B,
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where A is the infinitesimal generator of a strongly continuous semigroup of (T (t))t≥0 on a

Banach space E with domain D(A), and K is, in general, a nonlinear operator from R+×D(A)

to E. The phase space B is the space of continuous functions from ]−∞,0] into D(A), where

D(A) is endowed with the graph norm, namely for x ∈D(A), |x|D(A) = |x|E + |Ax|E . His know

that
(
D(A), |.|D(A)

)
is a Banach space. Also g is a function defined from R+×C into D(A) by

(2) g(t,ϕ) = ϕ(0)−G(t,ϕ),

and G, F are two continuous functions from R+×B into E. For u ∈B and for every t ≥ 0, the

history function ut ∈B is defined by

ut(θ) = u(t +θ) for θ ∈]−∞,0].

In the case where K = 0 and A is the infinitesimal generator of a strongly continuous semi-

group, the mild solution of Eq.(1) is given by the following variation of constants formula

g(t,ut) = T (t)g(0,ϕ)+
∫ t

0
T (t− s)F(s,us)ds for t ≥ 0.

In the literature devoted to partial functional integrodifferential equations with finite delay, the

phase space is often the space of all continuous functions on [−r,0], r > 0, endowed with the

uniform norm topology. When the delay is infinite, the notion of the phase space B plays an

important role in the study of both qualitative and quantitative theory, so a usual choice is a

normed space satisfying suitable axioms, which was introduced by Hale and Kato [10] (see also

Kappel and Schappacher [13] and Chumacher [21]). For detailed discussion on this topic, we

refer the reader to the book by Hino and al. [12].

Neutral differential equations arise in many areas of applied mathematics and for this reason

these equations have received much attention in the last few decades. In the following, we

provide several examples studied in the literature resulting from various physical systems. The

work for neutral functional differential equations with infinite delay was initiated by Hernàndez

and Henriquez in [11]. Eq.(1) have been investigated by many authors using the semigroups

theory; many results of existence, regularity of solutions have been obtained. For more details,
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we refer the reader to [5,6,16]. Recently, Koumla and al., in [17], are investigated several re-

sults on the global existence, uniqueness of mild solutions of Eq.(1) with values in the Banach

space and in its subspace D(A). The results are based on Banach’s and Schauder’s fixed point

theorems and on the technique of equivalent norms.

Our work has a double motivated. First, it is motivated by the first author’s recent paper [5],

which mainly inspires the operator technique of proof, and secondly, by the paper of Webb [22]

for the class of integrodifferential equation in the following form

(3)


u′(t) = Au(t)+

∫ t

0
g(t− s,u(s))ds+ f (t) for t ≥ 0,

u0 = x ∈X .

The goal of this work is to extend this problem to neutral type equations and to discuss the

existence and regularity results of solutions for Eq.(1) by using the semigroup theory. The

result obtained is a generalization and a continuation of Webb [22].

The paper is organized as follows. In Section II, we recall some preliminary results of Eq.(3).

In Section III, we study the existence of mild solutions for the neutral system (1) using the

theory of semigroup and Banach’s fixed point theorem. Sufficient conditions for the existence

of mild and strict solutions are also established. Finally, we present in Section IV an example

which illustrates our results.

2. PRELIMINARIES

In this section, we recall some notions and results that we need in the following. Throughout

the paper, E is a Banach space, A : D (A)⊂ E → E is closed linear operator which generates a

c0-semigroup (T (t))t≥0 on E. For more details, we refer to [20].

Recall that for such a semigroup, there exists M > 0 and ω ∈ R such that

|T (t)| ≤Meωt , t ≥ 0,

where |T (t)| is the norm of the bounded linear operator T (t) .

We denote by Y the space D(A) equipped with the graph norm defined by

|y|D(A) = |y|E + |Ay|E .
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It is well-known that D (A) equipped with norm |·|D(A) is a Banach space.

Definition 2.1. A continuous function u : [0,+∞[→ E is said to be a strict solution of Eq.(3) if

(i) u ∈ C 1 ([0,+∞[;E)∩C ([0,+∞[;Y ) ; (ii) u satisfies Eq.(3) for all t ≥ 0.

Remark 1. From this definition, we deduce that u(t) ∈ Y and the function s 7→ g(t− s,u(s)) is

integrable on [0, t] for every t ≥ 0.

Proposition 2.2. [22] If u is a strict solution of Eq.(3), then u satisfies the integral equation

(4)
u(t) = T (t)x+

∫ t

0
T (t− s)

∫ s

0
g(s− r,u(r))drds

+
∫ t

0
T (t− s) f (s)ds.

Remark 2. If u satisfies the equation Eq.(4), it is not necessarily a strict solution. That is why

we give the next definition.

Definition 2.3. A continuous function u : [0,+∞[→ E is called a mild solution of Eq.(3) if it

Eq.(4).

In this work, we assume that the phase space (B, |.|B) is a normed linear space of functions

mapping ]−∞,0] into D(A) and satisfying the following fundamental axioms ( cf. Hale and

Kato in [10]).

(A1) There exist positive constant H and functions µ(.),η(.) : R+→ R+, with µ continuous

and η locally bounded, such that for any σ ∈R and a > 0, if u :]−∞,σ +a]→D(A), uσ ∈B,

and u(.) is continuous on [σ ,σ +a], then for every t ∈ [σ ,σ +a] the following conditions holds

(i) ut ∈B,

(ii) |u(t)|Y ≤ µ |ut |B , which is equivalent to |ϕ(0)|Y ≤ µ |ϕ|B for every ϕ ∈B,

(iii) |ut |B ≤ µ(t−σ) sup
σ≤s≤t

|u(s)|Y +η(t−σ) |ut |B ,

(A2) For the function u(.) in (A1), t 7→ ut is a B−valued continuous function for t ∈ [σ ,σ +a].

(B) The space B is a Banach space.

(H0) A is the infinitesimal generator of a c0-semigroup(T (t))t≥0 on E.
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3. MAIN RESULTS

In this section, we prove the global existence, uniqueness and regularity of the solution to

Eq.(1). Firstly, we show the existence and uniqueness of the mild solution. Secondly, we give

sufficient conditions ensuring that the mild solution is a strict solution of the problem, in the

sens of the following definition.

3.1 Global existence and regularity of solutions

3.1.1 Global existence of solutions

Definition 3.1. We say that a continuous function u :]−∞,+∞[→Y is a strict solution of Eq.(1)

if the following conditions hold

(i) u ∈ C 1([0,+∞[,E)∩C ([0,+∞[,Y );

(ii) u satisfies Eq.(1) on [0,+∞[;

(iii) u(θ) = ϕ(θ) for −∞≤ θ ≤ 0.

Remark 3. Form this definition, we deduce that u(t) ∈ Y and the function s 7→ g(t− s,u(s)) is

integrable on [0, t] for the every t ≥ 0.

From Proposition II.2 we have the following.

Proposition 3.2. If u is a strict solution of Eq.(1), then u satisfies the integral equation

(5)
u(t) = T (t)g(0,ϕ)+G(t,ut)+

∫ t

0
T (t− s)

∫ s

0
K (s− r,g(r,ur))drds

+
∫ t

0
T (t− s)F(s,us)ds.

Proof. It is just a consequence of Proposition. 2.3 and of

Eq.(3) ♦

Remark 4. The converse in not true. In fact if u satisfies Eq.(5), u it is necessary to be a strict

solution. That is why we give the following definition.

Definition 3.3. We say that a continuous function u :]−∞,+∞[→Y is a mild solution of Eq.(1)

if it satisfies the equation Eq.(5).
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In addition, we introduce the following hypotheses:

(H1) F,G : R+×B→ Y are continuous and lipschitzian with respect to the second argument,

namely, then exist constants LF > 0 and LG > 0 such that

|F(t,u)−F(t,v)|Y ≤ LF |u− v|B for t ≥ 0 and u,v ∈B,

|G(t,u)−G(t,v)|Y ≤ LG |u− v|B for t ≥ 0 and u,v ∈B.

(H2) The derivative ∂K
∂ t (t,u) exists and is continuous from R+×Y into E, moreover there exist

continuous and increasing functions b : R+→ R+ and c : R+→ R+ such that:

|K (s,u)−K (s,v)|E ≤ b(s) |u− v|Y

and ∣∣∣∣∂K

∂ s
(s,u)− ∂K

∂ s
(s,v)

∣∣∣∣
E
≤ c(s) |u− v|Y

for all s ∈ R+, and u,v ∈ Y.

Theorem 3.4. Assume that (H1) and (H2) hold. If ϕ ∈B, then there exist a unique continuous

function u :]−∞,+∞[→ Y which is a mild solution of Eq.(1)

Proof. We define the set [Mt1(ϕ) := {u ∈ C ([0, t1];Y) : u(0) = ϕ(0)}] . Mt1(ϕ) is a closed sub-

set of C ([0, t1];Y), where C ([0, t1];Y) is the space of continuous functions from [0, t1] to Y

equipped with the uniform norm topology. Next, for each u ∈Mt1(ϕ) we define

ũ(t) =


ϕ(t) for t ∈ (−∞,0],

u(t) for t ∈ [0, t1].

Consider the operator P : Mt1(ϕ)→ C ((−∞,0],E) defined by

(Pu)(t) = G(t, ũt)+T (t)g(0,ϕ)+
∫ t

0
T (t− s)

∫ s

0
K (s− r,g(r, ũr))dr

+
∫ t

0
T (t− s)F(s, ũs)ds.

The first steep is to show that P(Mt1(ϕ))⊂Mt1(ϕ). On the other hand we have
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(APu)(t) = AG(t, ũt)+AT (t)g(0,ϕ)+A
∫ t

0
T (t− s)

∫ s

0
K (s− r,g(r, ũr))drds

+A
∫ t

0
T (t− s)F(s, ũs)ds 0≤ t ≤ t1.

Since A is closed, then

(APu)(t) = AG(t, ũt)+AT (t)g(0,ϕ)+A
∫ t

0
T (t− s)

∫ s

0
K (s− r,g(r, ũr))drds

+
∫ t

0
T (t− s)AF(s, ũs)ds 0≤ t ≤ t1.

For the next, we need the following Lemmas.

Lemma 3.5. [5] Let u : [0, t1]→ E be continuously differentiable. Assume that (H2) hold.

Then,

k(t) =
∫ t

0
K (t− s,u(s))ds is continuously differentiable from [0, t1] to E.

Lemma 3.6. [14, p.488] Let k : [0, t1]→ E be continuously differentiable, and q be defined by

q(t) =
∫ t

0
T (t− s)k(s)ds, for t ∈ [0, t1].

Then q(t) ∈ Y, for every [0, t1], q is continuously differentialble, and

Aq(t) = q′(t)− k(t) =
∫ t

0
T (t− s)k′(s)ds+T (t)k(0)− k(t).

By virtue of the hypothesis we have on B, by Lemma III.5 and III.6, for u ∈ Y,

we have

(APu)(t) = AG(t, ũt)+AT (t)g(0,ϕ)+
∫ t

0
T (t− s)K (0,g(s, ũs))ds

+
∫ t

0
T (t− s)

∫ s

0

∂K

∂ s
(s− r,g(r, ũr))drds

−
∫ t

0
K (t− s,g(s, ũs))ds+

∫ t

0
T (t− s)AF(s, ũs)ds.

From the axioms (A1− i),A2 and assumption (H1), it follows that the maps t 7→ f (t, ũt) is

continuous. Moreover, from (H2) and (A1) we infer that for every u ∈ Mt1(ϕ) the function

s 7→K (s, ũ) is continuous on [0, t1] and so by assumption (H0) that t 7→
∫ t

0
T (s) f (s, ũs)ds is
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continuous on [0, t1]. Thus, for u ∈Mt1(ϕ), Pu and APu are both continuous from [0, t1] to E, P

maps Mt1(ϕ) into Mt1(ϕ). Then Pu ∈ C ([0, t1];Y ) and consequently P(Mt1(ϕ))⊂Mt1(ϕ).

We claim that P is a strict contraction in Mt1(ϕ). In fact, let u,v ∈Mt1(ϕ). In fact,

|(Pu)(t)− (Pv)(t)|E ≤ |G(t, ũt)−G(t, ṽt)|E

+

∣∣∣∣∫ t

0
T (t− s)

∫ s

0
(K (s− r,g(r, ũr))−K (s− r,g(r, ṽr))drds

∣∣∣∣
E

+

∣∣∣∣∫ t

0
T (t− s)(F(s, ũs)−F(s, ṽs))ds

∣∣∣∣
E

≤ |G(t, ũt)−G(t, ṽt)|E

+
∫ t

0
ew(t−s)

∫ s

0
|K (s− r,g(r, ũr))−K (s− r,g(r, ṽr))|E drds

+
∫ t

0
ew(t−s) |F(s, ũs)−F(s, ṽs)|E ds

≤ |G(t, ũt)−G(t, ṽt)|Y

+
∫ t

0
ew(t−s)

∫ s

0
|K (s− r,g(r, ũr))−K (s− r,g(r, ṽr))|Y drds

+
∫ t

0
ew(t−s) |F(s, ũs)−F(s, ṽs)|Y ds

Without loss of generality, we assume that w > 0. By (H1) and (H2), we obtain that

(6)

|(Pu)(t)− (Pv)(t)|E ≤ LG |ũt− ṽt |C ((−∞,0],Y )

+ewt1
∫ t

0

∫ s

0
b(s− r) |ũr− ṽr|C ((−∞,0],Y ) drds

+LFewt1
∫ t

0
|ũs− ṽs|C ((−∞,0],Y ) ds,

|(APu)(t)− (APv)(t)|E ≤ |AG(t, ũt)−AG(t, ṽt)|

+
∫ t

0
ew(t−s) |K (0,g(s, ũs))−K (0,gṽs))|ds

+
∫ t

0
ew(t−s)

∫ s

0

∣∣∣∣∂K

∂ s
(s− r,g(r, ũr))−

∂K

∂ s
(s− r,g(r, ṽr))

∣∣∣∣drds

+
∫ t

0
|K (t− s,g(s, ũs))−K (t− s,g(s, ṽs))|ds

+
∫ t

0
ew(t−s) |AF(s, ũs)−AF(s, ṽs)|ds
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(7)

|(APu)(t)− (APv)(t)|E ≤ LG |ũt− ṽt |C ((−∞,0],Y )

+b(0)ewt1
∫ t

0
|ũs− ṽs|C ((−∞,0],Y ) ds

+ewt1
∫ t

0

∫ s

0
c(s− r) |ũr− ṽr|C ((−∞,0],Y ) drds

+
∫ t

0
b(t− s) |ũs− ṽs|C ((−∞,0],Y ) ds

+LFewt1
∫ t

0
|ũs− ṽs|C ((−∞,0],Y ) ds.

From (6) and (7), we have

|(Pu)(t)− (Pv)(t)|Y ≤ LG |ũt− ṽt |C ((−∞,0],Y )

+b(0)ewt1
∫ t

0
|ũs− ṽs|C ((−∞,0],Y ) ds

+ewt1
∫ t

0

∫ s

0
[b(s− r)+ c(s− r)] |ũr− ṽr|C ((−∞,0],Y ) drds

+
∫ t

0
b(t− s) |ũs− ṽs|C ((−∞,0],Y )

+LFewt1
∫ t

0
|ũs− ṽs|C ((−∞,0],Y ) ds.

Define α(t) =
∫ t

0
e−ws(b(s)+ c(s))ds and β (t) = max

0≤s≤t
e−wsb(s) for t ≥ 0.

Then
|(Pu)(t)− (Pv)(t)|Y ≤ LG |ũt− ṽt |C ((−∞,0],Y )

+b(0)ewt1
∫ t1

0
|ũs− ṽs|C ((−∞,0],Y ) ds

+ewt1α(t)
∫ t1

0
|ũs− ṽs|C ((−∞,0],Y ) ds

+ewt1β (t)
∫ t1

0
|ũs− ṽs|C ((−∞,0],Y ) ds

+LFewt1
∫ t1

0
|ũs− ṽs|C ((−∞,0],Y ) ds,

and finally

|(Pu)(t)− (Pv)(t)|Y ≤
[
LG + t1ewt1(b(0)+α(t)+β (t)+LF)

]
|ũ− ṽ|C ((−∞,0],Y ) .

If we choose t1 small enough and LG < 1 such that[
LG + t1ewt1(b(0)+α(t)+β (t)+LF)

]
< 1,
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then P is a strict contraction in Mt1(ϕ), and by applying Banach’s fixed point

theorem, we deduce that there exists a unique fixed point u = u(.,ϕ) for P

in Mt1(ϕ), which implies that Eq.(1) has a unique mild solution on (−∞, t1]. A

similar argument can be used for [t1,2t1],...,[nt1,(n + 1)t1], for all n ≥ 0, which

implies that the mild solution exists uniquely in (−∞,+∞). This completes the

proof. ♦

3.1.2 Existence of strict solutions

In this section we recall some fundamental results needed to establish our results. We consider

the inhomogeneous initial value problem

(8)


u′(t) = Au(t)+h(t) for t ≥ 0,

u(0) = x ∈X

where h : [0,a]−→X , is continuous.

Definition 3.7. A continuous function u : [0,+∞[→X is said to be strict solution of Eq.(8) if

(i) u ∈ C 1 ([0,+∞[;X )∩C ([0,+∞[;D(A))

(ii) u satisfies Eq.(8) for all t ≥ 0.

Proposition 3.8. [20]. If u is a strict solution of Eq.(8), then u is given by

(9) u(t) = T (t)x+
∫ a

0
T (t− s)h(s)ds for t ∈ [0,a].

The next Theorem provides sufficients conditions for the regularity of solution to Eq.(8).

Theorem 3.9. [20]. Let A be the infinitesimal generator of a C0-semigroup (T (t))t≥0. Let h ∈

L1 (0,a;X ) be continuous on [0,a] and let

v(t) =
∫ t

0
T (t− s)h(s)ds t ∈ [0,a].

The Eq.(8) has a strict solution u on [0,a] for every x ∈D(A) if one of the following conditions

is satisfied;

(1) v(t) is continuously differentiable on [0,a].

(2) v(t) ∈D(A) for 0 < t < a and Av(t) is continuous on [0,a].
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• If Eq.(8) has a strict solution u on [0,a] for some x ∈D(A) then v satisfies both (1) and (2).

From Theorem III.9 we dram the following useful Lemma.

Lemma 3.10. [20]. Let A be the infinitesimal generator of a C0-semigroup (T (t))t≥0. Let h ∈

L1 ([0,a];D(A)) be continuous on [0,a]. If h(s) ∈D(A) for 0 < s < a and Ah ∈ L1 ([0,a];D(A))

then for every x ∈D(A) the Eq.(8) has a strict solution u on [0,a].

Now we give some sufficient conditions for the existence of a strict solution. To do this, we

suppose the following condition on G.

(H3) G :R+×C ((−∞,0],Y )→Y is continuously differentiable with respect to the first variable

on R+.

we posit h(t) =
∫ t

0
K (t− s,g(s,us))ds+F(t,ut) for t ≥ 0.

Theorem 3.11. Let u ∈ C ([0, t1],Y ) the mild solution of Eq.(1). If g(.,ϕ) ∈ Y and h ∈

L1 ([0, t1];D(A)) is continuous from [0, t1] to D(A), then u is a strict solution of Eq.(1).

Proof. It is just a consequence of Theorem III.9.

Here

h(t) =
∫ t

0
K (t− s,g(s,us))ds+F(t,ut)ds for t ≥ 0

and

v(t) =
∫ t

0
T (t− s)

∫ s

0
K (s− r,g(s,ur))drds+

∫ t

0
T (t− s)F(s,us)ds for t ≥ 0.

We show that v satisfies the following two conditions

(i) v(t) is continuously differentiable on [0, t1];

(ii) v(t) ∈ Y on [0, t1] and Av(t) ∈ L1 ([0, t1],E) .

Based on the formula (5) we have: v(t) = u(t)−T (t)g(0,ϕ)−G(t,ut) is differentiable for t > 0

as sum of three differentiable functions and d
dt v(t) = d

dt u(t)−T (t)Ag(0,ϕ)− d
dt G(t,ut) is obvi-

ously continuous on ]0, t1[. Therefore (i) is satisfied. Also if g(0,ϕ) ∈ Y then T (t)g(0,ϕ) ∈

Y for t ≥ 0 and therefore v(t) = u(t)− T (t)g(0,ϕ)−G(t,ut) ∈ Y for t > 0 and Av(t) =
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Au(t)−AT (t)g(0,ϕ)−AG(t,ut) =
d
dt u(t)−

∫ t

0
K (t−s,g(s,us))ds−F(t,ut)−T (t)Ag(0,ϕ)−

AG(t,ut) is continuous on ]0, t1[. Thus also (ii) is satisfaied.

On the other hand, it is easy to verify for h > 0 the identify

(10)

(
T (h)− I

h

)
v(t) =

v(t +h)− v(t)
h

−1
h

∫ t+h

t
T (t +h− s) [k(s)+F(s,us]ds

From the continuity of k and F it is clear that the second therm on the right-hand side of (10)

has the limit k(t) + F(t,ut) as h→ 0. If v(t) is continuously differentiable on ]0, t1[ then it

follows from (10) that v(t) ∈ Y for 0 < t < t1 and Av(t) =
d
dt

v(t)− [k(t)+F(t,ut)] . Since

v(0)= 0 it follows that u(t)= T (t)g(0,ϕ)+v(t)+G(t,ut) is the solution of Eq.(1) for g(0,ϕ)∈

Y. If v(t) ∈ Y it follows from (10) that v(t) is differentiable from the right at t and the right

derivative D+v(t) of v satisfies D+v(t) = Av(t)+ k(t)+F(t,ut). Since D+v(t) is continuous,

v(t) is continuously differentiable and d
dt v(t) = Av(t)+ k(t)+F(t,ut). Since v(0) = 0, u(t) =

T (t)g(0,ϕ)+G(t,ut)+v(t) is the solution of Eq.(1) for g(0,ϕ) ∈Y and the proof is complete.

♦

3.2 Special case: The non-atomic case

In this section, we examine the existence and regularity of solutions to Eq.(1) where g is non-

atomic. Precisely, we considere the following equation

(11)


d
dt
g̃(ut) = Ag̃(ut)+

∫ t

0
K (t− s, g̃(us))ds+F(t,ut) for t ≥ 0

u0 = ϕ ∈ C = C ((−∞,0];D(A)) ,

where g̃ : C →D(A), is a bounded linear operator defined by g̃(ϕ) = ϕ(0)−D0(ϕ) for ϕ ∈ C ,

which D0 a bounded linear operator from C to E which has the following from

D0(ϕ) =
∫ 0

−∞

dη(θ)ϕ(θ) for ϕ ∈ C ,

for a mapping η : (−∞,0]→B(E), of bounded variation and nonatomic at zero, which means

that

var[−ε,0]η :=
∫ 0

−ε

|dη(θ)| → 0 as ε → 0.
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Theorem 3.12. Assume that (H1)− (H2) hold. If ϕ ∈ C ((−∞,0];D(A)) , then there exists a

unique continuous function u : (−∞,+∞[→ Y which is a mild solution of Eq.(11).

Proof. Using the same notations as in the proof of Theorem III.4, we can define the mapping

P : Mt1(ϕ)→Mt1(ϕ) by

(Pu)(t) = D0(ũt)+T (t)g̃(ϕ)+
∫ t

0
T (t− s)

∫ s

0
K (s− r, g̃(ũr))drds

+
∫ t

0
T (t− s)F(s, ũs)ds for t ∈ [0, t1].

The operator P is well defined. It is enough to prove that P has a unique fixed point on Mt1(ϕ).

The proof is similar to that given for Theorem III.4. The only differ-

ence is to replace respectively G by D0 and the assumption 0 < LG =

var[−t1,0]η < 1 by nonatomicity of D0. The rest of the proof is the

same. ♦

For the strict solution we pose h(t) =
∫ t

0
K (t− s, g̃(us))ds+F(t,ut) for t ≥ 0.

Theorem 3.13. Let u be the mild solution of Eq.(11). If g̃(0,ϕ) = ϕ(0)−D0 ∈ D(A) and

h ∈ L1 ([0, t1];D(A)) is continuous from [0, t1] to D(A), then u is a strict solution of Eq.(11).

The proof is similar to that given for Theorem III.12. The only difference is to replace respec-

tively G by D0 and the assumption 0< LG < 1 by nonatomicity of D0. The rest of the proof is the

same. ♦

4. Application

For illustration, we propose to study the existence of solutions for the following model

(12)



∂

∂ t

[
w(t,ξ )−

∫ 0

−∞

h(t,w(t +θ ,ξ ))dθ

]
=

∂ 2

∂ξ 2

[
w(t,ξ )−

∫ 0

−∞

h(t,w(t +θ ,ξ ))dθ

]
ds

+
∫ t

0
δ

(
t− s,

∂ 2

∂ξ 2

(
w(t,ξ )−

∫ 0

−∞

h(t,w(t +θ ,ξ ))dθ

))
ds∫ 0

−∞

f (t,w(t +θ ,ξ ))dθ for t ≥ 0 and ξ ∈ [0,π]

w(t,0)−h(t,w(t +θ ,0))dθ = 0 for t ≥ 0

w(t,π)−h(t,w(t +θ ,π))dθ = 0 for t ≥ 0

w(θ ,ξ ) = w0(θ ,ξ ) for θ ∈]−∞,0] and ξ ∈ [0,π],
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where f ,h : R−×R→ R is continuous and Lipschitzian with respect to the second argument,

the initial data function ϕ0 :]−∞,0]× [0,1]→R is a given function, δ :R+×R→R is bounded

uniformly continuous, continuously differentiable in its first place and the derivative ∂δ

∂ t exists

and is lipschitzian continuous.

To rewrite Eq.(12) in the abstract from, we introduce the space E = L2((0,1);R).

Let A : D(A)→ E be defined by
D(A) = H2(0,1)∩H1

0 (0,1),

Az = z′′.

It is well known that A is the generator of c0-semigroup, which implies that (H0) is satisfied.

Let K : R+×D(A)→ E by K (t,z) = δ (t,Az) for t ≥ 0.

The phase space B = BUC (R−;D(A)) is the space of bounded uniformly continuous functions

from R− into D(A) provided with the following norm

|ϕ|B = sup
θ≤0
|ϕ(θ)|D(A) = sup

θ≤0
|ϕ(θ)|L2(0,1)+ sup

θ≤0

∣∣∣∣ ∂ 2

∂ξ 2 ϕ(θ)

∣∣∣∣
L2(0,1)

.

Then B = BUC (R−;D(A)) satisfies axioms (A1), (A2).

Let F,G : R+×B→ E be defined by

F(t,ϕ)(ξ ) =
∫ 0

−∞

f (θ ,ϕ(θ)(ξ ))dθ for 0≤ ξ ≤ 1 and t ≥ 0,

G(t,ϕ)(ξ ) =
∫ 0

−∞

h(θ ,ϕ(θ)(ξ ))dθ for 0≤ ξ ≤ 1 and t ≥ 0.

Let us suppose v(t) = w(t, .) and the initial data ϕ be defined by

ϕ(θ)(ξ ) = ϕ0(θ ,ξ ), for θ ≤ 0 and ξ ∈ [0,1].

Then Eq.(12) takes the following abstract from

(13)



d
dt
[v(t)−G(t,vt)] = A[v(t)−G(t,vt)]

+
∫ t

0
δ (t− s,(v(t)−G(t,vs)))ds+F(t,vt)

v0 = ϕ.
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(H3) We suppose that there exists the functions l f , lh(.) ∈ L1 (R−,R+) such that

| f (θ ,ξ1)− f (θ ,ξ2)| ≤ l f (θ) |ξ1−ξ2| for θ ≤ 0 and ξ1,ξ2 ∈ R,

|h(θ ,ξ1)−h(θ ,ξ2)| ≤ lh(θ) |ξ1−ξ2| for θ ≤ 0 and ξ1,ξ2 ∈ R.

(H4) f (θ ,0) = h(θ ,0) = 0, for θ ≤ 0.

Assumptions (H3) and (H4) imply that f (t,ϕ), h(t,ϕ) ∈D(A) for ϕ ∈B. In fact, let ϕ ∈B.

Then

F(t,ϕ)(ξ ) =
∫ 0

−∞

f (θ ,ϕ(θ)(ξ ))dθ for ξ ∈ [0,1],

G(t,ϕ)(ξ ) =
∫ 0

−∞

h(θ ,ϕ(θ)(ξ ))dθ for ξ ∈ [0,1],

and

|F(t,ϕ)(ξ )| ≤
∫ 0

−∞

l f (θ) |ϕ(θ)(ξ )|dθ ≤ sup
θ≤0
|ϕ(θ)(ξ )|

∫ 0

−∞

l f (θ)dθ ,

|F(t,ϕ)(ξ )|L2(0,1) ≤ sup
θ≤0
|ϕ(θ)|L2(0,1)

∣∣l f
∣∣
L1(−∞,0) .

|G(t,ϕ)(ξ )| ≤
∫ 0

−∞

lh(θ) |ϕ(θ)(ξ )|dθ ≤ sup
θ≤0
|ϕ(θ)(ξ )|

∫ 0

−∞

lh(θ)dθ ,

|G(t,ϕ)(ξ )|L2(0,1) ≤ sup
θ≤0
|ϕ(θ)|L2(0,1) |lh|L1(−∞,0) .

On the other hand, we have

|A f (t,ϕ)(x)| ≤
∫ 0

−∞

b1(θ) |Aϕ(θ)(x)|dθ

≤ sup
θ≤0
|Aϕ(θ)(x)|

∫ 0

−∞

b1(θ)dθ

|A f (t,ϕ)(x)|L2(0,1) ≤ sup
θ≤0
|Aϕ(θ)|L2(0,1) |b1|L1(−∞,0) .

Consequently

| f (t,ϕ)(x)|D(A) ≤ C |ϕ|B .

Moreover assumption (H4) implies that f (t,ϕ)(0) = f (t,ϕ)(1) = 0.
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Using the dominated convergence theorem, one can show that f (t,ϕ) is a continuous function

on [0,1]. Moreover, for every ϕ1,ϕ2 ∈B, we have

|( f (t,ϕ1)− f (t,ϕ2))(x)| ≤
∫ 0

−∞

|h(θ ,ϕ1(θ)(x))−h(θ ,ϕ2(θ)(x))|dθ

≤
∫ 0

−∞

b1(θ) |ϕ1(θ))(x)−ϕ2(θ)(x)|dθ

|( f (t,ϕ1)− f (t,ϕ2))(x)|L2(0,1) ≤ sup
−∞≤θ≤0

|ϕ1(θ)(x)−ϕ2(θ)(x)| |b1|L1(R−)

On the other hand, we have

|A( f (t,ϕ1)− f (t,ϕ2))(x)| ≤
∫ 0

−∞

b1(θ) |A(ϕ1(θ))(x)−ϕ2(θ))(x)|dθ

|A( f (t,ϕ1)− f (t,ϕ2))(x)|L2(0,1) ≤ sup
−∞≤θ≤0

|A(ϕ1(θ)(x)−ϕ2(θ))(x)| |b1|L1(R−)

Consequently

| f (t,ϕ1)− f (t,ϕ2)|D(A) ≤ C |ϕ1−ϕ2|B .

We conclude that f is Lipschitz continuous.

In addition, we suppose that

(i) δ is bounded uniformly continuous, continuously differentiable in its first place and the

derivative ∂δ

∂ t exists and is lipschitzian continuous.

(ii) The initial data ϕ ∈B = BUC (]−∞,0]× [0,1];D(A)) ,

ϕ0(0,0) = ϕ0(0,1) = 0 is continuous from ]−∞,0]× [0,1] to D(A).

From the assumption (i), K satisfies the hypothesis (H2). Finally, from assumption (ii) and

Theorem III.4, we deduce that ϕ ∈B,Eq.(13) has a unique mild solution which is defined for

all t ≥ 0.

To prove that the mild solution of Eq.(13) is a strict one, we need the following assumption.

(iii) h ∈ L1(R−×R;R) be continuous on R−×R.
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(iv) ϕ0 ∈B such that ϕ0(0, .) ∈ D(A). Consequently, by Theorem III.11, we obtain the

following existence result.

Proposition 4.1. Under the above assumptions, Eq.(13) has a unique strict solution v and the

solution u defined by u(t,x) = v(t)(x) for t ≥ 0 and x ∈ [0,1] is a solution Eq.(13).
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