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Abstract. We propose a two-step generalised lshikawa iteration scheme of hybrid mixed-type for two pointwise

asymptotically nonexpansive self mappings and two pointwise asymptotically nonexpansive nonself mappings.

Under the condition that pointwise asymptotically nonexpansive self mappings and pointwise asymptotically non-

expansive nonself mappings are compact, we proved demiclosedness principle for pointwise asymptotically non-

expansive nonself mappings; in addition, we established stability results and weak convergence theorems of the

scheme to the common fixed point of the mappings in uniformly convex Banach spaces. Our results modify,

improve and generalise numerous results currently existing in literature.
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1. INTRODUCTION

Let C be a nonempty subset of a real Banach space E. Let T :C−→C be a nonlinear mapping.

We denote the set of all fixed points of T by F(T ). The set of common fixed point of six
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mappings S1,S2,T1 and T2 will be denoted by F = F(S1)∩F(S2)∩F(T1)∩F(T2). Throughout

this paper, the symbol N will denote the set of natural numbers.

Definition 1.1. A mapping T : C −→C is said to be asymptotically nonexpansive if there exists

a sequence {kn} ∈ [0,∞) with limn→∞ kn = 1 such that, for all x,y ∈C,

(1.1) ‖T n(x)−T n(y)‖ ≤ kn‖x− y‖,∀n ∈ N.

Definition 1.2. A mapping T : C−→C is said to be pointwise asymptotically nonexpansive [24]

if

(1.2) ‖T n(x)−T n(y)‖ ≤ kn(x)‖x− y‖,∀x,y ∈C,∀n ∈ N,

where {kn(x)} is a sequence in [0,∞) and kn → 1 pointwise on C. If kn(x) ≤ 1 and

limn→∞ kn(x) = k ∈ [0,1) in (1.2), then T is called pointwise asymptotically contraction.

ln 2008, the class of pointwise asymptotically nonexpansive mapping was introduced by

Kirk and Xu [25]. They proved that if C is a bounded uniformly convex Banach space and

T is a pointwise asymptotically nonexpansive mapping of C, then T has a fixed point. Since

then, many results on pointwise asymptotically nonexpansive mappings and stability of iterative

schemes have been obtained in literature (See [22], [23], [24], [25], etc for details).

Remark 1.1. lf {kn} in (1.2) is independent of x, then the mapping T is called asymptotically

nonexpansive (see [22] for details). Thus, it is clear that the class of asymptotically nonexpan-

sive mapping is a subclass of the class of pointwise asymptotically nonexpansive mapping.

The example below shows a practical application of pointwise asymptotically nonexpansive

mappings:

Example 1.1(See [22]). Let C be a nonempty closed subset of the complex set R. Let f be a

continously differentiable self-mapping of C. Let xn+1 = f (xn) and yn+1 = f (yn) be two systems

with initial point x0 and y0 respectively. lf the initial error |x0−y0| is significantly small, then f

is pointwise asymptotically nonexpansive mapping. It was remarked in [22] that if the function

f is not constant, then f is not asymptotically nonexpansive mapping (See [22] for details).
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Definition 1.3. A subset C of a Banach space E is said to be a retract of E if there exists a

continous mapping P : E −→ C (called retraction) such that P(x) = x for all x ∈ K. If, in

addition P is nonexpansive, then P is said to be nonexpansive retraction of E.

If P : E −→C is a retraction, then P2 = P. A retract of a Hausdorff space must be a closed

subset. Every closed convex subset of a uniformly convex Banach space is a retract.

Definition 1.4. Let C be a nonempty, closed and convex subset of a Banach space E. A nonself

mapping T : C→ E is said to be pointwise asymptotically nonexpansive mapping in the sense

of Kirk and Xu [25] if

(1.3) ‖T (PT )n−1(x)−T (PT )n−1(y)‖ ≤ kn(x)‖x− y‖,∀x,y ∈C,∀n ∈ N,

where {kn(x)} is a sequence in [0,∞) and kn→ 1 pointwise on C.

From definitions (1.2) and (1.3), we see that if the retraction map P : E −→C is an identity,

then (1.3) reduces to (1.2). Hence, the class of pointwise asymptotically nonexpansive nonself

mappings includes the class of pointwise asymptotically nonexpansive mapping as a special

case; that is, each pointwise asymptotically nonexpansive self mapping is pointwise asymptot-

ically nonexpansive nonself mapping but the reverse is not true. Now, we consider the case

of mn(x) = maxn≥1{kn(x),1}. Denote Γ(C) as the class of pointwise asymptotically nonexpan-

sive nonself mapping and pointwise asymptotically nonexpansive self mapping T,S respectively

satisfying limn→∞ mn(x) = 1. Define Qn(x) = mn(x)−1. lt is easy to see that limn→∞ Qn(x) = 0.

Definition 1.5. Let Γr(C) be a class of all T,S ∈ Γ(C) such that ∑
∞
n=1 Qn(x)< ∞,∀x ∈C. Then,

limn→∞ mn(x) = 1.

Chidume et al. [3] studied the following iterative scheme in 2004:

x1 = x ∈C

xn+1 = P(αnT (PT )n−1xn +(1−αn)xn),n≥ 1(1.4)

where αn is a sequence in (0,1) and C is a nonempty closed convex subset of of a real uni-

formly convex Banach space E, P is a nonexpansive retraction of E onto C, and proved some
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strong and weak convergence theorems for asymptotically nonexpansive nonself mappings in

the intermediate sense in the framework of uniformly convex Banach spaces.

ln 2017, Feng, Jiang and Su [22] introduced the following generalised lshikawa iteration pro-

cess:

x1 ∈C,

xn+1 = αnxn +(1−αn)T nyn),

yn = βnxn +(1−βn)T nxn),n≥ 1(1.5)

where T : C −→ C is a pointwise asymptotically nonexpansive mapping and {αn},{βn} are

real sequences in (0,1), and proved some weak convergence theorems and stability results for

pointwise asymptotically nonexpansive mappings in the setting of a uniformly convex Banach

space.

Hybrid Mixed-Type Iteration Scheme

Let E be a real uniformly convex Banach space, C a nonempty, closed and convex subset of E

and P : E −→C a nonexpansive retraction of E onto C. Let S1,S2 : C −→C be two pointwise

asymptotically nonexpansive self mappings and T1,T2 : C −→ E be two pointwise asymptot-

ically nonexpansive nonself mappings. then, the hybrid iteration scheme for the above men-

tioned mappings is as follows:

x1 = x ∈C,

xn+1 = P((1−αn)Sn
1xn +αnT1(PT1)

n−1yn),

yn = P((1−βn)Sn
2xn +βnT2(PT2)

n−1xn),(1.6)

where {αn} and {γn} are real sequences in (0,1).

The aim of this paper is to study this new hybrid mixed-type iteration scheme (1.6), prove sta-

bility results for the scheme and establish some convergence theorems for mixed-type mappings

in the setting of uniformly convex Banach spaces.

2. PRELIMINARY

For the sake of convenience, we restate the following concepts and results:
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Let E be a Banach space with its dimension greater than or equal to 2. The modulus of

convexity of E is a function δE(ε) : (0,2]−→ (0,2] defined by

δE(ε) = inf{1−‖1
2
(x+ y)‖ : ‖x‖= 1,‖y‖= 1,ε = ‖x− y‖}.

A Banach space E is uniformly convex if and if δE(ε)> 0, for all ε ∈ (0,2].

We recall the following:

Definition 2.1. The space E has Opial condition [10] if for any sequence {xn} in E, xn converges

to x weakly,it follows that limsupn→∞ ‖xn− x‖< limsupn→∞ ‖xn− y‖ for all y ∈ E with x 6= y.

Examples of Banach spaces satisfying Opial conditions are Hilbert spaces and all spaces

lp(1 < p < ∞). On the other hand, Lp[0,π] with 1 < p 6= 2 fails to satify Opial condition.

Definition 2.2. : A mapping T : K −→ K is said to be demiclosed at 0 if for any sequence {xn}

in K, the condition that xn converges weakly to x ∈ K and T xn converges strongly to 0 implies

T x = 0.

Definition 2.3. A sequence {tn} ⊂ (0,1) is called bounded away from 0 if there exists 0 < a < 1

such that tn > a for every n ∈ N. Similarlu, a sequence {tn} ⊂ (0,1) is called bounded away

from 1 if there exists 0 < b < 1 such that tn < b for every n ∈ N.

Next, we state the following useful lemmas which will help us to prove our main results.

Lemma 2.1. (see[16]): Let {αn}∞
n=1,{βn}∞

n=1 and {γn}∞
n=1 be sequences of nonnegative num-

bers satisfying the inequality:

(2.1) αn+1 ≤ (1+βn)αn + γn,∀n≥ 1.

If ∑
∞
n=1 βn < ∞ and ∑

∞
n=1 γn < ∞, then

(1) limn→∞ αn exists

(2) ln particular, if {αn}∞
n=1 has a subsequence which converges strongly to 0, then

limn→∞ = 0.
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Lemma 2.2. (see[14]): Let E be a uniformly convex Banach space and 0 < p≤ tn ≤ q < 1 for

each n≥ 1. Suppose that {xn} and {yn} are sequences in E such that

(2.2) limsup
n→∞

‖xn‖ ≤ r, limsup
n→∞

‖yn‖ ≤ r and lim
n→∞
‖tnxn +(1− tn)yn‖= r,

hold for some r ≥ 0. Then limn→∞ ‖xn− yn‖= 0.

Lemma 2.3. (See [22]) Assume X is a uniformly convex Banch space and C is a bounded closed

convex subset of X. Then every pointwise asymptotically nonexpansive mapping T : C −→ C

has a fixed point. Moreover, the set of fixed point of T is closed and convex.

Lemma 2.4. (See [22]) Let C be a nonempty closed convex subset of a uniformly convex Banach

space X which satisfies Opial’s condition and let T ⊂ Tr(C). Then, I−T is demiclosed at zero;

that is, if {xn}is a sequence in C such that xn→ p and lim‖xn−T xn‖= 0, then (I−T )p = 0

Lemma 2.5. (see [2]) Let E be a uniformly convex Banach space, K a nonempty bounded

close convex subset of E. Then, there exists a strictly increasing continuous convex function

φ : [0,∞) −→ [0,∞) with φ(0) = 0 such that for any Lipschitizian mapping T : K −→ E with

Lipschitz constant L≥ 1 and elements {xn}n
j=i in K and any nonnegative numbers {t j}n

j=1 with

∑
n
j=1 t j = 1, the following inequality holds:

‖T (
n

∑
j=1

t jx j)−
n

∑
j=1

t jT x j‖ ≤ Lφ
−1{max1≤ j,k≤n(‖x j− xk‖−L−1‖T x j−T xk‖)}

Lemma 2.6. (see [21]) If the sequence {xn}∞
n=1 converges weakly to x, then there exists a

sequence of convex combination y j = ∑
n( j)
k=1 λ

( j)
k xk+ j, λ

( j)
k ≥ 0 and ∑

n( j)
k=1 λ ( j) = 1, such that

‖y j− x‖→ 0. as n→ ∞.

Lemma 2.7. ( Demiclosedness Principle f or Pointwise Asymptotically Nonexpansive

Nonsel f Mappings )

Let K be a nonempty, closed, convex and bounded subset of a uniformly convex Banach space E

and T : K −→E be L-Lipschitz continuous and pointwise asymptotically nonexpansive mapping

with nonnegative sequence kn(x)} such that kn(x)→ 0 as n→ ∞. Then, I−T is demiclosed at

0.
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Proof. Let {xn} converge weakly to ω ∈K and {xn−T xn} converge strongly to 0. We prove that

(I−T )ω = 0. Clearly, {xn} is bounded. So, there exists ρ > 0 such that {xn} ⊂C = K∩Bρ(0),

where Bρ(0) is a closed ball in E with centre 0 and radius ρ . Thus, C is nonempty, closed ,

bounded and convex subset in K.

Claim: T (PT )n−1ω → ω as n→ ∞. In fact, since {xn} converges weakly to ω, by Lemma

2.6(see [21]), we have for all n > 1, there exists a convex combination

(2.3) yn =
m(n)

∑
i=1

t(n)i xi+n, t(n)i ≥ 0 and
m(n)

∑
i=1

t(n)i = 1 such that ‖yn−ω‖→ 0 as n→ ∞.

Also, since {xn−T xn} converges to 0, then for any ε > 0 and a positive integer m ≥ 1, there

exists N1 = N(ε)> 0 such that

(2.4) ‖(I−T )xn‖<
ε

1+m
,∀n≥ N1.

Hence, ∀n≥N1, using Definition 1.3 and the fact that P is nonexpansive , we have the following

estimates:

For arbitrary but fixed j ≥ 1, we have

‖xn−T (PT )( j−1)xn‖ ≤ ‖(I−T )xn‖+‖(T −T (PT ))xn‖

+‖(T (PT )−T (PT )2)xn‖

+‖(T (PT )2−T (PT )3)xn‖

+ · · ·+‖(T (PT ) j−2−T (PT ) j−1))xn‖

≤ ‖(I−T )xn‖+ k(1)n (x)‖(I−T )xn‖+ k(2)n (x)‖(I−T )xn‖

+k(3)n (x)‖(I−T )xn‖

+ · · ·+ k( j)
n (x)‖(I−T )xn‖

= ‖(I−T )xn‖+
m−1

∑
j=1

k( j)
n ‖(I−T )xn‖

≤ (1+
m−1

∑
n=1

kn(x))‖(I−T )xn‖,(2.5)
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where kn(x) = max1≤ j≤m−1{k
( j)
n (x)} .

From (2.4), (2.5) and the fact that ∑
∞
n=1 kn(x))< ∞, we get

(2.6) ‖xn−T (PT ) j−1xn‖< ε.

Now, since T : C −→ E is L-Lipschitizian and pointwise asymptotically nonexpansive , so is

T : K −→ E. Therefore, ∀ j≥ 1,T (PT ) j−1 : C−→ E is Lipschitizian mapping with the Lipschiz

constant µ j ≥ 1.

In addition,

‖T (PT ) j−1yn− yn‖ = ‖T (PT ) j−1yn−
m(n)

∑
i=1

t(n)i T (PT ) j−1xi+n +
m(n)

∑
i=1

t(n)i T (PT ) j−1xi+n

−
m(n)

∑
i=1

t(n)i xi+n‖

≤ ‖T (PT ) j−1yn−
m(n)

∑
i=1

t(n)i T (PT ) j−1xi+n‖

+
m(n)

∑
i=1

t(n)i ‖T (PT ) j−1xi+n− xi+n‖.(2.7)

Using (2.6), we get

(2.8)
m(n)

∑
i=1

t(n)i ‖T (PT ) j−1xi+n− xi+n‖< ε,∀n≥ N.

Furthermore, by Lemma 2.7, there exists a strictly increasing continuous function φ : [0,∞)−→

[0,∞) with φ(0) = 0 such that for all n≥ N, we have

‖T (PT ) j−1yn−
m(n)

∑
i=1

t(n)i T (PT ) j−1xi+n‖ = ‖T (PT ) j−1(
m(n)

∑
i=1

t(n)i xi+n)−
m(n)

∑
i=1

t(n)i T (PT ) j−1xi+n‖

≤ µ jφ
−1{max1≤ j,k≤n(‖xi+n− xi+k‖

−µ
−1
j ‖T (PT )J−1xi+n−T (PT )J−1xk+n‖)}

= µ jφ
−1{max1≤ j,k≤n(‖xi+n−T (PT )J−1xi+n

+T (PT )J−1xi+n−T (PT )J−1xk+n

+T (PT )J−1xk+n− xi+k‖

−µ
−1
j ‖T (PT )J−1xi+n−T (PT )J−1xk+n‖)}
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≤ µ jφ
−1{max1≤ j,k≤n(‖xi+n−T (PT )J−1xi+n‖

+‖T (PT )J−1xi+n−T (PT )J−1xk+n‖

+‖T (PT )J−1xk+n− xi+k‖

−µ
−1
j ‖T (PT )J−1xi+n−T (PT )J−1xk+n‖)}

≤ µ jφ
−1{max1≤ j,k≤n(ε + ε +(1−µ

−1
j )

×‖T (PT )J−1xi+n−T (PT )J−1xk+n‖)}

≤ µ jφ
−1{max1≤ j,k≤n(ε + ε +(1−µ

−1
j )µ j

×‖xi+n− xk+n‖}

≤ µ jφ
−1{max1≤ j,k≤n(ε + ε +(1−µ

−1
j )µ j

×(‖xi+n‖+‖xk+n‖}.

Thus,

(2.9) ‖T (PT ) j−1yn−
m(n)

∑
i=1

t(n)i T (PT ) j−1xi+n‖ ≤ (ε + ε +2r(1−µ
−1
j )µ j),

since xi+n and xk+n are both in C.

Also, (2.7), (2.8) and (2.9) imply that

(2.10) ‖T (PT ) j−1yn− yn‖ ≤ µ jφ
−1(ε + ε +2r(1−µ

−1
j )µ j).

Taking limsupn→∞ on both sides of (2.10), and noting that ε > 0 is arbitrary, we have

(2.11) limsup
n→∞

‖T (PT ) j−1yn− yn‖ ≤ µ jφ
−1(2r(1−µ

−1
j )µ j).

On the other hand, for any j ≥ 1, it follows from (2.3) that

‖T (PT ) j−1
ω−ω‖ ≤ ‖T (PT ) j−1

ω−T (PT ) j−1yn‖+‖T (PT ) j−1yn− yn‖+‖yn−ω‖

≤ µ j‖yn−ω‖+‖T (PT ) j−1yn− yn‖+‖yn−ω‖.(2.12)

Taking limsupn→∞ in the above inequality and using (2.11), we have

‖T (PT ) j−1
ω−ω‖ ≤ µ jφ

−1(2r(1−µ
−1
j )µ j).
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Again, taking limsup j→∞ in the above inequality, we have

limsup
j→∞

‖T (PT ) j−1
ω−ω‖ ≤ φ

−1(0) = 0,

which implies that ‖T (PT ) j−1ω−ω‖ → 0 as j→ ∞, and hence proving our claim. By conti-

nuity of T P, we have that

lim
j→∞

T P(T (PT ) j−1
ω) = T Pω = T ω = ω.

This completes the proof. �

3. MAIN RESULTS

Lemma 3.1. Let E be a uniformly convex Banach space and C a nonempty closed convex subset

of E. Let S1,S2 ∈ Γr(C) and S1,S2 : C−→C be two pointwise asymptotically nonexpansive self

mappings with sequences {k(1)n (x)},{k(3)n (x)} ∈ [1,∞) : ∑n→∞(k
(1)
n (x)−1)<∞,∑n→∞(k

(3)
n (x)−

1) < ∞. Let T1,T2 ∈ Γr(C) and T1,T2 : C −→ E be two pointwise asymptotically nonex-

pansive nonself mappings with sequences {k(2)n (x)},{k(4)n (x)} ∈ [1,∞) : ∑n→∞(k
(2)
n (x)− 1) <

∞,∑n→∞(k
(4)
n (x)−1)< ∞. Let {xn} be a sequence defined by

(3.1)

x1 ∈C

xn+1 = P((1− γn)Sn
1xn + γnT1(PT1)

n−1yn

yn = P((1−αn)Sn
2xn +αnT2(PT2)

n−1xn


, where {γn} and {αn} are real sequences ∈ [0,1). Suppose F = F(S1)∩F(S2)∩F(T1)∩

F(T2) 6= /0. Then, limn∞ ‖xn−q‖ and limn∞ d(xn−F ) both exist for all q ∈F .

Proof. For any q ∈F , it follows from (3.1) that

‖yn−q‖ = |P((1−αn)Sn
2xn +αnT2(PT2)

n−1xn)−P(q)‖

≤ ‖(1−αn)Sn
2xn +αnT2(PT2)

n−1xn−q‖

≤ (1−αn)‖Sn
2xn−q‖+αn‖T2(PT2)

n−1xn−q‖

≤ (1−αn)k
(3)
n (x)‖xn−q‖+αnk(4)n (x)‖xn−q‖
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≤ (1−αn)mn(x)‖xn−q‖+αnmn(x)‖xn−q‖

= (1+Qn(x))‖xn−q‖(3.2)

Again, using (3.1), we have

‖xn+1−q‖ = |P((1− γn)Sn
1xn + γnT1(PT1)

n−1yn)−P(q)‖

≤ ‖(1− γn)Sn
1xn + γnT1(PT1)

n−1yn−q‖

≤ (1− γn)‖Sn
1xn−q‖+ γn‖T1(PT1)

n−1yn−q‖

≤ (1− γn)k
(1)
n (x)‖xn−q‖)+ γnk(2)n (x)‖yn−q‖

≤ (1− γn)mn(x)‖xn−q‖)+ γnmn(x)‖yn−q‖(3.3)

Putting (3.2) into (3.3), we obtain

‖xn+1−q‖ ≤ (1− γn)mn(x)‖xn−q‖+ γn(1+Qn(x))‖xn−q‖

≤ (1− γn)(1+Qn(x))‖xn−q‖+ γn(1+Qn(x))‖xn−q‖

= (1+δn(x))‖xn−q‖,(3.4)

where δn(x) = Qn(x). Since ∑
∞
n=1 δn(x) < ∞, it follows from lemma 2.1 that limn→∞ ‖xn− q‖

exists.

Now, taking the infimum over all q ∈ F in (3.4), we get

d(xn+1,F)≤ (1+δn)d(xn,F),∀n ∈ N.

Again, since ∑
∞
n=1 δnx < ∞, it follows from Lemma 2.1 that limn→∞ d(xn,F) exists. This com-

pletes the proof. �

Lemma 3.2. Let E be a uniformly convex Banach space and C a nonempty closed convex

subset of E. Let S1,S2 ∈ Γr(C) and S1,S2 : C −→C be two pointwise asymptotically nonexpan-

sive self mapping with the sequences {k(1)n (x)},{k(3)n (x)} ∈ [1,∞) such that ∑
∞
n=1(k

(1)
n − 1) <

∞,∑∞
n=1(k

(3)
n − 1) < ∞. Let T1,T2 ∈ Γr(C) and T1,T2 : C −→ E be two pointwise asymptot-

ically nonexpansive nonself mappings with sequences {k(2)n (x)},{k(4)n (x)} ∈ [1,∞) such that
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(k(2)n −1)< ∞,∑∞
n=1(k

(4)
n −1)< ∞. Let {xn} be a sequence defined by

(3.5)

x1 ∈C

xn+1 = P((1− γn)Sn
1xn + γnT1(PT1)

n−1yn

yn = P((1−αn)Sn
2xn +αnT2(PT2)

n−1xn


, where {γn} and {αn} are real sequences ∈ [0,1). Suppose F = F(S1)∩F(S2)∩F(T1)∩

F(T2) 6= 0. If the following conditions hold:

i. ∑
∞
n=1 Qn(x)< ∞;

ii. ‖x−T1(PT1)
n−1y‖ ≤ ‖Sn

1x−T1(PT1)
n−1y‖,‖x−T2(PT2)

n−1y‖ ≤ ‖Sn
2x−T2(PT2)

n−1y‖;

Then, limn∞ ‖xn−Sixn‖= 0 and limn∞ ‖xn−Tixn‖= 0, for i = 1,2.

Proof. For any given q∈F , limn∞ ‖xn−q‖ exists by Lemma 3.1. Now, assume that limn∞ ‖xn−

q‖= c. Then, it follows from (3.3) and the fact that ∑
∞
n=1 Qn(x)< ∞ that

(3.6) lim‖(1− γn)(Sn
1xn−q)− γnT1(PT1)

n−1yn−q)‖= c.

ln addition, we have

‖Sn
1xn−q‖ ≤ k(1)n (x)‖xn−q‖

≤ mn(x)‖xn−q‖

= (1+Qn(x))‖xn−q‖.

⇒ limsup‖Sn
1xn−q‖ ≤ limsup(1+Qn(x))‖xn−q‖= c.(3.7)

Furthermore,

‖T1(PT1)yn−q‖ ≤ k(2)n (x)‖yn−q‖

≤ mn(x)‖yn−q‖

≤ (1+Qn(x))‖yn−q‖.

(3.8)
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Using (3.2) and the fact that

limsup
n→∞

‖yn−q‖ ≤ c,

we obtain from (3.8) that

(3.9) limsup‖T1(PT1)yn−q‖ ≤ limsup[(1+Qn(x)K)‖yn−q‖+θn(x)]≤ c

Thus, from (3.6), (3.7), (3.9) and Lemma 2.2, we get

(3.10) lim
n→∞
‖Sn

1xn−T1(PT1)
n−1yn‖= 0.

Condition (ii) and (3.10) imply that

(3.11) lim
n→∞
‖xn−T1(PT1)

n−1yn‖= 0.

Again, we have

‖Sn
2xn−q‖ ≤ k(2)n (x)‖xn−q‖

≤ mn(x)‖xn−q‖

≤ (1+Qn(x))‖xn−q‖.

⇒ limsup
n→∞

‖Sn
2xn−q‖ ≤ limsup(1+Qn(x))‖xn−q‖= c.(3.12)

Furthermore,

‖T2(PT2)xn−q‖ ≤ k(3)n (x)‖xn−q‖

≤ mn(x)‖xn−q‖

≤ (1+Qn(x)K)‖xn−q‖.

(3.13) ⇒ limsup
n→∞

‖T2(PT2)xn−q‖ ≤ limsup(1+Qn(x)K)‖xn−q‖ ≤ c.

From (3.12), (3.13) and the fact that

lim‖(1− γn)(Sn
2xn−q)− γnT2(PT2)

n−1xn−q)‖= c,
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we get, using lemma 2.2, that

(3.14) lim
n→∞
‖Sn

2xn−T2(PT2)
n−1xn‖= 0.

By Condition (ii), it follows that ‖xn−T2(PT2)
n−1xn‖ ≤ ‖Sn

2xn−T2(PT2)
n−1xn‖,

and so from (3.14), we have

(3.15) lim
n→∞
‖xn−T2(PT2)

n−1xn‖= 0.

Now, we prove that

lim
n→∞
‖xn−T1(PT1)

n−1xn‖= lim
n→∞
‖xn−T2(PT2)

n−1xn‖= 0.

Since, P(Snxn) = Snxn and P : E −→ K is a nonexpansive retraction of E onto C, we get

‖yn−Sn
2xn‖ = ‖P((1−αn)Sn

2xn +αnT2(PT2)
n−1xn)−Sn

2xn‖

≤ ‖(1−αn)Sn
2xn +αnT2(PT2)

n−1xn−Sn
2xn‖

= αn‖(Sn
2xn−αnT2(PT2)

n−1xn)‖(3.16)

(3.15) and (3.16) imply that

(3.17) lim
n→∞
‖yn−Sn

2xn‖= 0.

Furthermore, we have

‖yn− xn‖ = ‖yn−Sn
2xn +Sn

2xn−T2(PT2)
n−1xn +T2(PT2)

n−1xn− xn‖

≤ ‖yn−Sn
2xn‖+‖Sn

2xn−T2(PT2)
n−1xn‖+‖T2(PT2)

n−1xn− xn‖.

Thus, it follows from (3.14), (3.15) and (3.17) that

(3.18) lim
n→∞
‖yn− xn‖= 0.
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Observe that

‖Sn
1xn−T1(PT1)

n−1xn‖

≤ ‖Sn
1xn−T1(PT1)

n−1yn‖+‖T1(PT1)
n−1yn−T1(PT1)

n−1xn‖

≤ ‖Sn
1xn−T1(PT1)

n−1yn‖+(‖yn− xn‖+ν
(1)
n (x)φ(‖yn− xn‖)+ω

(1)
n (x)

≤ ‖Sn
1xn−T1(PT1)

n−1yn‖+‖yn− xn‖+KQn(x)‖yn− xn‖+θn(x)

= ‖Sn
1xn−T1(PT1)

n−1yn‖+(1+KQn(x))‖yn− xn‖+θn(x).(3.19)

lt follows from (3.10),(3.18), 3.19 and the fact that ∑
∞
n=1 Θn(x)< ∞ that

(3.20) lim
n→∞
‖Sn

1xn−T1(PT1)
n−1xn‖= 0.

Again, since ‖xn−T1(PT1)
n−1xn‖≤ ‖Sn

1xn−T1(PT1)
n−1xn‖, (by condition (ii), we obtain, using

(3.20), that

(3.21) lim
n→∞
‖xn−T1(PT1)

n−1xn‖= 0.

Now, it follows from

‖xn+1−Sn
1xn‖ = ‖P[(1− γn)Sn

1xn + γnT1(PT1)
n−1yn]−Sn

1xn‖

≤ ‖(1− γn)Sn
1xn + γnT1(PT1)

n−1yn−Sn
1xn‖

= γn‖Sn
1xn−T1(PT1)

n−1yn]‖,

and (3.10) that

(3.22) lim
n→∞
‖xn+1−Sn

1yn‖= 0.

Also, from (3.10), (3.22) and the inequality

‖xn+1−T1(PT1)
n−1yn‖ ≤ ‖xn+1−Sn

1xn‖+‖Sn
1xn−T1(PT1)

n−1yn‖,

we get

(3.23) lim
n→∞
‖xn+1−T1(PT1)

n−1yn‖= 0.

Futhermore, (3.10), (3.11) and the inequality:

‖Sn
1xn− xn‖ ≤ ‖Sn

1xn−T1(PT1)
n−1yn‖+‖T1(PT1)

n−1yn− xn‖,



16 IMO KALU AGWU, DONATUS IKECHI IGBOKWE

imply that

(3.24) lim
n→∞
‖Sn

1xn− xn‖= 0.

ln addition, (3.14), (3.15) and the inequality:

‖Sn
2xn− xn‖ ≤ ‖Sn

2xn−T2(PT2)
n−1xn‖+‖T2(PT2)

n−1xn− xn‖,

imply that

(3.25) lim
n→∞
‖Sn

2xn− xn‖= 0.

Moreover, from (3.15), (3.24) and the inequality:

‖Sn
1xn−T2(PT2)

n−1xn‖ ≤ ‖Sn
1xn− xn‖+‖xn−T2(PT2)

n−1xn‖,

we obtain

(3.26) lim
n→∞
‖Sn

1xn−T2(PT2)
n−1xn‖= 0.

Since

‖xn+1−T2(PT2)
n−1yn‖ ≤ ‖xn+1−Sn

1xn‖+‖Sn
1xn−T2(PT2)

n−1xn‖

+‖T2(PT2)
n−1xn−T2(PT2)

n−1yn‖

≤ ‖xn+1−Sn
1xn‖+‖Sn

1xn−T2(PT2)
n−1xn‖+ kn(x)‖xn− yn‖

≤ ‖xn+1−Sn
1xn‖+‖Sn

1xn−T2(PT2)
n−1xn‖+mn(x)‖xn− yn‖

= ‖xn+1−Sn
1xn‖+‖Sn

1xn−T2(PT2)
n−1xn‖+(1+Qn(x))‖xn− yn‖),

it follows from (3.18), (3.22), (3.26) and the fact that ∑
∞
n=1 θn(x)< ∞ that

(3.27) lim
n→∞
‖xn+1−T2(PT2)

n−1yn‖= 0.
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Now, since (PTi)(PT I)n−2yn−1,xn ∈C for i = 1,2, and T1,T2, are two total pointwise asymp-

totically nonexpansive nonself mappings, we have

‖Ti(PTi)
n−1yn−1−Tixn‖ = ‖Ti(PTi)(PTi)

n−2yn−1−Ti(Pxn)‖

≤ k(i)n (x)‖(PTi)(PTi)
n−2yn−1−P(xn)‖

≤ mn(x)‖(PTi)(PTi)
n−2yn−1−P(xn)‖

≤ (1+Qn(x))‖Ti(PTi)
n−2yn−1− xn‖.(3.28)

For i = 1.2, it follows from (3.23), (3.27) and the fact that ∑
∞
n=1 Qn(x)< ∞ that

(3.29) lim
n→∞
‖Ti(PTi)n−1yn−1−Tixn‖= 0.

Moreover, observe that

‖xn+1− yn‖ ≤ ‖xn+1−T1(PT1)
n−1yn‖+‖T1(PT1)

n−1yn− xn‖+‖xn− yn‖,

which by (3.11), (3.18) and (3.23) gives

(3.30) lim
n→∞
‖xn+1− yn‖= 0.

Next, observe, for i = 1,2, that

‖xn−Tixn‖ ≤ ‖xn−Ti(PTi)
n−1xn‖+‖Ti(PTi)

n−1xn−Ti(PTi)
n−1yn−1‖

+‖Ti(PTi)
n−1yn−1−Tixn‖

≤ ‖xn−Ti(PTi)
n−1xn‖+ k(i)n (x)‖xn− yn−1‖+‖Ti(PTi)

n−1yn−1−Tixn‖

≤ ‖xn−Ti(PTi)
n−1xn‖+mn(x)‖xn− yn−1‖+‖Ti(PTi)

n−1yn−1−Tixn‖

= ‖xn−Ti(PTi)
n−1xn‖+(1+Qn(x))‖xn− yn−1‖+‖Ti(PTi)

n−1yn−1−Tixn‖

Thus, it follows from (3.15), (3.21), (3.29),(3.30) and the fact that ∑
∞
n=1 Qn(x) < ∞ that

limn→∞ ‖xn−Tixn‖= 0, for i = 1, ,2.

Finally, we prove that limn→∞ ‖xn−Sn
i xn‖= 0, for i = 1, ,2.
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Observe that

‖xn−Sixn‖ ≤ ‖xn−Sn
i xn‖+‖Si(Sn−1

i xn)−Sn
i ‖

≤ ‖xn−Sn
i xn‖+ ki

n(x)‖Sn−1
i xn− xn‖

≤ ‖xn−Sn
i xn‖+mn(x)‖Sn−1

i xn− xn‖

≤ ‖xn−Sn
i xn‖+(1+Qn(x))‖xn− xn−1‖+‖xn−1−Sn−1

i xn−1‖

+‖Sn−1
i xn−1−Sn−1

i xn‖

≤ ‖xn−Sn
i xn‖+(1+Qn(x))[‖xn− xn−1‖+‖xn−1−Sn−1

i xn−1‖]

+(1+Qn(x))k
(i)
n (x)‖xn−1− xn‖

≤ ‖xn−Sn
i xn‖+(1+Qn(x))[‖xn− xn−1‖+‖xn−1−Sn−1

i xn−1‖]

+(1+Qn(x))mn(x)‖xn−1− xn‖

≤ ‖xn−Sn
i xn‖+(1+Qn(x))[‖xn− xn−1‖+‖xn−1−Sn−1

i xn−1‖]

+(1+Qn(x))(1+Qn(x))‖xn−1− xn‖

= ‖xn−Sn
i xn‖+(1+Qn(x))[‖xn− xn−1‖+‖xn−1−Sn−1

i xn−1‖]

+(1+Qn(x))2‖xn−1− xn‖(3.31)

Since,

‖xn− xn−1‖ ≤ ‖xn−Sn
1xn‖+ γn‖Sn

1xn−T1(PT1)
n−1yn‖,

it follows from (3.10), (3.24), (3.25),(3.31) and the fact that ∑
∞
n=1 θn(x)< ∞ that

(3.32) lim
n→∞
‖xn−Sixn‖= 0, i = 1,2.

This completes the proof. �

Theorem 3.3. Under the assumption of Lemma 3.2, if E satisfies Opial’s condition and the

mappings I− Si and I−Ti for i = 1,2, where I denotes the identity mapping, are demiclosed

at zero, then the sequence {xn} defined by (3.1) converges weakly to a common fixed point in

F = F(S1)∩F(S2)∩F(T1)∩F(T2).
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Proof. Let q? ∈F . From Lemma 3.1, the squence {‖xn− p?‖} is bounded. Since, E is uni-

formly convex , every bounded subset of E is weakly compact. Thus, there exists a subsequence

{xnk} of {xn} which converges weakly to some q? ∈C. By Lemma 3.2, we have limn→∞ ‖xnk−

Sixnk‖ = 0 and limn→∞ ‖xnk −Tixnk‖ = 0 for i = 1,2. Since by hypothesis, the mappings I−Si

and I−Ti for i = 1,2, where I denotes the identity mapping, are demiclosed at zero, Siq? = q?

and Tiq? = q? for i = 1,2., which means that q? ∈F = F(S1)∩F(S2)∩F(T1)∩F(T2). Finally,

we show that {xn} converges weakly to q?. Suppose on the contrary that {xn j} is another subse-

quence of {xn}which converges weakly to p? ∈C and q? 6= p? By Lemma 3.1, limn→∞ ‖xn−q?‖

and limn→∞ ‖xn− p?‖ exist. By virtue of Opial’s condition on E, we obtain

lim
n→∞
‖xn−q?‖ = lim

n→∞
‖xnk−q?‖

< lim
n→∞
‖xnk− p?‖

= lim
n→∞
‖xn− p?‖

= lim
n→∞
‖xn j − p?‖

< lim
n→∞
‖xn j −q?‖

= lim
n→∞
‖xn−q?‖,

which is a contradiction, so q? = p? Therefore, the sequence {xn} defined by (3.1) converges

weakly to q? ∈F . This completes the proof. �

Theorem 3.4. Let E be a uniformly convex Banach space which satisfies Opial’s conditon and

C be a nonempty closed convex subset of E. Let T,S ∈ Tr(C) with T : C −→ E,S : C −→C and

Si,Ti, i = 1,2, be compact mappings. Let gl[(T,S),zn] be the generalised lshikawa-type iterative

scheme of (3.1) and {γn},{αn} be sequence bounded away from 0 and 1. Then, the iterative

scheme gl[(T,S),zn] is stable.

Proof. Let {zn} be an arbitrary sequence such that ∑
∞
n=1 εn < ∞. For each p ∈ F , it follows that

‖zn+1− p‖ = ‖zn+1−gl[(T,S),zn]+gl[(T,S),zn]− p‖

≤ ‖zn+1−gl[(T,S),zn]‖+‖gl[(T,S),zn]− p‖

≤ εn +‖gl[(T,S),zn]− p‖(3.33)
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By the definition of gl[(T,S),zn] and pointwise asymptotically nonexpansiveness of S and T ,

we obtain

‖yn− p‖ = ‖P((1−αn)Sn
2zn +αnT2(PT2)

n−1zn)− p‖

≤ ‖(1−αn)Sn
2zn +αnT2(PT2)

n−1zn− p‖

≤ (1−αn)‖Sn
2zn− p‖+αn‖T2(PT2)

n−1zn− p‖

≤ (1−αn)k
(3)
n (x)‖zn− p‖)+αnk(4)n (x)‖zn− p‖

≤ (1−αn)mn(x)‖zn− p‖)+αnmn(x)‖zn− p‖

= (1+Qn(x))‖zn− p‖(3.34)

and

‖gl[(T,S),zn]− p‖ = ‖P((1− γn)Sn
1xn + γnT1(PT1)

n−1yn)− p‖

≤ ‖(1− γn)Sn
1xn + γnT1(PT1)

n−1yn− p‖

≤ (1− γn)‖Sn
1xn− p‖+ γn‖T1(PT1)

n−1yn− p‖

≤ (1− γn)k
(1)
n (x)‖zn− p‖+ γnk(2)n (x)‖yn− p‖

≤ (1− γn)mn(x)‖zn− p‖+ γnmn(x)‖yn− p‖

≤ (1− γn)(1+Qn(x))‖zn− p‖+ γn(1+Qn(x))‖yn− p‖)

(3.35)

(3.34) and (3.35) imply that

‖gl[(T,S), p]− p‖ ≤ (1− γn)(1+Qn(x))‖zn− p‖+(1+Qn(x))(1+Qn(x))

×‖zn− p‖

= [1+(1+(1+Qn(x)))Qn(x))]‖zn− p‖(3.36)

Putting (3.36) into (3.33), we get

‖zn+1− p‖ ≤ εn +[1+(1+(1+Qn(x)))Qn(x))]‖zn− p‖
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Since ∑
∞
n=1 Qn(x) < ∞ and ∑

∞
n=1 εn < ∞, it follows from Lemma 2.1 that {zn} is bounded and

that limn→∞ ‖zn− p‖ exists. Let limn→∞ ‖zn− p‖= c, where c is any real number. From (3.34)

and the fact that ∑
∞
n=1 Qn(x)< ∞ , we have

lim
n→∞
‖yn− p‖ ≤ c.

Actually, limn→∞ ‖yn− p‖= c. For if limn→∞ ‖yn− p‖< c, then from (3.35), we get

(3.37) lim
n→∞
‖gl[(T,S),zn]− p‖< c

(3.37) together with (3.33) imply that

c = lim
n→∞
|zn+1− p‖

≤ lim
n→∞

εn + lim
n→∞
‖gl[(T,S),zn]− p‖

< c,

which is a contradiction, so

(3.38) lim
n→∞
‖yn− p‖= c

Following the same argument as in Lemma 3.2 above, we obtain

(3.39) lim
n→∞
‖zn−Sizn‖= 0

and

(3.40) lim
n→∞
‖zn−Tizn‖= 0,

for i=1,2. Again, since Ti and Si are compact, there exists a subsequence {znn} and p ∈ E such

that

lim
n→∞
‖Tizn− p‖= 0

and

lim
n→∞
‖Sizn− p‖= 0.

Furthermore, from (3.39) and (3.40),

lim
k→∞
‖znk− p‖ ≤ lim

k→∞
‖znk−Tiznk‖+ lim

k→∞
‖Tiznk− p‖

= 0(3.41)
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By Lemma 2.4, we obtain that p ∈ F . Since, limn→∞ ‖yn− p‖ = 0, it follows thatlimn→∞ yn =

p. �

Corollary 3.5. Let E be a uniformly convex Banach space and C a nonempty closed convex

subset of E. Let T1,T2 ∈ Γr(C) and T1,T2 : C −→ E be two pointwise asymptotically nonex-

pansive nonself mappings with sequences {kn}(1)(x),{kn}(2)(x) ∈ [1,∞) : ∑n→∞(k
(1)
n (x)−1)<

∞,∑n→∞(k
(2)
n −1)(x)< ∞ . Let {xn} be a sequence defined by

(3.42)

x1 ∈C

xn+1 = P((1− γn)xn + γnT1(PT1)
n−1yn

yn = P((1−αn)xn +αnT2(PT2)
n−1xn


,

where {γn} and {αn} are real sequences ∈ [0,1). Suppose F = F(T1)∩F(T2) 6= /0. Then,

limn∞ ‖xn−q‖ and limn∞ d(xn−F ) both exist for all q ∈ F.
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