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Abstract. In this paper, we define two 2-norm derivatives in 2-normed space and give some results. We use 2-

norm derivatives to study the ρ-orthogonality in 2-normed space. We define ρ-orthogonality, ρ+-orthogonality,

ρ−-orthogonality in 2-normed space and give some properties of it.
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1. INTRODUCTION

The study of orthogonal properties in normed space is an important research direction. There

have been many studies in orthogonal properties on normed space. Many scholars [1, 2, 3, 4,

8, 9] have put forward a variety of orthogonal relations. For the study of ρ-orthogonality, the

author [10] have defined it by norm derivative. The norm derivatives are also called superior

and inferior semi-inner products. They also proved that when the derivatives of two norms are

equal, it is equivalent to that the space is smooth. Other properties of ρ-orthogonality are also

proved in [11, 12, 13, 19, 20].

In 1965, Gähler [5] introduced the concept of 2-normed space, which is a generalization of

normed space. However, there are few studies on the orthogonal properties of 2-normed space.

∗Corresponding author

E-mail address: mayunna1997@163.com

Received July 05, 2022
1



2 YUNNA MA

In 1975, White and Diminnie [14] gave a characterization of 2-inner product space by using the

partial derivatives of bifunctionals. In 2006, the concepts of P-orthogonality, I-orthogonality,

BJ-orthogonality in 2-normed space have been given in [17]. In 2007, Mazaheri and Nezhad

[15] gave the definition of b-orthogonality in 2-normed space and gave some results in this field.

In this paper, we mainly study ρ-orthogonality in 2-normed space. We define two 2-norm

derivatives in 2-normed space. We prove some properties of 2-norm derivatives. We find the

relationship between 2-norm derivative and 2-inner product and the relationship between 2-

norm derivative and 2-semi-inner product. We also define ρ-orthogonality, ρ+-orthogonality,

ρ−-orthogonality in 2-normed space and give some properties of it.

2. MAIN RESULTS

We first introduce the concepts of 2-normed space and 2-inner product space. The concept

of 2-normed space was introduced by Gähler, which was widely generalized by other scholars

[5, 6, 7].

Let X be a real linear space of dimension greater than 1 and let ‖·, ·‖ be a real valued function

on X×X satisfying the following conditions:

(a) ‖x,y‖= 0 if and only if x,y are linearly dependent;

(b) ‖x,y‖= ‖y,x‖;

(c) ‖αx,y‖= |α|‖x,y‖ for α ∈ R;

(d) ‖x,y+ z‖ ≤ ‖x,y‖+‖x,z‖ for every x,y,z ∈ X .

‖·, ·‖ is called a 2-norm and (X ,‖·, ·‖) is called a 2-normed space. Some basic properties of

2-normed space, which are nonnegative and ‖x,y+αx‖ = ‖x,y‖ for all x,y ∈ X and for each

α ∈ R.

Ehret [6] gave the concept of 2-inner product space. Let (·, ·|·) be a real valued function on

X×X×X which satisfies the following conditions:

(a) (x,x|z)≥ 0, (x,x|z) = 0, if and only if x and z are linearly dependent;

(b) (x,x|z) = (z,z|x);

(c) (x,y|z) = (y,x|z);

(d) (αx,y|z) = α(x,y|z) for α ∈ R;

(e) (x+ x
′
,y|z) = (x,y|z)+(x

′
,y|z) for every x,x

′
,y,z ∈ X .
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(·, ·|·) is called a 2-inner product and (X ,(·, ·|·)) is called a 2-inner product space.

Ehret [16] proved that if (X ,(·, ·|·)) is a 2-inner product space, then ‖x,y‖= (x,x|y) 1
2 defines

a 2-norm.

Definition 2.1. Let (X ,‖·, ·‖) be a real 2-normed space. We define two mappings ρ
′
+(x,y;z),

ρ
′
−(x,y;z) : X×X×X → R

ρ
′
+(x,y;z) := lim

t→0+

‖x+ ty,z‖2−‖x,z‖2

2t
.

ρ
′
−(x,y;z) := lim

t→0−

‖x+ ty,z‖2−‖x,z‖2

2t
.

The mappings ρ
′
+(x,y;z), ρ

′
−(x,y;z) are called 2-norm derivatives.

Remark 2.2. (a) According to the above definition, we can verify that

ρ
′
±(x,y;z) = lim

t→0±

‖x+ ty,z‖2−‖x,z‖2

2t

= lim
t→0±

‖x+ ty,z‖+‖x,z‖
2

‖x+ ty,z‖−‖x,z‖
t

= ‖x,z‖ lim
t→0±

‖x+ ty,z‖−‖x,z‖
t

.

In particular, if z = αx or z = βy for α,β ∈ R, then ρ
′
±(x,y;z) = 0.

Proof. (i) If z = αx, then

ρ
′
±(x,y;αx) = ‖x,αx‖ lim

t→0±

‖x+ ty,αx‖−‖x,αx‖
t

= 0.

(ii) If z = βy, then

ρ
′
±(x,y;βy) = ‖x,βy‖ lim

t→0±

‖x+ ty,βy‖−‖x,βy‖
t

= 0.

�

(b) For x,y,z ∈ X, limits ρ
′
+(x,y;z), ρ

′
−(x,y;z) exists.

Proof. Suppose f (t) = ‖x+ty,z‖−‖x,z‖
t . If 0 < t1 < t2, then



4 YUNNA MA

f (t1)− f (t2)

=
‖x+ t1y,z‖−‖x,z‖

t1
− ‖x+ t2y,z‖−‖x,z‖

t2

=
‖t2x+ t1t2y,z‖−‖t1x+ t1t2y,z‖+(t1− t2)‖x,z‖

t1t2

≤‖(t2− t1)x,z‖+(t1− t2)‖x,z‖
t1t2

=0.

So f (t) is a monotonically increasing function with infimum. By the similar method, if t1 <

t2 < 0, then f (t) is a monotonically increasing function with supremum. Consequently the limit

exists. �

Theorem 2.3. Let (X ,‖·, ·‖) be a real 2-normed space. Suppose ρ
′
+(x,y;z), ρ

′
−(x,y;z) : X ×

X×X → R are defined as above. Let x,y,z ∈ X, α,β ∈ R. Then

(a) There is always ρ
′
−(x,y;z)≤ ρ

′
+(x,y;z).

(b) ρ
′
±(αx,y;z) = αρ

′
±(x,y;z) = ρ

′
±(x,αy;z), α ≥ 0.

(b
′
) ρ

′
±(αx,y;z) = αρ

′
∓(x,y;z) = ρ

′
±(x,αy;z), α < 0.

(c) ρ
′
±(x,αx+βy;z) = α‖x,z‖2 +βρ

′
±(x,y;z).

(d) | ρ ′±(x,y;z) |≤ ‖x,z‖‖y,z‖.

(e) If ‖yn,z‖→ ‖y,z‖, yn ∈ X(n = 1,2 · · ·), then ρ
′
±(x,yn;z)→ ρ

′
±(x,y;z).

Proof. The proof is as follows.

(a) Suppose f (t) = ‖x+ty,z‖−‖x,z‖
t . If t1 < 0 < t2, by the similar method used in Remark 2.2(b),

then we can get f (t1)− f (t2)≤ 0, f (t1)≤ f (t2). Consequently we have ρ
′
−(x,y;z)≤ ρ

′
+(x,y;z).

(b) Take x,y,z ∈ X , α ≥ 0. Then

ρ
′
±(αx,y;z) =‖αx,z‖ lim

t→0±

‖αx+ ty,z‖−‖αx,z‖
t

=α‖x,z‖ lim
t→0±

‖x+ t
α

y,z‖−‖x,z‖
t
α

=α‖x,z‖ lim
s→0±

‖x+ sy,z‖−‖x,z‖
s

(s =
t
α
)
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=αρ
′
±(x,y;z).

Similarly

ρ
′
±(x,αy;z) =‖x,z‖ lim

t→0±

‖x+ tαy,z‖−‖x,z‖
t

=α‖x,z‖ lim
t→0±

‖x+ tαy,z‖−‖x,z‖
tα

=α‖x,z‖ lim
s→0±

‖x+ sy,z‖−‖x,z‖
s

(s = αt)

=αρ
′
±(x,y;z).

So ρ
′
±(αx,y;z) = αρ

′
±(x,y;z) = ρ

′
±(x,αy;z).

(b
′
) When α < 0, the proof method is the same as (b).

(c) Take x,y,z ∈ X , α,β ∈ R. Suppose t is small enough such that 1+ tα > 0. Then

(i) If β = 0, then

ρ
′
±(x,αx;z) =‖x,z‖ lim

t→0±

‖x+ tαx,z‖−‖x,z‖
t

=‖x,z‖ lim
t→0±

tα‖x,z‖
t

=α‖x,z‖2.

(ii) If β 6= 0, then

ρ
′
±(x,αx+βy;z) =‖x,z‖ lim

t→0±

‖x+ t(αx+βy),z‖−‖x,z‖
t

=‖x,z‖ lim
t→0±

(1+ tα)(‖x+ tβ
1+tα y,z‖−‖x,z‖)+ tα‖x,z‖

t

=α‖x,z‖2 +‖x,z‖ lim
t→0±

‖x+ tβ
1+tα y,z‖−‖x,z‖

tβ
1+tα

β

=α‖x,z‖2 +‖x,z‖ lim
s→0±

‖x+ sy,z‖−‖x,z‖
s

β (s =
tβ

1+ tα
)

=α‖x,z‖2 +βρ
′
±(x,y;z).
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(d) Take x,y,z ∈ X . Then

| ρ
′
±(x,y;z) |=‖x,z‖ lim

t→0±
| ‖x+ ty,z‖−‖x,z‖

t
|

≤‖x,z‖ lim
t→0±

| ‖x,z‖+ | t | ‖y,z‖−‖x,z‖
t

|

≤‖x,z‖‖y,z‖.

(e) Take x,z ∈ X . Suppose ‖yn,z‖→ ‖y,z‖, then

ρ
′
±(x,yn;z)−ρ

′
±(x,y;z)

=‖x,z‖ lim
t→0±

‖x+ tyn,z‖−‖x,z‖
t

−‖x,z‖ lim
t→0±

‖x+ ty,z‖−‖x,z‖
t

=‖x,z‖ lim
t→0±

‖x+ tyn,z‖−‖x+ ty,z‖
t

≤‖x,z‖ lim
t→0±

‖tyn− ty,z‖
t

=‖x,z‖‖yn− y,z‖→ 0.

�

Proposition 2.4. If (X ,(·, ·|·)) is a 2-inner product space with 2-norm defined by ‖x,z‖ =

(x,x|z) 1
2 , then we can get

ρ
′
+(x,y;z) = (x,y|z) = ρ

′
−(x,y;z).

Proof. For the integrity of the content, we will give its proof process

ρ
′
±(x,y;z) = lim

t→0±

‖x+ ty,z‖2−‖x,z‖2

2t

= lim
t→0±

(x+ ty,x+ ty|z)− (x,x|z)
2t

= lim
t→0±

(x,x|z)+2t(x,y|z)+ t2(y,y|z)− (x,x|z)
2t

= lim
t→0±

2t(x,y|z)+ t2(y,y|z)
2t

= lim
t→0±

2(x,y|z)+ t(y,y|z)
2

=(x,y|z).
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Obviously, if z = αx or z = βy, the result also true. Therefore ρ
′
+(x,y;z) = (x,y|z) = ρ

′
−(x,y;z).

The proposition is proved. �

Definition 2.5. ([7]) Let [·, ·|·] be a real valued function on X ×X ×X which satisfies the fol-

lowing conditions:

(a) [x,x|z]≥ 0, [x,x|z] = 0 if and only if x and z are linearly dependent;

(b) [αx,y|z] = α[x,y|z] for α ∈ R;

(c) [x+ x
′
,y|z] = [x,y|z]+ [x

′
,y|z];

(d) | [x,y|z] |≤ [x,x|z] 1
2 [y,y|z] 1

2 for every x,x
′
,y,z ∈ X.

[·, ·|·] is a 2-semi-inner product and (X , [·, ·|·]) is called a 2-semi-inner product space. A

2-semi-inner-product space is a 2-normed space with the 2-norm ‖x,z‖ = [x,x|z] 1
2 provided

[x,x|z] = [z,z|x] [18].

Proposition 2.6. If (X , [·, ·|·]) is a 2-semi-inner product space with [x,x|z] = [z,z|x], then we can

get

ρ
′
±(x,y;z) = lim

t→0±
[y,x+ ty|z].

Proof. According to the Theorem 2.3(d) and ‖x,z‖= [x,x|z] 1
2 , we can get

ρ
′
±(x,y;z) =‖x,z‖ lim

t→0±

‖x+ ty,z‖−‖x,z‖
t

= lim
t→0±

‖x+ ty,z‖−‖x,z‖
t

‖x+ ty,z‖

≤ lim
t→0±

[x+ ty,x+ ty|z]− [x,x+ ty|z]
t

= lim
t→0±

[y,x+ ty|z]

= lim
t→0±

[x+2ty,x+ ty|z]− [x+ ty,x+ ty|z]
t

≤ lim
t→0±

‖x+2ty,z‖‖x+ ty,z‖−‖x+ ty,z‖2

t

= lim
t→0±

‖x+2ty,z‖−‖x+ ty,z‖
t

‖x,z‖

= lim
t→0±

[2
‖x+2ty,z‖−‖x,z‖

2t
− ‖x+ ty,z‖−‖x,z‖

t
]‖x,z‖
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= lim
t→0±

‖x+ ty,z‖−‖x,z‖
t

‖x,z‖

=ρ
′
±(x,y;z).

(i) If z = αx, then

ρ
′
±(x,y;αx) = lim

t→0±

‖x+ ty,αx‖2−‖x,αx‖2

2t
= 0,

0≤ lim
t→0±

[y,x+ ty|αx]

≤ lim
t→0±

[y,y|αx]
1
2 [x+ ty,x+ ty|αx]

1
2

= lim
t→0±
‖y,αx‖‖x+ ty,αx‖

= lim
t→0±

α
2t‖x,y‖

=0.

(ii) If z = βy, then

ρ
′
±(x,y;βy) = lim

t→0±

‖x+ ty,βy‖2−‖x,βy‖2

2t
= 0,

0≤ lim
t→0±

[y,x+ ty|βy]

≤ lim
t→0±

[y,y|βy]
1
2 [x+ ty,x+ ty|βy]

1
2

=0.

�

For any arbitrary non-zero elements x,y ∈ X , let V (x,y) denote the subspace of X generated

by x,y.

Compared with the definition of ρ-orthogonality in normed space, we give the definition of

ρ-orthogonality in 2-normed space.

Definition 2.7. Let (X ,‖·, ·‖) be a real 2-normed space. Let x,y,z ∈ X and z /∈ V (x,y). We

define ρ+-orthogonality, ρ−-orthogonality, ρ-orthogonality as follows.

(a) We call x is ρ+-orthogonality to y denoted by x⊥ρ+ y, if ρ
′
+(x,y;z) = 0 for each z /∈V (x,y).
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(b) We call x is ρ−-orthogonality to y denoted by x⊥ρ− y, if ρ
′
−(x,y;z) = 0 for each z /∈V (x,y).

(c) We call x is ρ-orthogonality to y denoted by x ⊥ρ y, if ρ
′
+(x,y;z)+ρ

′
−(x,y;z) = 0 for each

z /∈V (x,y).

The above case is that z /∈ V (x,y). If z ∈ V (x,y), we need to pay attention to the following

two cases

Remark 2.8. Let (X ,‖·, ·‖) be a real 2-normed space. Take x,y,z ∈ X and z ∈V (x,y).

(a) Take z = αx+βy, αβ 6= 0. If ρ
′
±(x,y;z) = 0, then y = sx.

(b) Take z = βy or z = αx, α 6= 0, β 6= 0. Then we can get ρ
′
±(x,y;z) = 0.

Proof. (a) Suppose z = αx+βy, αβ 6= 0. Then

ρ
′
±(x,y;z) = lim

t→0±

‖x+ ty,αx+βy‖2−‖x,αx+βy‖2

2t

= lim
t→0±

|β −αt|2‖x,y‖2−β 2‖x,y‖2

2t

= lim
t→0±

(−2αβ t +α2t2)‖x,y‖2

2t

=−2αβ‖x,y‖2.

So if ρ
′
±(x,y;z) = 0, that is ‖x,y‖= 0, then y = sx.

(b) The conclusion has been given in Remark 2.2. �

Theorem 2.9. Let (X ,‖·, ·‖) be a real 2-normed space. Then the following conditions are

equivalent:

(a) ρ
′
+ = ρ

′
−;

(b)⊥ρ+⊂⊥ρ−;

(c)⊥ρ−⊂⊥ρ+;

(d)⊥ρ−=⊥ρ+;

(e)⊥ρ+⊂⊥ρ ;

(f)⊥ρ⊂⊥ρ+;

(g)⊥ρ=⊥ρ+;

(h)⊥ρ−⊂⊥ρ ;
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(i)⊥ρ⊂⊥ρ−;

(j)⊥ρ=⊥ρ− .

Proof. We first prove that (a)⇔ (b)⇔ (d). We know that (a)⇒ (d)⇒ (b) is obvious. Next

we prove that (b)⇒ (a). Suppose that (b) holds. Let x,y,z ∈ X and z /∈V (x,y)(We may assume

x 6= 0, otherwise (a) holds trivially). We define α := ρ
′
+(x,y;z)
‖x,z‖2 , w := −αx+ y. From Theorem

2.3(c), we have

ρ
′
+(x,w;z) =ρ

′
+(x,−αx+ y;z)

=−α‖x,z‖2 +ρ
′
+(x,y;z)

=0,

Therefore, x⊥ρ+ w. According to the hypothesis, we can get, x⊥ρ− w,

ρ
′
−(x,−αx+ y;z) = 0.

According to Theorem 2.3(c), we can get

ρ
′
−(x,−αx+ y;z) =−α‖x,z‖2 +ρ

′
−(x,y;z) = 0.

Therefore, we can get ρ
′
+(x,y;z) = ρ

′
−(x,y;z), which proves (a).

We also know that (a)⇒ (d)⇒ (c) and the proof of (c)⇒ (a) can also be obtained. So we

can prove that (a)⇔ (b)⇔ (c)⇔ (d).

With the above proof, we can also prove that (a)⇔ (e)⇔ ( f )⇔ (g) and (a)⇔ (h)⇔ (i)⇔

( j). �

Definition 2.10. Let (X ,‖·, ·‖) be a 2-normed space. Let x,y,z∈ X. We call x is b-orthogonality

to y denoted by x⊥by if ‖x+ ty,z‖ ≥ ‖x,z‖ for every real number t and each element z /∈V (x,y).

Theorem 2.11. Let (X ,‖·, ·‖) be a real 2-normed space. Let x,y,z ∈ X and z /∈ V (x,y). Then

the following statements are equivalent:

(a) ρ
′
−(x,y;z)≤ 0≤ ρ

′
+(x,y;z);

(b) x⊥b y.
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Proof. (a)⇒ (b). Suppose that ρ
′
−(x,y;z)≤ 0≤ ρ

′
+(x,y;z).

If t ≥ 0, it follows from Theorem 2.3(d) that

ρ
′
+(x,x+ ty;z)≤ ‖x,z‖‖x+ ty,z‖.

In addition, according to Theorem 2.3(c),

ρ
′
+(x,x+ ty;z) = tρ

′
+(x,y;z)+‖x,z‖2,

which implies

tρ
′
+(x,y;z)≤ (‖x+ ty,z‖−‖x,z‖)‖x,z‖.

Since ρ
′
+(x,y;z)≥ 0, t ≥ 0, we have

‖x+ ty,z‖−‖x,z‖ ≥ 0.

Since ρ
′
−(x,y;z) ≤ 0, from Theorem 2.3(b) we get −ρ

′
−(x,y;z) = ρ

′
+(x,−y;z) ≥ 0 which im-

plies that ‖x− ty,z‖−‖x,z‖ ≥ 0 for all t ≥ 0. Consequently, we get x⊥b y. (a)⇒ (b) is proved.

(b)⇒ (a). Supppose that x ⊥b y. According to the definition of b-orthogonality, we know

‖x+ ty,z‖ ≥ ‖x,z‖. Therefore, we can get ρ
′
−(x,y;z)≤ 0≤ ρ

′
+(x,y;z). (b)⇒ (a) is proved. �
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