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1. INTRODUCTION AND PRELIMINARIES

It is well known that the Banach contraction principle was published in 1922 by S. Banach

as follows:

Theorem 1. [1] Let (X ,d) be a complete metric space and a self mapping T : X −→ X . T is

said to be contraction if there exists k ∈ [0,1) such that for all x,y ∈ X, d(T x,Ty) ≤ kd(x,y)

then T has a unique fixed point in X .
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Currently, fixed point is a very active area of research because of the importance of its ap-

plications in multiple fields. The Banach contraction principle has been extensively studied in

various spaces, and different generalizations have been proposed (see [2, 3, 4, 5]).

Kannan established his known extension of this contraction in 1968 [6]. He proved in a

complete metric space (X ,d), the self-mapping T : X −→ X has a fixed point in X if the

following condition is satisfied: d(T x,Ty) ≤ k [d(x,T x)+d(y,Ty)] for all x,y ∈ X where 0 ≤

k < 1
2 .

Chattergea introduced a similar contractive condition in 1972 [3] as follows:

Let T : X −→ X , where (X ,d) is a complete metric space if there exists 0 ≤ k < 1
2 such that

d(T x,Ty)≤ k [d(y,T x)+d(Ty,x)] for all x,y ∈ X . Then T has a fixed point in X .

Sabiri and al [4] investigated convergence and existence results of the proximity points for

p-cyclic contraction in (S) convex metric space in 2020 and developed a novel notion of the

measure between p-points where p≥ 2.

In 2021, Sabiri and al [7] proved the existence and uniqueness of a fixed point for various

types of tricyclic contractions.

In 2008, Jachymski [8] extented the Banach contraction principle in metric space endowed

with a graph.

In this work, inspired by the idea given in [9, 10, 11, 12, 13, 14], we investigate Kannan and

Chatterjea’s fixed point theorem in generalized metric space with graphs, introduced by Jleli

and Samet. In addition, several interesting results about the existence and uniqueness of fixed

points in generalized metric space were demonstrated (see [15, 16]).

We start by recalling some basic concepts of graphs which are used in this paper.

A directed graph or digraph G is determined by a nonempty set V (G) of its vertices and the set

E (G) ⊂ V (G)×V (G) of its arcs. Let ∆ denote the diagonal of the Cartisian product V (G)×

V (G). A digraph is said to be reflexive if the set E (G) of its edges contains all loops, i.e., ∆⊂

E (G). G is said to be transitive if and only if for any x,y,z ∈V (G)

[(x,y) ∈ E (G) and (y,z) ∈ E (G) ] =⇒ (x,z) ∈ E (G) .

We say that a vertex x in V (G) is isolated if for any vertex y in V (G) such that x 6= y we have

(x,y) /∈ E (G) and (y,x) /∈ E (G) .
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We denote by G−1 the converse of a digraph G, that is, the digraph obtained from G by

reversing the direction of arcs. Then we have E
(
G−1)= {(x,y) ∈ X×X : (y,x) ∈ E (G)}.

Also,
∼
G denotes the indirected graph obtained from G by ignoring the direction of the edges.

So it is clear that E
(∼

G
)
= E (G)∪E

(
G−1) .

The notion of a G-monotone sequence was introduced in [11]. It is claimed that a sequence

{xn} ∈ V (G) is G-increasing if (xn,xn+1) ∈ E (G) for all n ∈ N, G-decreasing if (xn+1,xn) ∈

E (G) for all n ∈ N, and G-monotone if it is either G-increasing or G-decreasing.

Definition 1. Let X be a nonempty set and D : X ×X −→ [0,+∞[ be a function satisfies the

following conditions:

(D1) For every (x,y) ∈ X×X, D(x,y) = 0 =⇒ x = y.

(D2) For every (x,y) ∈ X×X, D(x,y) = D(y,x).

(D3) For every (x,y,z) ∈ X×X×X D(x,y)≤ D(x,z)+D(z,y)

(D4) There exists C > 0 such that if (x,y) ∈ X×X and {xn} ∈C (D,X ,x), then

D(x,y)≤Climsup
n−→+∞

D(xn,y).

where C (D,X ,x) = {{xn} ⊂ X : lim
n−→+∞

D(xn,x) = 0}.

If D satisfies the conditions (D1), (D2), and (D4), then D is called a generalized metric on X .

In this case, we say that the pair (X ,D) is the generalized metric space.

If D satisfies the conditons (D1), (D2), and (D3), then (X ,D) is called a dislocated metric

space.

Definition 2. Let {xn} a sequence in generalized metric space (X ,D) is to be D-convergente to

x if {xn} ∈C (D,X ,x) and a D-Cauchy sequence if

lim
n,m−→+∞

D(xn,xm) = 0. Note that in generalized metric spaces, a sequence has at most one limit,

and a D-convergent sequence may not be a D-Cauchy sequence. Furthermore, (X ,D) is to be

D-complete if every D-Cauchy sequence in X is a D-convergent to some element in X.

Definition 3. A generalized metric space (X ,D) endowed with a graph G is said to be G-

complete if every D-Cauchy G-monotone sequence {xn} ⊂ V (G) D-convergent to a point in

V (G) .
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The digraph G is said to satisfy the property (P) that is for any G-monotone increasing

(resp. decreasing) sequence {xn} which D-convergent to some element x ∈ V (G), we have

(xn,x) ∈ E (G),(resp (x,xn) ∈ E (G)) for all n ∈ N.

Definition 4. A self mapping T on X is called

(i) weak continuous if the following condition holds: if {xn} ⊂ X is a D-convergent to

x ∈ X, then there exists a subsequence {xnq} of {xn} such that {T xnq} D-converges to T x

(as q−→+∞) .

(ii) Orbitally G-continuous if for all x,y ∈V (G) and any sequence {kn} of positive integres,

{T knx} D-converges to y and
(
T knx,T kn+1x

)
∈ E (G) implies {T (T knx)} D-converges to Ty.

In 2019, Chaira et al. introduced G-Kannan mapping in generalized metric space (X,D) with

the digraph G. A mapping T : X −→ X is said to be a G-Kannan mapping if the following

conditions are satisfied:

(i) T is G-monotone, that is, for all x,y ∈ X , (x,y) ∈ E (G) =⇒ (T x,Ty) ∈ E (G).

(ii) There exists k ∈ [0, 1
2) such for every x,y ∈V (G)

(x,y) ∈ E (G) =⇒ D(T x,Ty)≤ k (D(T x,x)+D(y,Ty)) .

Lemma 2. [9] Let T : X −→ X a G-monotone mapping and suppose there exists x0 ∈ X

such that (x0,T x0) ∈ E (G) (respectively, (T x0,x0) ∈ E (G)) and the complete subgraph

G [θ T (x0)] is transitive, then {T nx0} is a G-increasing (respectively, G-decreasing) sequence

and (T mx0,T nx0) ∈ E (G) (respectively (T nx0,T mx0) ∈ E (G)) for any m,n ∈ N such m ≤ n,

with G [θ T (x0)] induced by the orbit θ T (x0):={T nx0,n ∈ N}.

In 2021 (see[7]) we defined Kannan S-type tricyclic contraction and we proved the existence

and uniqueness of fixed point in metric space (X ,d) .

Definition 5. Let A,B and C be nonempty subsets of a metric space (X ,d)

T : A∪B∪C −→ A∪B∪C

be a Kannan-S-type tricyclic contraction, if there exists k ∈ [0, 1
3) such that

(1) T (A)⊆ B,T (B)⊆C,T (C)⊆ A.
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(2) D(T x,Ty,T z)≤ k [d (x,T x)+d (y,Ty)+d (z,T z)] for all (x,y,z) ∈ A×B×C.

Definition 6. The metric space (X ,d) be a Chatterjea-S-type tricyclic contraction, if there exist

k ∈ [0, 1
3) such that

(1) T (A)⊆ B,T (B)⊆C,T (C)⊆ A.

(2) D(T x,Ty,T z)≤ k [d (y,T x)+d (z,Ty)+d (x,T z)] for all (x,y,z) ∈ A×B×C.

In this paper, we prove the existence and uniqueness of the fixed point based on the technique

of graph theory in generalized metric space.

2. MAIN RESULTS

Definition 7. Let (X ,D) a generalized metric space we define the map:

D3 : X×X×X −→ [0,+∞[

such that

D3(x,y,z) = D(x,y)+D(y,z)+D(x,z) for all x,y,z ∈ X .

Remark 1. For every x,y,z ∈ X, D3(x,y,z) = 0 =⇒ x = y = z.

For every x,y,z ∈ X, D3(x,y,z) = D3(x,z,y) = D3(y,z,x) = .....D3(z,y,x).

For every x,y,z ∈ X, D(x,y)≤ D3(x,y,z).

For every x,y,z ∈ X, D(x,x)≤ D3(x,y,z).

Definition 8. Let a metric space (X ,D) . A mapping T : X −→ X is said to be a Kannan-

S-type contraction if there exists k ∈ [0, 1
3) such that for every x,y,z ∈ X : D3 (T x,Ty,T z) ≤

k[D(T x,x)+D(y,Ty)+D(T z,z)].

Definition 9. Let a generalized metric space (X ,D) with digraph G. A mapping T : X −→ X is

said to be a G-Kannan S-mapping if the following conditions are satisfied:

(i) T is G-monotone, that is for all x,y ∈ X, (x,y) ∈ E (G) =⇒ (T x,Ty) ∈ E (G).

(ii) there exists k ∈ [0, 1
3) such for every x,y,z ∈V (G) . (x,y) ∈ E (G)

(y,z) ∈ E (G)
=⇒ D3 (T x,Ty,T z)≤ k[D(T x,x)+D(y,Ty)+D(T z,z)].
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In this work we shall adopt the following notations:

δ 0 = δ (D3,T,x0) = sup{D3
(
T i+1x0,T ix0,x0

)
: i ∈ N}

β =
k

1−2k
and with k ∈ [0,

1
3
).

Example 1. Let X = {0,1,2,3,4}. Consider the function D defined on X by D(x,y) = (x− y)2.

We have D is a generalized metric with constant C ≥ 3.

Define the mapping T : X −→ X by T (0) = T (4) = 1 and T (1) = T (2) = T (3) = 0.

We have D3(T (0),T (1),T (2)) = 2 and D(0,T (0))+D(1,T (1))+D(2,T (2)) = 6, then T is

not Kannan-S-type contraction.

But by considering the digraph G = (X ,E) represented in Figure 1

FIGURE 1. Digraph G = (X ,E)

We have T is a G-Kannan-S-mapping with constant k ∈ [ 2
11 ,

1
3).

Proposition 3. Let T : X −→ X a G-Kannan S-mapping and suppose there exists x0 ∈ X such

that (x0,T x0) ∈ E (G) (respectively, (T x0,x0) ∈ E (G)) and the complete subgraph G [θ T (x0)]

is transitive then:

(1) For every n≥ 2, we have:

D3
(
T nx0,T n−1x0,T n−2x0

)
≤ δ 0β

n−2,

(2) For every n,m,s≥ 2, we have:

D3 (T nx0,T mx0,T sx0)≤ kδ 0(β
n−2 +β

m−2 +β
s−2).
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Proof. 1. For n = 2 is trivial.

Assume that n > 2. Since T is a G-Kannan S-mapping and (T n−1x0,T n−2x0) ∈ E (G) and

(T n−2x0,T n−3x0) ∈ E (G) then:

D3
(
T nx0,T n−1x0,T n−2x0

)
≤ k[D(T n−1x0,T nx0)+D(T n−2x0,T n−1x0)+D(T n−2x0,T n−3x0)]

≤ k[2D3
(
T nx0,T n−1x0,T n−2x0

)
+D3

(
T n−1x0,T n−2x0,T n−3x0

)
]

≤ k
1−2k

[D3
(
T n−1x0,T n−2x0,T n−3x0

)
].

By induction on n, we prove that:

D3
(
T nx0,T n−1x0,T n−2x0

)
≤ (

k
1−2k

)n−2D3
(
T 2x0,T x0,x0

)
≤ δ 0β

n−2

2. For n,m,s≥ 2, Since T is a G-Kannan S-mapping, we have:

D3 (T nx0,T mx0,T sx0)≤ k[D(T n−1x0,T nx0)+D(T m−1x0,T mx0)+D(T s−1x0,T sx0)].

By using 1. We have:

D3 (T nx0,T mx0,T sx0)≤ δ 0(β
n−2 +β

m−2 +β
s−2).

�

Theorem 4. Let (X ,D) be a generalized G-complete metric space endowed with a reflixive di-

graph G such that V (G) = X and T : X −→ X is a G-Kannan S-mapping with k ∈ [0, inf{1
3 ,

1
C}).

Suppose that there exist x0 ∈X such that δ (D3,T,x0)<+∞, (x0,T x0)∈E(
∼
G) and the subgraph

G [θ T (x0)] is transitive, then the sequence {T nx0} converge to some point w ∈ X .

Moreover, if one of the following conditions holds:

1. T is weak continuous.

2. T is orbitally G-continuous.

3. G satisfies the property (P) and D(x0,Tw)<+∞.

Then w is the fixed point of T.



8 MUSTAPHA SABIRI, ILYAS SITLI

Proof. We assume that (x0,T x0) ∈ E(G). Let (m,n,s) ∈ N×N×N such that 2 < n < m < s,

we have (T mx0,T nx0) ∈ E(G) and (T nx0,T sx0) ∈ E(G).

If T is G-Kannan S-mapping, we obtain:

D(T nx0,T mx0)≤ D3 (T nx0,T mx0,T sx0)≤ 3kδ 0(β
n−2).

where β = k
1−2k ∈ [0,1[. Thus {T nx0} is a D- Cauchy sequence.

From the G-completeness of (X ,D) the sequence {T nx0} is D-converges to some w ∈ X .

1. Assume that T is weak continuous, then there exists a subsequente {T nqx0} such that

{T nq+1x0} D- converges to Tw when nq → +∞. Using the uniqueness of the limit, we get

Tw = w.

2. Assume that T is orbitally G-continuous, since {T nx0} is D-converges to w and

(T nx0,T n+1x0) ∈ E(G), then T (T nx0)→ Tw , therefore Tw = w.

3. Assume that G satisfaies the property (P) and D(x0,Tw) < +∞. Since {T nx0} is a G-

monotone increasing sequence which D-converges to w ∈ X , we have (T nx0,w) ∈ E(G) for any

n ∈ N.

Let n,m ∈ N such that. If T is a G-Kannan S-mapping such that 2 < n < m, then:

D3 (T nx0,T mx0,Tw) ≤ k[D(T nx0,T n−1x0)+D(T mx0,T m−1x0)+D(Tw,w)]

≤ kδ 0(β
n−2 +β

m−2)+ kD(Tw,w)

≤ 2kδ 0β
n−2 + kClimsup

p−→+∞

D(T px0,Tw).

Taking limit superior as n→+∞ we get:

limsup
n−→+∞

D(T nx0,Tw) ≤ limsup
n−→+∞

(D3 (T nx0,T mx0,Tw))

≤ limsup
n−→+∞

2kδ 0β
n−2 + kClimsup

p−→+∞

D(T px0,Tw).

Thus:

(1− kC)limsup
n−→+∞

D(T nx0,Tw)≤ limsup
n−→+∞

2kδ 0β
n−2.

Since k < inf{1
3 ,

1
C} and β ∈ [0,1[ then D(T nx0,Tw)→ 0. So {T nx0} D-converges to Tw. By

the uniqueness of the limit we get Tw = w. �
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Proposition 5. Let (X ,D) a generalized metric space, and suppose that T is a G-kannan S

mapping. If w ∈ X is a fixed point of T satisfying D3 (w,w,w)<+∞ then D3 (w,w,w) = 0.

Proof. Let w ∈ X be a fixed point of T such that D3 (w,w,w)<+∞

since (w,w) ∈ E(G) we have:

D3 (w,w,w) = D3 (Tw,Tw,Tw)

≤ k(D(Tw,w)+D(Tw,w)+D(Tw,w)),

≤ 3kD3(w,w,w),

which implies (1−3k) D3 (w,w,w)≤ 0.Thus, D3 (w,w,w) = 0. �

Proposition 6. Let (X ,D) be a generalized metric space, and suppose that T is a G-kannan

S mapping. If T has three fixed points w1,w2,w3 in X such that D(w1,w2,w3) < +∞, then

w1 = w2 = w3.

Proof. Suppose that w1,w2,w3 in X are three fixed points of T then:

D3 (w1,w2,w3) = D3 (Tw1,Tw2,Tw3)

≤ k [D(Tw1,w1)+D(Tw2,w2)+D(Tw3,w3)]

= k [D(w1,w1)+D(w2,w2)+D(w3,w3)]

≤ k[D3 (w1,w1,w1)+D3 (w2,w2,w2)+D3 (w3,w3,w3)] = 0.

Thus D3 (w1,w2,w3) = 0, then w1 = w2 = w3. �

Example 2. Let X = [0,1] .Consider the generalized distance function D defined on X by

D(x,y) = (x− y)2 and the self mapping T on X defined by:

T x =

 x
6 si x ∈ {0}∪{ 1

6n ,n ∈ N},
1
2 otherwise.

Consider the graph G on X consisting of the transitive closure of the graph represented in

Figure 2
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FIGURE 2. Digraph G = (X ,E)

We have:

E(G) = ∆∪{(0, 1
6n ) : n ∈ N}∪{( 1

6n ,
1

6m ) : n,m ∈ N and n≥ m}

and

(T 0,T 1
6n ) = (0, 1

6n+1 ) ∈ E(G) for any n ∈ N,

(T 1
6n ,T 1

6m ) = ( 1
6n+1 ,

1
6m+1 ) ∈ E(G) for any n,m ∈ N,

then T is G-monotone.

For x0 = 1,we have (T x0,x0) ∈ E(G),G [θ T (x0)] is transitive and

δ (D3,T,x0) = sup{D3
(
T i+1x0,T ix0,x0

)
: i ∈ N}= 3 < ∞.

Let x,y,z ∈ X such that (x,y) ∈ E(G), and (y,z) ∈ E(G).

If x = y = z then:

D3 (T x,T x,T x) = 0≤ k(D(T x,x)+D(Ty,y)+D(T z,z)).

If (x,y,z) = (0,0, 1
6n ) then:

D3

(
T 0,T 0,T

1
6n

)
=

2
62(n+1)

≤ 25k
62(n+1)

= k(D(T 0,0)+D(T 0,0)+D(T
1
6n ,

1
6n )).
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If (x,y,z) = (0, 1
6n ,

1
6m ) then:

D3

(
T 0,T

1
6n ,T

1
6m

)
=

2
62(n+1)

+
2

62(m+1)
+

(6n−6m)2

62(n+m+1)

≤ 2
62(n+1)

+
2

62(m+1)
+

62n

62(n+m+1)

=
2

62(n+1)
+

3
62(m+1)

≤ 25k(
1

62(n+1)
+

1
62(m+1)

) with k ≤ 2
25

= k(D(T 0,0)+D(T
1
6n ,

1
6n )+D(T

1
6m ,

1
6m )).

If (x,y,z) = ( 1
6n ,

1
6m ,

1
6s ) with s ≥ m≥ n then:

D3 (T x,Ty,T z) = D3

(
T

1
6n ,T

1
6m ,T

1
6s

)
=

(6n−6m)2

62(n+m+1)
+

(6n−6s)2

62(n+s+1)
+

(6m−6s)2

62(m+s+1)

=
62n−2(6n+m)+62m

62(n+m+1)
+

62n−2(6n+s)+62s

62(n+s+1)
+

62m−2(6m+s)+62s

62(m+s+1)

≤ 62n +62m

62(n+m+1)
+

62n +62s

62(n+s+1)
+

62m +62s

62(m+s+1)

=
62n

62(n+m+1)
+

62m

62(n+m+1)
+

62n

62(n+s+1)
+

62s

62(n+s+1)
+

62m

62(m+s+1)
+

62s

62(m+s+1)

=
2

62(m+1)
+

2
62(n+1)

+
2

62(s+1)

≤ 25k(
1

62(n+1)
+

1
62(m+1)

+
1

62(s+1)
) with k ≤ 2

25

= k(D(T
1
6n ,

1
6n )+D(T

1
6m ,

1
6m )+D(T

1
6s ,

1
6s )).

Then, for all x,y,z ∈ X such that (x,y) ∈ E(G),and (y,z) ∈ E(G).We have:

D3 (T x,Ty,T z)≤ k(D(T x,x)+D(Ty,y)+D(T z,z)) with k ∈ [
2

25
,
1
3
[.

Then T is a G-kannan S mapping, The sequence {T nx0}= { 1
6n} is G-decreasing, D-convergent

to 0 and (0, 1
6n ) ∈ E(G), then G has the (P) Property. Thus implies that T has a fixed point 0.

Now we define a G-Chatterjea S-mapping in dislocated metric space (X ,D) as follows:
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Definition 10. Let a dislocated metric space (X ,D) with the digraph G. A mapping T : X −→ X

is said to be a G-Chatterjea S-mapping if the following conditions are satisfied:

(i) T is G-monotone, that is for all x,y ∈ X, (x,y) ∈ E (G) =⇒ (T x,Ty) ∈ E (G),

(ii) There exists k ∈ [0, 1
3) such for every x,y,z ∈V (G): (x,y) ∈ E (G)

(y,z) ∈ E (G)
=⇒ D3 (T x,Ty,T z)≤ k[D(T x,y)+D(Ty,z)+D(T z,x)].

Lemma 7. Let (X ,D) be a dislocated metric space with digraph G, T : X −→ X is a G-

Chatterjea S-mapping and suppose there exists x0 ∈ X such that (x0,T x0)∈ E (G) (respectively,

(T x0,x0) ∈ E (G)) and the complete subgraph G [θ T (x0)] is transitive then:

(1) For every n≥ 2, we have:

D3
(
T nx0,T n−1x0,T n−2x0

)
≤ δ 0β

n−2,

(2) For every for s > m > n≥ 2, we have:

D3 (T nx0,T mx0,T sx0)≤ δ 03k(
β

n−1

1−β
)

Proof. 1. For n = 2 is trivial.

Assume that n > 2. Since T is a G-Chatterjea S-mapping and
(
T n−1x0,T n−2x0

)
,(

T nx0,T n−2x0
)
,
(
T n−1x0,T n−3x0

)
∈ E (G), then:

D3
(
T nx0,T n−1x0,T n−2x0

)
≤ k[D(T nx0,T n−2x0)+D(T n−1x0,T n−3x0)+D(T n−2x0,T n−1x0)]

≤ k[2D3
(
T nx0,T n−1x0,T n−2x0

)
+D3

(
T n−1x0,T n−2x0,T n−3x0

)
].

Thus is

D3
(
T nx0,T n−1x0,T n−2x0

)
≤ k

1−2k
(D(T n−1x0,T n−2x0,T n−3x0).

By induction on n,we prove that

D3
(
T nx0,T n−1x0,T n−2x0

)
≤ (

k
1−2k

)n−2D3
(
T 2x0,T x0,x0

)
≤ δ 0β

n−2
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2. for s≥ m≥ n > 2, we have

D3 (T nx0,T mx0,T sx0)

≤ k[D(T nx0,T m−1x0)+D(T mx0,T s−1x0)+D(T sx0,T n−1x0)].

≤ k


i=m−2

∑
i=n−1

D3
(
T ix0,T i+1x0,T i+2x0

)
+

i=s−2
∑

i=m−1
D3
(
T ix0,T i+1x0,T i+2x0

)
+

i=s−3
∑

i=n
D3
(
T ix0,T i+1x0,T i+2x0

)


By using 1. We have:

D(T nx0,T mx0) ≤ D3 (T nx0,T mx0,T sx0)

≤ δ 0k(
β

n−1−β
m

1−β
+

β
m−1−β

s

1−β
+

β
n−β

s−2

1−β
)

≤ δ 0k(
β

n−1

1−β
+

β
m−1

1−β
+

β
n

1−β
).

≤ δ 0k(
β

m−1

1−β
+

2β
n−1

1−β
)

≤ δ 03k(
β

n−1

1−β
)

�

Theorem 8. Let a dislocated (X ,D) G-complete metric space endowed with a reflixive digraph

G such that V (G) = X and T : X −→ X is a G-Chatterjea S-mapping. Suppose that there exist

x0 ∈ X such that δ (D3,T,x0)<+∞, (x0,TX0)∈ E(
∼
G) and the subgraph G [θ T (x0)] is transitive,

then the sequence {T nx0} converge to some point w ∈ X .

Moreover, if one of the following conditions holds

1. T is weak continuous.

2. T is orbitally G-continuous.

3. G satisfies the Property (P) and D(x,Tw)< ∞.

Then w is a fixed point of T.

Proof. We assume that (x0,TX0) ∈ E(
∼
G). Let (m,n,s) ∈ N×N×N such that, s ≥ m ≥ n > 2.

We have (T mx0,T nx0) ∈ E(G) and (T nx0,T sx0) ∈ E(G).
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If T is G-Chatterjea S-mapping, by lemma, we get:

D3 (T nx0,T mx0,T sx0)≤ δ 03k(
β

n−1

1−β
).

For every (m,n,s) ∈ N×N×N such that s ≥ m ≥ n > 2, where β = k
1−2k ∈ [0,1[. Thus

{T nx0} is D-Cauchy sequence.

From the completeness of (X ,D) the sequence {T nx0} D-converge to some point w ∈ X .

1. Assume that T is weak continuous, then there exists a subsequente {T nqx0} such that

{T nq+1x0} D-converges to Tw when nq→+∞. using the uniqueness of the limit, we get Tw =

w.

2. Assume that T is orbitally G-continuous, since {T nx0} is D- converges to w and

(T nx0,T n+1x0) ∈ E(G), then T (T nx0)→ Tw.

3. Assume that G satisfaies the property (P) and D(x0,Tw) < +∞. Since {T nx0} is a G-

monotone increasing sequence which D-converges to w ∈ X , we have (T nx0,w) ∈ E(G) for any

n ∈ N.

If T is a G-Chatterjea S-mapping such that m≥ n > 2, then:

D3 (T nx0,T mx0,Tw) ≤ k[D(T n−1x0,T mx0)+D(T m−1x0,Tw)+D(T nx0,w)]

≤ k[δ 0(
β

n−1

1−β
)+D(T m−1x0,Tw)+D(T nx0,w)]

Since {T nx0} D-converge to w we have D3 (T nx0,T mx0,Tw)≤ kδ 0(
β

n−1

1−β
).

Taking limit superior as m→+∞ , then {T nx0} D-converges to Tw by the uniqueness of the

limit we get Tw = w. �
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