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Abstract. In this paper, we proved strong and week convergence theorem for our proposed iterative process for

class of generalized nonexpansive mappings in uniformly convex Banach space. Finally, we present a numerical

example to illustrate that our iterative process is faster than the well known iteration process appeared in the

literature, the results obtained in this paper improve, extend the results of [6], [9] and many more in this direction.
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1. INTRODUCTION

The concept of fixed points theory and its application has proven to be a vital tool in the

study of nonlinear functional analysis and it is a very useful tool in establishing the existence

and uniqueness theorems for nonlinear ordinary, partial and random differential and integral

equations in different abstract spaces.
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Throughout in this paper, we assume that X is Banach space and C be a nonempty subset of

X . Let F(T ) = {T x = x : x∈C} is denote the set of fixed point of T . Let T : C→C be mapping,

then T is said to be

(i) contraction, if ‖T x−Ty‖ ≤ k‖x− y‖, for all x,y ∈ C and k ∈ [0,1), where k is called

contraction constant.

(ii) nonexpansive, if k = 1 that is ‖T x−Ty‖ ≤ ‖x− y‖ for all x,y ∈C.

(iii) quasi-nonexpansive if ‖T x− p‖ ≤ ‖x− p‖ for all x ∈C and p ∈ F(T ).

In 1920 S. Banach [1] proved most important result in complete metric space, it state that if X is

a complete metric space and T : X→ X is contraction mapping, then T has a unique fixed point.

Banach fixed point theorem is not only proved an existence and uniqueness of fixed point but

also we will see in the proof of theorem , it provides us with a constructive procedure for getting

better and better approximations of the fixed point. This procedure is called Picard iteration.

In 1965, Browder [8], Gohde [10] and Kirk [11] independently prove that every nonexpan-

sive mapping of a closed convex and bounded subset of uniformly convex Banach space has

a fixed point . Further several other researcher have examine an amount of generalization of

nonexpansive in the few decades. In this context, we have define the following generalization

of nonexapansive mappings by various researchers as follows:

Definition 1.1. Let C be a nonempty subset of Banach Space X and T : C→C be mapping then

T is said to be

(i) mean nonexpansive [2], if there exists α,β ≥ 0 with α +β ≤ 1 such that

‖T x−Ty‖ ≤ α‖x− y‖+β‖x−Ty‖,

for all x,y ∈C,

(ii) satisfy condition (C)(Suzuki type) [3], if

1
2
‖T x− x‖ ≤ ‖x− y‖ =⇒ ‖T x−Ty‖ ≤ ‖x− y‖,

for all x,y ∈C,

(iii) satisfy condition (Cλ ) if

λ‖T x− x‖ ≤ ‖x− y‖ =⇒ ‖T x−Ty‖ ≤ ‖x− y‖,
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for all x,y ∈C,

(iv) generalized mean nonexapnsive mapping , if there exists α,β ,λ ∈ [0,1), with α +β < 1

such that for all x,y ∈C

λ‖T x− x‖ ≤ ‖x− y‖ =⇒ ‖T x−Ty‖ ≤ α‖x− y‖+β‖x−Ty‖,

(v) α-nonexpansive mapping [4] if there exists α < 1 such that for all x,y ∈C

‖T x−Ty‖2 ≤ α‖T x− y‖2 +α‖Ty− x‖2 +(1−2α)‖x− y‖2,

(vi) generalized (α,β )-nonexpansive type-1, if there exist α,β ,λ ∈ [0,1) with α ≤ β and

α +β < 1 such that for all x,y ∈C, λ‖T x−Ty‖ ≤ ‖x− y‖

‖T x−Ty‖ ≤ α‖y−T x‖+β‖x−Ty‖+(1− (α +β ))‖x− y‖.

Remark 1.1. (i) It is worth mentioning that nonexpansive mappings are continuous on

their domains but mean nonexpansive, generalized mean nonexpansive, mappings sat-

isfying condition (C), condition (Cλ ), need not be continuous. Due to this fact, these

mappings are more fascinating and applicable compare to nonexpansive mappings.

(ii) If α = β = 0 and λ = 1
2 , then the generalized (α,β )-nonexpansive type 1 mapping

satisfying the condition (C).

(iii) If α = β = 0 and λ ∈ [0,1), then the generalized (α,β )-nonexpansive type 1 mapping

satisfying condition (Cλ ).

From the above definition, we have the following facts (See proposition 3.4 [6])

(i) Every nonexpansive mapping is a generalized (α,β )-nonexpansive type 1 mapping.

(ii) Every mean nonexpansive mapping is a generalized (α,β )-nonexpansive type 1 map-

ping.

(iii) All mappings satisfying condition (C) is an (α,β )-nonexpansive type 1 mapping.

(iv) All mappings satisfying condition (Cλ ) is an (α,β )-nonexpansive type 1 mapping.

Akutsah et. al. [6] proved that the converse of above statements are not always true (See ex-

ample 3.5). In the same paper, authors [6] have proved the following fact about the generalized

(α,β )-nonexpansive mapping:
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Let C be nonempty subset of Banach Space X and T : C → C be generalized (α,β )-

nonexpansive of Type 1, with F(T ) 6= φ , then

(i) T is a quasi-nonexpansive (See proposition 3.6 [6]).

(ii) F(T ) is closed. Furthermore, if X is strictly convex and C is convex, then F(T ) is

convex (See proposition 3.7 [6]).

Beside that Akutsah et. al. established corollaries [3.8], [3.9], [3.10], [3.11], [3.12] for non-

expansive, mean nonexpansive, condition C, condition Cλ , generalised mean nonexpansive re-

spectively.

It is well known fact that Picard iteration procedure fails to approximate the fixed point for

nonexpansive mapping, for example T : [0,1]→ [0,1] defined by T x = 1− x for all x ∈ [0,1] is

nonexpansive mapping with F(T ) = 1
2 , but for initial guesses x0 6= 1

2 , Picard iteration fails to

converge to fixed point of T.

2. MAIN RESULTS

Proposition 2.1. Let C be a Nonempty subset of Banach Space X and T : C→C be generalized

(α,β )-nonexpansive type-1 mapping with F(T ) 6= φ . Then T is quasi-nonexapnsive mapping.

Lemma 2.2. Let X be uniformly convex Banach Space and 0 ≤ tn ≤ q < 1 for all n ∈ N. Let

{xn} and {yn} be two sequences of X such that limsup
n→∞

‖xn‖ ≤ r and limsup
n→∞

‖yn‖ ≤ r and

lim
n→∞
‖tnxn +(1− tn)yn)‖= c holds for some r ≥ 0. Then ‖xn− yn‖= 0.

Theorem 2.3. Let C be nonempty closed subset of Banach Space X with Opial propert and

T : C→C be a generalized (α,β )-nonexpansive type 1 mapping with λ = γ

2 , γ ∈ [0,1). If {xn}

converges weakly to x and lim
n→∞
‖xn−T xn‖= 0, then T x = x, that is I−T is demiclosed at zero,

where I is the identity mapping.

In this Section, we prove strong and week convergence theorem for generalized (α,β )-

nonexpansive mapping for an iteration defined by (2.1) in the setting of uniformly convex Ba-

nach space.
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Let C be a nonempty subset of Banach space X and T : C → C be a generalized (α,β )-

nonexpansive mapping, for each x0 ∈C, we define a sequence {xn} in iterative manner as below:

xn+1 = Tyn

yn = T ((1−βn)zn +βnT zn)

zn = T ((1−αn)xn +αnT xn),(2.1)

where {αn} and {βn} are sequences in (0,1).

Theorem 2.4. Let C be a Nonempty closed convex subset of a uniformly convex Banach space X

and T : C→C be a mapping which satisfies generalized (α,β )-nonexpansive type -1 mapping

with F(T ) 6= φ . If {xn} be a sequence defined by (2.1), then

(a) lim
n→∞
‖xn− p‖ exists for all p ∈ F(T ).

(b) lim
n→∞
‖xn−T xn‖= 0.

Proof. Let p ∈ F(T ), then by Proposition 2.1, T be a quasi-nonexpansive mapping, using (2.1),

we get

‖zn− p‖ = ‖T ((1−αn)xn +αnT xn)− p‖

≤ ‖(1−αn)xn +αnT xn− p‖

≤ (1−αn)‖xn− p‖+αn‖T xn− p‖

≤ ‖xn− p‖,(2.2)

again using (2.1), (2.2) and Proposition 2.1, we get

‖yn− p‖ = ‖T ((1−βn)zn +βnT zn)− p‖

≤ ‖(1−βn)zn +βnT zn− p‖

≤ (1−βn)‖zn− p‖+βn‖T zn− p‖

≤ ‖zn− p‖

≤ ‖xn− p‖.(2.3)
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Again using (2.1), (2.3) and Proposition 2.1, we get

‖xn+1− p‖ = ‖Tyn− p‖

≤ ‖yn− p‖

≤ ‖xn− p‖.(2.4)

This shows that {‖xn− p‖} is bounded and non-increasing for all p ∈ F(T ). Thus {xn} is

bounded and lim
n→∞
‖xn− p‖ exists, hence it complete the proof of part (a).

Proof of part (b):

From part (a), it clear that {xn} is bounded and lim
n→∞
‖xn− p‖ exists for all p∈F(T ), therefore,

we suppose that lim
n→∞
‖xn− p‖= r ≥ 0. Now two cases aeries:

Case-I If r = 0 then lim
n→∞
‖xn−T xn‖= 0 is obvious.Indeed, consequence of triangle inequality

and application of Proposition 2.1, we have

lim
n→∞
‖xn−T xn‖ ≤ lim

n→∞
‖xn− p‖+ lim

n→∞
‖T xn− p‖ ≤ 2r = 0

Case-II If r 6= 0. Now taking limsup on both side of (2.2), we get

limsup
n→∞

‖zn− p‖ ≤ limsup
n→∞

‖xn− p‖.(2.5)

From (2.1), we have

‖xn+1− p‖ ≤ ‖yn− p‖

≤ ‖T ((1−βn)zn +βnT zn)− p‖

≤ (1−βn)‖zn− p‖+βn‖T zn− p‖

≤ ‖zn− p‖,(2.6)

taking liminf on both side of (2.6), we have

liminf
n→∞

‖xn+1− p‖ ≤ liminf
n→∞

‖zn− p‖.(2.7)

Using (2.5) and (2.7), we have

lim
n→∞
‖zn− p‖= r.
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r = lim
n→∞
‖zn− p‖

≤ lim
n→∞
‖T ((1−αn)xn +T xn)− p‖

≤ lim
n→∞
‖(1−αn)xn +T xn− p‖.

Using Lemma 2.2, we have

lim
n→∞
‖xn−T xn‖ = 0.

The proof is complete. �

Theorem 2.5. Let X be a uniformly convex Banach space which satisfies the Opial condition

and C be a nonempty closed convex subset of X. Let T : C → C be a generalized (α,β )-

nonexpansive type 1 mapping such that λ = γ

2 ∈ [0, 1
2 ] with F(T ) 6= φ and {xn} be a sequence

defined in (2.1). Then {xn} converges weakly to a fixed point of T .

Proof. It has been established in Theorem 2.4 that lim
n→∞
‖xn− p‖ exists and sequence {xn} is

bounded. Now X is uniformly convex Banach space, we Have a subsequence {xni} of {xn} that

converges weakly in C. Now we established that {xn} has a unique weak sub-sequential limit in

F(T ). Let x and y be weak limits of a subsequence {xni} and {xn j} of {xn} respectively. Then

by Theorem 2.4, we have lim
n→∞
‖xn−T xn‖ = 0 and I−T is demiclosed with respect to zero by

Theorem 2.3 we have T x = x with same argument we have Ty = y. From Theorem 2.4, we have

lim
n→∞
‖xn− p‖ exists. Now suppose that by the Opial condition

lim
n→∞
‖xn− p‖ = lim

k→∞
‖xnk− x‖

< lim
k→∞
‖xnk− y‖

= lim
n→∞
‖xn− y‖

= lim
j→∞
‖xn j − y‖

< lim
j→∞
‖xn j − x‖

= lim
n→∞
‖xn− x‖.

This is contradiction, so x = y. Hence {xn} converges weakly to a fixed point of T. Hence, it

complete the proof of the theorem. �
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Theorem 2.6. ł Let C be a nonempty closed convex subset of a uniformly convex Banach

space X. Let T be a generalized (α,β )-nonexpansive type 1 mapping on C, {xn} be defined

by (2.2) and F(T ) 6= φ . Then, {xn} converges strongly to a point of F(T) if and only if

liminf
n→∞

d(xn,F(T )) = 0, where d(x,F(T )) = inf{‖x− p‖ : p ∈ F(T )}.

Proof. Let {xn} converges to p a fixed point of T. Then lim
n→∞

d(xn, p) = 0, and since 0 ≤

d(xn,F(T ))≤ d(xn, p), it follows that lim
n→∞

d(xn,F(T )) = 0. Therefore, liminf
n→∞

d(xn,F(T )) = 0.

Conversaly, suppose that liminfn→∞ d(xn,F(T )) = 0. It follows from Theorem 2.4 that

limn→∞ ||xn− p|| exists and that limn→∞ d(xn,F(T )) exists for all p ∈ F(T ). By our hypoth-

esis, liminfn→∞ d(xn,F(T )) = 0. Suppose {xnk} is any arbitrary subsequence of {xn} and {rk}

is a sequence in F(T) such that for all n ∈ N,

‖xnk− rk‖<
1
2k ,

it follows that

‖xn+1− rk‖ ≤ ‖xn− rk‖<
1
2k ,

hence

‖rk+1− rk‖ ≤ ‖rk+1− xn+1‖+‖xn+1− rk‖

<
1

2(k+1)
+

1
2k =

1
2k−1 .

Now, we recall the definition of condition I introduced by [12]. �

Definition 2.7. Let C be a subset of a Banach Space X . A mapping T : C→C is said to satisfy

condition (I) if there exists a nondecreasing function f : [0,∞)→ [0,∞) such that f (0) = 0 and

f (t) > 0 for all t ∈ (0,∞) and that ‖x−T x‖ ≥ f (d(x,F(T ))) for all x ∈ C, where d(x,F(T ))

denotes distance from x to F(T ).

Theorem 2.8. Let C be a nonempty closed convex subset of a uniformly convex banch space

X. Let T be a generalised (α,β )-nonexpansive type 1 mapping, {xn} be defined by (2.1) and

F(T ) 6= φ . Let T satisfy condition (I). Then, {xn} converges strongly to a fixed point of T.



APPROXIMATION OF FIXED POINT VIA NEW ITERATIVE PROCESS 9

Proof. Using 2.4, we obtain that

lim
n→∞
‖xn−T xn‖= 0.

Using the fact that for all x ∈C,

0 ≤ lim
n→∞

f (d(xn,F(T )))

≤ lim
n→∞
‖xn−T xn‖= 0.

and that

lim
n→∞

f (d(xn,F(T ))) = 0.

Since, f is nondecreasing with f (0) = 0 and f (t) > 0 for t ∈ (0,∞), it follows that

lim
n→∞

d(xn,F(T )) = 0. Thus using Theorem 2.6, we obtain that {xn} converges strongly to

p ∈ F(T ). �

3. NUMERICAL EXAMPLE

Define a mapping T : [0,1]→ [0,1] as

(3.1) T (x) =


1− x if x ∈ [0, 1

8),

x+7
8

if x ∈ [1
8 ,1].

In [6] it is proved that T is a generalised (α,β )-nonexpansive mapping since it satisfy condi-

tion (C).

In the same manner, we numerically compare our new iteration process defined by 2.1 with

generalised M-iteration process.

Case I: Taking, αn =
1√

n3+4
,βn =

2√
n3+5

and x0 = 0.5.

Case II: Taking, αn =
1

202 ,βn =
1

300 and x0 = 0.8.
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FIGURE 1. Graph.

FIGURE 2. Graph.
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4. CONCLUSION

We conclude that via numerical example our iterative process is faster than the well known

iteration appeared in the literature and our results obtained in this paper improve, extend the

results of [6], [9] and many more in this direction.
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