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Abstract. In this article, a wider class of set-valued mappings is introduced, and a fixed point theorem for this new

mapping in a metric space is proved. Then, we derive a number of implications from our main finding. We also

present two non-trivial examples to support our primary theorem. Moreover, we look into fixed point set stability

for set-valued mappings and well-posedness. Finally, we present an application to integral inclusion problem.

Keywords: metric space; set-valued mappings; fixed points; stability.

2020 AMS Subject Classification: Primary 47H10; Secondary 54H25.

1. INTRODUCTION AND PRELIMINARIES

One of the most significant results in metric fixed point theory is the Banach contraction the-

orem (BCT). In many branches of science and technology, it has been extensively employed.

Numerous mathematicians have expanded and generalized the BCT in different ways and set-

tings (cf. [4, 11, 15, 17, 14, 18] and reference thereof). The BCT was extended to set-valued

mappings by Nadler Jr. [11] in 1969 (see Theorem 1.1). Nadler’s conclusion was expanded

upon in 1972 by Ciric [3] to a larger class of set-valued mappings (see Theorem 1.2). This
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study examines a broader class of set-valued mappings and derives certain fixed point con-

clusions. Some illustrative examples support our findings. We also investigate fixed point set

stability for set-valued mappings.

We recollect some notations, definitions, and findings from the literature [3, 11, 17]. Throughout

this paper, (M ,d) denotes a metric space, CB(M ) the collection of all nonempty closed and

bounded subsets of M and C(M ) the collection of all nonempty compact subsets of M . As

seen below, the Hausdorff metric H induced by d is

H (A,B) = max

{
sup
α∈A

D(α,B), sup
β∈B

D(β ,A)

}
,

for all A,B ∈CB(M ), where D(α,B) = inf
β∈B

d(α,β ). Let ξ : M→CB(M ) be a set-valued (or

multi-valued) mapping. A point z ∈M is said to be a fixed point of ξ if z ∈ ξ (z) and strict fixed

point of ξ if {z} = ξ (z). F(ξ ) and SF(ξ ) stand for the set of all fixed points and set of strict

fixed point of ξ , respectively.

Theorem 1.1. [11]. Consider (M ,d) is a complete metric space and ξ : M→CB(M ) a set-

valued mapping such that for all α,β ∈M,

(1.1) H (ξ (α),ξ (β ))≤ k d(α,β ),

where k ∈ [0,1). Then ξ has a fixed point.

Theorem 1.2. [3]. Suppose (M ,d) is a complete metric space and ξ : M → CB(M ) a set-

valued mapping such that for all α,β ∈M,

(1.2) H (ξ (α),ξ (β ))≤ k m(α,β ),

where k as in Theorem 1.1 and

m(α,β ) = max
{

d(α,β ),D(α,ξ (α)),D(β ,ξ (β )),
D(α,ξ (β ))+D(β ,ξ (α))

2

}
.

Then ξ has a fixed point.

Definition 1.3. [14]. Let η : [0,∞)→ [0,∞) is such that η(t)< t for all t > 0, and limsup
s→t+

η(s)<

t.
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2. MAIN RESULTS

Theorem 2.1. Suppose (M ,d) is a complete metric space and ξ : M→CB(M ) a set-valued

mapping such that for all α,β ∈M,

(2.1)
1
2
D(α,ξ (α))≤ d(α,β ) implies H (ξ (α),ξ (β ))≤ η(m(α,β )),

where m(α,β ) is as in Theorem 1.2 and η is as in Definition 1.3.

Then ξ has a fixed point.

Proof. Let α1 ∈M and α2 ∈ ξ (α1). Since 1
2D(α1,ξ (α1)) ≤ D(α1,ξ (α1)) ≤ d(α1,α2) by

(2.1), we have

D(α2,ξ (α2)) ≤ H (ξ (α1),ξ (α2))

≤ η

(
max

{
d(α1,α2),D(α1,ξ (α1)),D(α2,ξ (α2)),

D(α1,ξ (α2))+0
2

})
< max

{
d(α1,α2),D(α2,ξ (α2)),

d(α1,α2)+D(α2,ξ (α2))

2

}
.

This implies D(α2,ξ (α2))< d(α1,α2). So there exists α3 ∈ ξ (α2) such that

d(α2,α3)< d(α1,α2).

Continuing this way, we can construct a sequence (αn) in M such that αn+1 ∈ ξ (αn) and

dn+1 < dn, where dn := d(αn,αn+1). This implies that

dn+1 ≤ η(dn)< dn.

It is evident that the sequences (dn) and (η(dn)) are bounded below and monotone decreasing.

Therefore both the real sequences converge. A standard argument shows that lim
n→∞

dn = 0 and

the sequence (αn) is Cauchy. The completeness of M implies that (αn) converges to some

point in z ∈M . Now, we show that

(2.2) either
1
2

d(αn,αn+1)≤ d(αn,z) or
1
2

d(αn+1,αn+2)≤ d(αn+1,z),

for each n ∈ N. By inference and contradiction, we assume that

1
2

d(αn,αn+1)> d(αn,z) and
1
2

d(αn+1,αn+2)> d(αn+1,z)
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for each n ∈ N. As a result of the triangle inequality, we have

d(αn,αn+1)≤ d(αn,z)+d(z,αn+1)

<
1
2

d(αn,αn+1)+
1
2

d(αn+1,αn+2)

<
1
2

d(αn,αn+1)+
1
2

d(αn,αn+1) = d(αn,αn+1).

This contradicts itself. The inequality (2.2) is valid for n ∈ N. In the first scenario,
1
2
D(αn,ξ (αn))≤

1
2

d(αn,αn+1)≤ d(αn,z) by (2.1), we have

D(αn+1,ξ (z))≤H (ξ (αn),ξ (z))≤ η (m(αn,z)) .

We obtain by adding n→ ∞,

D(z,ξ (z))≤ lim
n→∞

η(m(αn,z)).

Also lim
n→∞

m(αn,z) = D(z,ξ (z)). Let λ = D(z,ξ (z)). Then by limsup
s→t+

η(s)< t for all t > 0, we

obtain

λ ≤ lim
n→∞

η(m(αn,z))≤ lim
δ→+0

sup
s∈(λ ,λ+δ )

η(s)< λ .

Therefore, unless D(z,ξ (z)) = 0, is a contradiction. This suggests that z ∈ ξ (z). In the other

scenario, we can conclude that z ∈ ξ (z). �

If we replace m(α,β ) = max{d(α,β ),d(α,ξ (α)),d(β ,ξ (β ))} in Theorem 2.1 then we get

the following result.

Corollary 2.2. Assuming that (M ,d) is a complete metric space and ξ : M→CB(M ) a set-

valued mapping such that

1
2
D(α,ξ (α))≤ d(α,β ) implies H (ξ (α),ξ (β ))≤η(max{d(α,β ),d(α,ξ (α)),d(β ,ξ (β ))}).

for all α,β ∈M , where η is as in Definition 1.3. Then ξ has a fixed point.

Similarly, if we replace m(α,β ) = d(α,β ) in Theorem 2.1 then we get the following result.
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Corollary 2.3. Assuming that (M ,d) is a complete metric space and ξ : M→CB(M ) a set-

valued mapping such that

1
2
D(α,ξ (α))≤ d(α,β ) implies H (ξ (α),ξ (β ))≤ η(d(α,β )),

for all α,β ∈M , where η is as in Definition 1.3. Then ξ has a fixed point.

Corollary 2.4. Let (M ,d) be a complete metric space and ξ : M → CB(M ) a set-valued

mapping such that

H (ξ (α),ξ (β ))≤ η(m(α,β )),

for all α,β ∈M , η is as in Definition 1.3. Then ξ has a fixed point.

Corollary 2.5. Theorem 1.2.

Proof. It comes from Corollary 2.4, when we take η(t) = kt with k ∈ [0,1). �

Example 2.6. Let M = {1,2,3,4} and d is the metric on M defined by

d(α,α) = 0,d(α,β ) = d(β ,α), d(1,2) = d(1,3) = d(1,4) = 1,

d(2,3) = d(2,4) = d(3,4) =
3
2
.

Then (M ,d) is a complete metric space. Define η : [0,∞)→ [0,∞) and ξ : M→CB(M ) by

η(t) =


t2

2 , if t ≤ 1,

t− 1
4 , otherwise;

ξ (α) =


{1}, if α ∈ {1,2,4},

{2,4}, if α = 3.

We consider the followings cases.

Case 1: α,β ∈ {1,2,4}. Then

H (ξ (α),ξ (β )) = 0≤ η(d(α,β )).

Case 2: α = 1, β = 3. Then

H (ξ (1),ξ (3)) = H ({1},{2,4}) = 1 <
5
4
= η(D(3,ξ (3))).

Case 3: α = 2, β = 3. Then

H (ξ (2),ξ (3)) = 1 <
5
4
= η(d(2,3)).
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Case 4: α = 3, β = 4. Then

H (ξ (3),ξ (4)) = 1 <
5
4
= η(d(3,4)).

Thus in all the cases, H (ξ (α),ξ (β )) ≤ η(m(α,β )), and (2.1) is satisfied. Further, all the

conditions of Theorem 2.1 are satisfied and 1 ∈ ξ (1)⊂M is a fixed point of ξ .

Example 2.7. Let M = [−2,6] and d the usual metric M . Then (M ,d) is a complete metric

space. Define η : [0,∞)→ [0,∞) and ξ : M→CB(M ) by

η(t) =


t2

2 , if t ≤ 1,

t− 1
3 , otherwise;

ξ (α) =


{

α

3 ,0
}
, if α < 0,[

0, α

3

]
, if α ≥ 0.

We consider the followings cases.

Case 1: α,β < 0. Then

H (ξ (α),ξ (β )) = H
({

α

3
,0
}
,

{
β

3
,0
})

= max
{∣∣∣∣α3 − β

3

∣∣∣∣ , ∣∣∣α3 ∣∣∣ ,
∣∣∣∣β3
∣∣∣∣}

≤ η (max{d(α,β ),D(α,ξ (α)),D(β ,ξ (β ))}) .

Case 2: α < 0, β > 0. Then

H (ξ (α),ξ (β )) = H
({

α

3
,0
}
,

[
0,

β

3

])
= max

{∣∣∣α
3

∣∣∣ , ∣∣∣∣β3
∣∣∣∣}

≤ η(max{D(α,ξ (α)),D(β ,ξ (β ))}).

Case 3: α,β ≥ 0. Then

H (ξ (α),ξ (β )) = H
([

0,
α

3

]
,

[
0,

β

3

])
=

∣∣∣∣α3 − β

3

∣∣∣∣≤ |α−β |.

Thus in all the cases, H (ξ (α),ξ (β )) ≤ η(m(α,β )), and (2.1) is satisfied. Further, all the

conditions of Theorem 2.1 are satisfied and 0 ∈ ξ (0)⊂M is a fixed point of ξ .
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3. STABILITY OF FIXED POINT SETS AND WELL-POSEDNESS

The idea of stability is connected to a system’s limiting characteristics. The stability of fixed

points describes the relationship between a set of mappings’ convergence and their fixed points

[1, 2, 5, 6, 8, 9, 10, 12, 16]. The stability of the fixed point sets of the set-valued mappings is

covered in this section. We start with the next lemma.

Lemma 3.1. [11]. If (M ,d) is metric space and B ∈ C(X) then for every α ∈ X there exists

β ∈ B such that d(α,β ) = D(α,B).

Theorem 3.2. Let (M ,d) be a complete metric space. Assume that ξ j : M→C(M ) ( j∈{1,2})

are two set-valued mappings satisfying (2.1) and
∞

∑
k=1

ηk(t)< ∞ for all t > 0. Then

(a): F(ξ j) 6= /0 ( j ∈ {1,2}).

(b): H (F(ξ1),F(ξ2))≤Ψ(L), where L = sup
α∈M

H (ξ1(α),ξ2(α)) and Ψ(L) =
∞

∑
k=1

ηk(L).

Proof. Theorem 2.1 guaranties F(ξ j) 6= /0 ( j ∈ {1,2}) and (a) is proved. Next, suppose z1 ∈

F(ξ1), that is, z1 ∈ ξ1(z1). By Lemma 3.1 there exists a z2 ∈ ξ2(z1) such that

(3.1) d(z1,z2) = D(z1,ξ2(z1)).

Again by Lemma 3.1 there exists a z3 ∈ ξ2(z2) such that

d(z2,z3) = D(z2,ξ2(z2)).

Continuing this way and following proof of Theorem 2.1, we are able to create a sequence (zn)

so that

(3.2) zn+1 ∈ ξ2(zn) and d(zn+1,zn+2)≤ η(d(zn,zn+1))≤ ·· · ≤ η
n(d(z1,z2)).

We establish that the sequence (zn) is Cauchy by means of the Theorem 2.1’s proof. Conse-

quently, it converges to a point w ∈M. It may also be demonstrated that w is a fixed point of ξ .

Now, using (3.1) and the specification of L,

(3.3) d(z1,z2) = D(z1,ξ2(z1))≤H (ξ1(z1),ξ2(z2))≤M = sup
α∈M

H (ξ1(α),ξ2(α)).
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Using the triangle inequality and (3.2), we have

d(z1,w)≤
n+1

∑
k=1

d(zi,zi+1)+d(zn+2,w)≤
n

∑
k=1

η
k(d(z1,z2))+d(zn+2,w).

Making n→ ∞ and using (3.3), we get

d(z1,w)≤
∞

∑
k=1

η
k(d(z1,z2))+d(zn+2,w)≤

∞

∑
k=1

η
k(L) = Ψ(L).

Therefore for given z1 ∈ F(ξ1), we have w∈ F(ξ2) such that d(z1,w)≤Ψ(L). Similarly, we can

prove that for given w1 ∈ F(ξ2), we have u ∈ F(ξ1) such d(w1,u) ≤ Ψ(L). Combining above

two, gives (b). �

Lemma 3.3. Assume that (M ,d) is a complete metric space and ξn : M→ CB(M ) (n ∈ N)

be a sequence of set-valued mappings. Let (ξn) converges uniformly ξ : M→CB(M ) and for

n ∈ N each ξn satisfies all the conditions of Theorem 2.1. Then ξ also satisfies (2.1) and has a

fixed point in M.

Proof. Choose α ∈M and β ∈ ξ (α) arbitrarily. Since each ξn for n ∈N satisfies (2.1), we have

1
2
D(α,ξn(α))≤ d(α,β ) implies H (ξn(α),ξn(β ))≤ η(mn(α,β ))

for all α,β ∈M, where

mn(α,β ) = max
{

d(α,β ),D(α,ξn(α)),D(β ,ξn(β )),
D(α,ξn(β ))+D(β ,ξn(α))

2

}
.

For ξn→ ξ uniformly, making n→ ∞ and arguing same as in the proof of Theorem 2.1, we get

1
2
D(α,ξ (α)))≤ d(α,β ) implies H (ξ (α),ξ (β ))≤ η(m(α,β ))

for all α,β ∈M, where m(α,β ) is as in Theorem 2.1. So, ξ satisfies (3.1). Since X is complete

and ξ satisfies (3.1), ξ has a fixed point in M. �

Theorem 3.4. Suppose (M ,d) is a complete metric space. Let ξn : M→CB(M ) (n ∈ N) be

a sequence of set-valued mappings. Let ξn converges uniformly ξ : M→CB(M ). Suppose for

n ∈ N each ξn satisfies all the conditions of Theorem 2.1. Then F(ξn) 6= /0 for all n ∈ N and

F(ξ ) 6= /0.

Moreover, if lim
t→0

Ψ(t) = 0, where Ψ(t) =
∞

∑
k=1

ηk(t) then lim
n→∞

H (F(ξn),F(ξ )) = 0.
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Proof. By Lemma 3.3, F(ξn) 6= /0 for all n ∈ N and F(ξ ) 6= /0. Suppose Ln =

sup
α∈M

H (ξn(α),ξ (α)). For (ξn) is uniformly convergent to ξ , we get

lim
n→∞

sup
α∈M

H (ξn(α),ξ (α)) = 0.

From Theorem 3.2, we have

H (Fn(ξ ),F(ξ ))≤Ψ(Ln) for all n ∈ N.

Further, lim
t→0

Ψ(t) = 0 implies

lim
n→∞

H (Fn(ξ ),F(ξ ))≤ lim
n→∞

Ψ(Ln) = 0.

Therefore sets of fixed points of ξn are stable. �

Now we show that fixed point problem is well-posed. We begin with the following defini-

tions.

Definition 3.5. [13]. Assume that (M ,d) is a metric space and ξ : M →CB(M) a set-valued

mappings. We say fixed point problem is well-posed for ξ with respect to D if

(i): SF(ξ ) = {z};

(ii): for any (αn) in M with lim
n→∞

D(αn,ξ (αn)) = 0, we have lim
n→∞

d(αn,z) = 0.

Definition 3.6. [13]. Assume that (M ,d) is a metric space and ξ : M →CB(M) a set-valued

mappings. We say fixed point problem is well-posed for ξ with respect to H if

(i): SF(ξ ) = {z};

(ii): for any (αn) in M with lim
n→∞

H (αn,ξ (αn)) = 0, we have lim
n→∞

d(αn,z) = 0.

It is easy to prove that if F(ξ ) = SF(ξ ) and fixed point problem is well-posed for ξ with

respect to D then it is well-posed with respect to H .

Theorem 3.7. Suppose all the conditions of Corollary 2.2 are satisfied with SF(ξ ) 6= /0. Then

(a): F(ξ ) = SF(ξ ) = {z}.

(b): The fixed point problem is well-posed for ξ with respect to H .
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Proof. (a) Let u ∈ SFξ and z ∈ F(ξ ) such that u 6= z. Then 0 = 1
2D(u,ξ (u))< d(u,z). Thus by

(2.1), we have

H (ξ (u),ξ (z)) ≤ ϕ(max{d(u,z),D(u,ξ (u)),D(z,ξ (z))})

= ϕ(d(u,z))< d(u,z).

Therefore, we have

d(u,z) = D(z,ξ (u))≤H (ξ (u),ξ (z))< d(u,z),

which is a contradiction unless u = z.

(b) Suppose (αn) is a sequence in M such that lim
n→∞

D(αn,ξ (αn)) = 0. We prove that

lim
n→∞

d(αn,z) = 0. Assume by contraction lim
n→∞

d(αn,z) 6= 0. Then there exists ε > 0 such that

ε < d(αn,z) for each n ∈ N. Since lim
n→∞

D(αn,ξ (αn)) = 0, there exists n(ε) ∈ N such that

D(αn,ξ (αn)) < ε for each n > n(ε). Now it is evident that 1
2D(αn,ξ (αn)) < ε < d(αn,z).

Using (2.1) for each , we get

d(αn,z) = D(αn,ξ (z))

≤ D(αn,ξ (αn))+H (ξ (αn),ξ (z))

≤ D(αn,ξ (αn))+ϕ(max{d(αn,z),D(αn,ξ (αn)),D(z,ξ (z))})

= D(αn,ξ (αn))+ϕ(max{d(αn,z),D(αn,ξ (αn))}).

Now on taking n→ ∞ and using property of ϕ, we get

ε < d(αn,z)≤ ϕ(d(αn,z))< ε,

a contradiction. Therefore lim
n→∞

d(αn,z) = 0, and the fixed point problem is well-posed for ξ

with respect to H . �

4. AN APPLICATION TO INTEGRAL INCLUSION PROBLEM

Now, we discuss an application of Theorem 2.1 to integral inclusion of Volterra-type. Let the

space of all continuous real valued functions be denoted by X = K ([u,v],R) and

ρ(α,β ) = sup
p∈[u,v]

|α(p)−β (p)|.
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We consider the integral inclusion

(4.1) α(p) ∈ f (p)+

p∫
u

G (p,q,α(q))ds, p ∈ [u,v],

where G : [u,v]× [u,v]×R→CB(R). Assuming that Gα(p,q) = G (p,q,α(q)) is a lower semi-

continuous and for f ∈X , where (p,q) ∈ [u,v]× [u,v], α ∈ R.

Define P : X →C(X ) as follows

(4.2) P(α(p)) =

α(p) ∈X : α(p) ∈ f (p)+

p∫
u

G (p,q,α(q))ds, p ∈ [u,v]


for all α ∈X .

A continuous mapping f : X → X is a selection for P if f (α) ∈ P(α). The Michael’s

selection theorem [7] ensures existence of continuous operator kα : [u,v]× [u,v]→ R such that

kα(p,q) ∈ G (p,q,α(q)) for p, q ∈ [u,v] and α ∈X . Thus

f (p)+

p∫
u

kα(p,q)ds ∈ P(α(p)) and P(α(p)) 6= /0.

Theorem 4.1. Suppose P : X →C(X ) is defined by (4.2) such that

1
2

d(α(q),P(α(q)))≤ d(α(q),β (q))

implies

(4.3) H (G (p,q,α(q)),G (p,q,β (q)))≤ ϕ(m(α(q),β (q)))

for all q, p ∈ [u,v], α,β ∈X , where

m(α(q),β (q)) = max{d(α(q),β (q)),d(α(q),P(α(q))),d(β (q),P(β (q))),

1
2
[d(α(q),P(β (q)))+d(β (q),P(α(q)))]}.

Then the integral inclusion (4.1) has a solution.

Proof. First, we show that P satisfies condition (2.1) of Theorem 2.1. Let α ∈X and α(p) ∈

P(α). By Michael’s selection theorem, we get kα(p,q) ∈ Gα(p,q) for p,q ∈ [u,v] such that

α(p) = f (p)+

p∫
u

kα(p,q)ds.
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For β ∈ P(α),

1
2

d(α(q),P(α(q)))≤ d(α(q),β (q)).

By (4.3), there exists r(p,q) ∈ Gβ (p,q) such that

|kα(p,q)− r(p,q)| ≤ ϕ (m(α(q),β (q))) ,

for p,q ∈ [u,v]. For p,q ∈ [u,v] define a set-valued operator Q by

Q(p,q) = Gβ (p,q)∩{β ∈ R : |kα(p,q)−β | ≤ ϕ (m(α(q),β (q)))} .

The lower semi-continuity of Q gives a continuous mapping kβ (p,q) ∈ Q(p,q) for p,q ∈ [u,v]

such that

β (p) = f (p)+

p∫
u

kβ (p,q)ds ∈ P(β (q)) for p ∈ [u,v].

For any p ∈ [u,v], we get

d(α(p),β (p)) = sup
p∈[u,v]

|
p∫

u

kα(p,q)ds−
p∫

u

kβ (p,q)ds| ≤
p∫

u

sup
p∈[u,v]

|kα(p,q)− kβ (p,q)|ds

≤ ϕ(m(α(q),β (q))).

If we interchange the role of α and β then we get

H (P(α),P(β ))≤ ϕ(m(α(q),β (q))).

Therefore all the conditions of Theorem 2.1 are satisfied. Thus the inclusion problem (4.1) has

a solution in X . �
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[13] A. Petruşel, I.A. Rus, J.C. Yao, Well-posedness in the generalized sense of the fixed point problems for

multivalued operators, Taiwan. J. Math. 11 (2007), 903–914. https://doi.org/10.11650/twjm/1500404764.

[14] S. Ri, A new fixed point theorem in the fractal space, Indag. Math. 27 (2016), 85–93. https://doi.org/10.101

6/j.indag.2015.07.006.

[15] B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226

(1977), 257–290.

[16] C. Robinson, Dynamical systems: stability, symbolic dynamics and chaos, CRC Press, 2nd edition, 1998.

[17] S.L. Singh, S.N. Mishra, R. Pant, New fixed point theorems for asymptotically regular multi-valued maps,

Nonlinear Anal.: Theory, Methods Appl. 71 (2009), 3299–3304. https://doi.org/10.1016/j.na.2009.01.212.

https://cir.nii.ac.jp/crid/1571698601168833152
https://cir.nii.ac.jp/crid/1571698601168833152
https://doi.org/10.1016/j.na.2007.08.064
https://doi.org/10.1016/j.na.2007.08.064
https://doi.org/10.1016/0022-247x(85)90306-3
https://doi.org/10.1016/0022-247x(76)90212-2
https://doi.org/10.2307/1969603
https://doi.org/10.1016/j.chaos.2012.04.001
https://doi.org/10.1016/j.na.2008.05.005
https://doi.org/10.2140/pjm.1968.27.579
https://doi.org/10.2140/pjm.1968.27.579
https://doi.org/10.2298/fil1809297p
https://doi.org/10.11650/twjm/1500404764
https://doi.org/10.1016/j.indag.2015.07.006
https://doi.org/10.1016/j.indag.2015.07.006
https://doi.org/10.1016/j.na.2009.01.212


14 RAJENDRA PANT

[18] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer.

Math. Soc. 136 (2008), 1861–1869.


	1. Introduction and Preliminaries
	2. Main Results
	3. Stability of Fixed Point Sets and Well-Posedness
	4. An Application to Integral Inclusion Problem
	Acknowledgement
	Conflict of Interests
	References

