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Abstract. This article provides an introduction to the topics of proximal pointwise tricyclic contraction (PPTC)

and best proximity point (BPP) existence in a weakly compact convex subset triad.
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In the year 1970, Kirk [5] introduced the notion the pointwise contraction mappings and

established the existence of a fixed point for a pointwise contraction mapping on a weak* com-

pact convex subset of a conjugate Banach space. Back in 2003 [3] Kirk, W.A., Srinivasan, P.S.,

and Veeramani, P. introduced the class of cyclical contractive mapping and proved fixed point
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results for this class of mappings. In 2019 J. Anuradha and P. Veeramani. [1] introduced the

notion of proximal pointwise contraction and studied the existence of the best proximity point

on a pair of weakly compact convex subsets of a Banach space. In [4] introduced the notion of

tricyclic contractions mapping and used it to study the existence of the best proximity point for

a tricyclic contractions mapping. we introduce a class of mappings called pointwise tricyclic

contractions on X ∪Y ∪Z

1. INTRODUCTION

In this section, we give some basic definitions and concepts that are useful and related to the

context of our results.

Let (E,d) be a metric space and let X ,Y and Z be nonempty subsets of E.

A mapping T : X ∪Y ∪Z→ X ∪Y ∪Z is said to be a tricyclic mapping provided that

(1) T (X)⊆ Y, T (Y )⊆ Z and T (Z)⊆ X

In [4], M.Aamri, T. Sabar, and A.Bassou established new fixed point theorems

Theorem 1. Suppose that (X ,Y,Z) is a nonempty and closed triad of subsets of a complete

metric space (E,d) and T : X ∪Y ∪Z→ X ∪Y ∪Z is tricyclic mapping for which there exists

k ∈ ]0,1[ such that ∆(T x,Ty,T z)≤ k∆(x,y;z) for all (x,y,z) ∈ X×Y ×Z.

where the mapping

∆ : X×Y ×Z→ [0,+∞)(2)

∆(x,y;z) → d (x,y)+d (y,z)+d (z,x)(3)

Then X ∩Y ∩Z is non empty and T has a unique fixed point in X ∩Y ∩Z.

Definition 2. Let (E,d) be a metric space and let X,Y and Z be nonempty subsets of E.

Let T : X ∪Y ∪Z→ X ∪Y ∪Z be a tricyclic mapping. A point x ∈ X ∪Y ∪Z is said to be the

best proximity point for T if

(4) ∆
(
x,T x,T 2x

)
= δ (X ,Y,Z)
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Definition 3. Let (X ,Y,Z) be a nonempty triad subsets of a metric space (E,∆). Let T : X ∪

Y ∪Z→ X ∪Y ∪Z be a tricyclic mapping. Then a sequence (xn) in X ∪Y ∪Z is said to be an

approximate best proximity point sequence for T if

(5) ∆
(
xn,T xn,T 2xn

)
→ δ (X ,Y,Z) as n→ ∞

2. PRELIMINARIES AND MAIN RESULTS

The concept of proximal pointwise tricyclic contraction (PPTC) is an extension of the point-

wise cyclic contraction concept introduced in Theorem 2.1 of a paper referenced as [1]. The

PPTC concept is used to establish the existence of best proximity points in weakly compact

convex triads of a Banach space.

Definition 4. Let (X ,Y,Z) be a nonempty triad of subsets of a metric space (E,d). A mapping

T : X ∪Y ∪Z→ X ∪Y ∪Z is said to be a pointwise tricyclic contraction if

it satisfies

i) T (X)⊆ Y, T (Y )⊆ Z and T (Z)⊆ X

ii) For each (x,y,z) ∈ X×Y ×C there exists α (x) ,α (y) ,α (z) in (0,1) such that

∆(T x,Ty,T z) ≤ α (x)∆(x,y;z)+(1−α (x))∆(x,y;z) for (y,z) ∈ Y ×Z

∆(T x,Ty,T z) ≤ α (y)∆(x,y;z)+(1−α (y))∆(x,y;z) for (x,z) ∈ X×Z

∆(T x,Ty,T z) ≤ α (z)∆(x,y;z)+(1−α (z))∆(x,y;z) for (x,y) ∈ X×Y

Definition 5. Let X, Y and Z be nonempty subsets of a normed linear space is said to be a

proximal triad if for each (x,y,z) ∈ X×Y ×Z there exists (x′,y′,z′) ∈ X×Y ×Z such that

∆
(
x′,y,z

)
= ∆(x,y′,z) = ∆(x,y,z′) = δ (X ,Y,Z)

In [2], Eldred et al. showed that a metric space with proximal normal structure has the

property that any relatively nonexpansive mapping on the space has a best proximity point,

which is a point that is closest to the fixed point set of the mapping in a certain sense. This

result has important implications for the study of fixed point theory and optimization, as it

provides a way to ensure the existence of a ”best” solution to certain problems.
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Definition 6. A convex triad (K1;K2;K3) in a Banach space is said to have proximal triad nor-

mal structure if for any closed bounded and convex proximal triad (H1;H2;H3)⊆ (K1;K2;K3) for

which ∆(H1;H2;H3)=∆(K1;K2;K3) and δ (H1;H2;H3)>∆(H1;H2;H3) there exists (x1,x2,x3)∈

H1×H2×H3 such that

δ (x1;H2;H3)< δ (H1;H2;H3) , δ (x2,H1,H3)< δ (H1;H2;H3) ,δ (x3,H1,H2)< δ (H1;H2;H3)

Then x1, is a nondiametral point of H1, and x2, is a nondiametral point of H2, and x3, is a

nondiametral point of H3,

The triad (x,y,z) ∈ X ×Y ×Z is said to be proximal in (X ,Y,Z) if ∆(x,y,z) = δ (X ,Y,Z) we

set

X0 = {x1 ∈ X : ∆(x1,y2,z3) = δ (X ,Y,Z) , for some (y2,z3) ∈ Y ×Z }

Y0 = {y1 ∈ Y : ∆(x3,y1,z2) = δ (X ,Y,Z) , for some (x3,z2) ∈ X×Z}

Z0 = {z1 ∈ Z : ∆(x2,y3,z1) = δ (X ,Y,Z) , for some (x2,y3) ∈ X×Y }

Clearly, δ (X0,Y0,Z0) = δ (X ,Y,Z)

Theorem 7. Let X, Y and Z be nonempty weakly compact convex subsets in a Banach space

and T is a pointwise tricyclic contraction mapping . Then T has a best proximity point.

Proof. We saw that (X0,Y0,Z0) is a nonempty closed convex triad satisfying

δ (X0,Y0,Z0) = δ (X ,Y,Z) ,T X0 ⊂ Y0,TY0 ⊂ Z0 and T Z0 ⊂ X0.

Let

Γ =

K ⊂ X ∪Y ∪Z

/ K∩X0,K∩Y0 and K∩Z0 are nonempty closed and convex subests of X

T (K∩X0)⊂ K∩Y0, T (K∩Y0)⊂ K∩Z0 ,T (K∩Z0)⊂ K∩X0 and

δ (K∩X0,K∩Y0,K∩Z0) = δ (X ,Y,Z)


is nonempty as X0∪Y0∪Z0 ∈ Γ.

So, applying Zorn’s lemma has a minimal element with respect to inclusion order, say K. Let

K1 = K∩X0,K2 = K∩Y0 and K3 = K∩Z0
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Fix(x,y,z) ∈ K1×K2×K3 such that ∆(x,y,z) = δ (K1,K2,K3) .

If δ (x,K2,K3) = δ (X ,Y,Z) then

δ (X ,Y,Z)≤ ∆
(
T x,T 2x,T 3x

)
≤ ∆

(
x,T x,T 2x

)
≤ δ (x,K2,K3) = δ (X ,Y,Z)

that is, the triad
(
x,T x,T 2x

)
satisfies the conclusion. Similarly, we can prove the triad(

y,Ty,T 2y
)

satisfies the conclusion if δ (y,K1,K3) = δ (X ,Y,Z) and the triad
(
z,T z,T 2z

)
sat-

isfies the conclusion if δ (z,K1,K2) = δ (X ,Y,Z).

So it suffices to prove if δ1 = δ (x,K2,K3) > δ (X ,Y,Z) , δ2 = δ (y,K1,K3) > δ (X ,Y,Z) and

δ3 = δ (z,K1,K2)> δ (X ,Y,Z) .

Set

Hx =
{

x1 ∈ K1 : ∆
(
x1,T x,T 2x

)
≤ α (x)δ1 +(1−α (x))δ (X ,Y,Z)

}
Hy =

{
y1 ∈ K2 : ∆

(
y1,Ty,T 2y

)
≤ α (y)δ2 +(1−α (y))δ (X ,Y,Z)

}
Hz =

{
z1 ∈ K3 : ∆

(
z1,T z,T 2z

)
≤ α (z)δ3 +(1−α (z))δ (X ,Y,Z)

}
Now let (T x,Ty,T z) ∈ K2×K3×K1 and

δ (X ,Y,Z)≤ ∆(T x,Ty,T z)≤ ∆(x,y,z) = δ (X ,Y,Z) .

Hence (T x,Ty,T z) ∈ Hy×Hz×Hx for xi ∈ Hx, i = 1,2 and λ ∈ (0,1)

∆
(
λx1 +(1−λ )x2,T x,T 2x

)
= ∆(λx1 +(1−λ )x2,T x)+∆

(
T x,T 2x

)
+∆

(
λx1 +(1−λ )x2,T 2x

)
≤ λ∆(x1,T x)+(1−λ )∆(x2,T x)+∆

(
T x,T 2x

)
+λ∆

(
x1,T 2x

)
+(1−λ )∆

(
x2,T 2x

)
≤ λ

(
∆(x1,T x)+∆

(
x1,T 2x

)
+∆

(
T x,T 2x

))
+(1−λ )

(
∆(x2,T x)+∆

(
x2,T 2x

)
+∆

(
T x,T 2x

))
= λ∆

(
x1,T x,T 2x

)
+(1−λ )∆

(
x2,T x,T 2x

)
≤ α (x)δ1 +(1−α (x))δ (X ,Y,Z)

Then if {xn}∞

n=1 ⊂ Hx, with
w

xn→ x
′
, then x′ ∈ K1.
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Now ∆
(
x′,T x,T 2x

)
≤ liminfn ∆

(
xn,T x,T 2x

)
≤ α (x)δ1 +(1−α (x))δ (X ,Y,Z) .

Also for x0 ∈ Hx,∆(x0,y,Ty) ≤ δ2 and hence ∆
(
T x0,Ty,T 2y

)
≤ α (y)δ2 +

(1−α (y))δ (X ,Y,Z) .

Therefore Hx is a nonempty closed and convex subset of X with T Hx ⊂Hy,Similarly, one can

verify that Hy and Hz is a nonempty closed convex subset of X and T Hy ⊂ Hz and T Hz ⊂ Hx.

By the minimality of K then Hx = K1, Hy = K2 and Hz = K3.

Now we show that δ (Ty,K1,K2) < δ2 and δ (T x,K1,K3) < δ1 and δ (T z,K2,K3) < δ3 for

x1 ∈ K1, ∆
(
x1,T x,T 2x

)
≤ α (x)δ1 +(1−α (x))δ (X ,Y,Z) < δ1 as δ (X ,Y,Z) < δ1 therefore

δ (T x,K1,K3)< δ1. Similarly, δ (Ty,K1,K2)< δ2 and δ (T z,K2,K3)< δ3.If

δ (Ty,K1,K2) = δ (X ,Y,Z) and δ (X ,Y,Z) < ∆
(
y,T 2y,T 3y

)
≤ ∆

(
y,Ty,T 2y

)
≤

δ (Ty,K1,K2) = δ (X ,Y,Z) , that is, the triad
(
y,T 2y,T 3y

)
satisfies the conclusion. In a

similar fashion, one can prove that the triad
(
x,T 2x,T 3x

)
and

(
z,T 2z,T 3z

)
satisfies the

conclusion, if δ (T x,K1,K3) = δ (X ,Y,Z) and δ (T z,K2,K3) = δ (X ,Y,Z) .

Suppose

δ (Ty,K1,K2)> δ (X ,Y,Z) and δ (T z,K2,K3)> δ (X ,Y,Z) and δ (T x,K1,K3)> δ (X ,Y,Z)

then by the similar fashion one can show that:

δ
(
T 2y,K2,K3

)
< δ1 and δ

(
T 2x,K1,K2

)
< δ3 and δ

(
T 2z,K1,K3

)
< δ2.

That is (K1,K2,K3) has the proximal normal structure.

Since (K1,K2,K3) is a proximal triad in (X0,Y0,Z0) .

By proximal normal structure there exist (x1,x2,x3) ∈ K1×K2×K3 and β ∈ (0,1) such that
δ (x1,K2,K3)≤ βδ (K1,K2,K3)

δ (x2,K1,K3)≤ βδ (K1,K2,K3)

δ (x3,K1,K2)≤ βδ (K1,K2,K3)

Since (K1,K2,K3) is a proximal triad there exists
(
x′1,x

′
2,x
′
3
)
∈ K1×K2×K3 such that

∆
(
x′1,x2,x3

)
= ∆(x1,x′2,x3) = ∆(x1,x2,x′3) = δ (K1,K2,K3)
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So for any (y,z) ∈ K2×K3

∆

(
x1 + x′1

2
,y,z
)

= ∆

(
x1 + x′1

2
,y
)
+∆(y,z)+∆

(
z,

x1 + x′1
2

)
≤ 1

2
∆(x1,y)+

1
2

∆
(
x′1,y

)
+∆(y,z)+

1
2

∆(z,x1)+
1
2

∆
(
z,x′1

)
=

1
2
(∆(x1,y)+∆(z,x1)+∆(y,z))+

1
2
(
∆
(
z,x′1

)
+∆

(
x′1,y

)
+∆(y,z)

)
≤ 1

2
∆(x1,y,z)+

1
2

∆
(
x′1,y,z

)
≤ βδ (K1,K2,K3)/2+δ (K1,K2,K3)/2 = αδ (K1,K2,K3)

where α = 1+β

2 ∈ (0,1)

Let y1 =
x1+x′1

2 , and similarly y2 =
x2+x′2

2 , y3 =
x3+x′3

2 .

Then

(6)


δ (y1,K2,K3)≤ αδ (K1,K2,K3)

δ (y2,K1,K3)≤ αδ (K1,K2,K3)

δ (y3,K1,K2)≤ αδ (K1,K2,K3)

and

∆(y1,y2,y3) = δ (K1,K2,K3) .

Define

M1 =
{

x ∈ K1 : δ (x,K2,K3)≤ αδ (K1,K2,K3)
}

M2 =
{

y ∈ K2 : δ (y,K1K3)≤ αδ (K1,K2,K3)
}

M3 =
{

z ∈ K3 : δ (x,K1,K2)≤ αδ (K1,K2,K3)
}

Since (y1,y2,y3) ∈ M1 ×M2 ×M3, Mi is a nonempty closed and convex subset of Ki and

∆(M1,M2,M3) = ∆(K1,K2,K3)

Now let x ∈M1, y ∈M2, z ∈ K3,then

∆(T x,Ty,T z) ≤ α (x)∆(x,y;z)+(1−α (x))∆(K1,K2,K3)

≤ ∆(x,y;z)

≤ δ (x,K2,K3)≤ αδ (K1,K2,K3)
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Thus, we get

T (K3) ∈ B(T x,Ty,αδ (K1,K2,K3))∩K1 = K
′
1

Clearly K
′
1 is closed and convex. Since M1 ⊆ K1,implies x ∈M1 and there exists y ∈M2 and

z ∈M3 satisfies ∆(x,y;z) = ∆(x,y;z).

Hence

∆(T x,Ty,T z) = ∆(x,y,z) , z ∈ K3

implies T z ∈M1 and thus

∆
(
K′1,K2,K3

)
= ∆(K1,K2,K3)

Therefore K′1∪K2∪K3 ∈ Γ. Hence by minimality, K′1 = K1.

Thus

K1 ⊆ B(T x,Ty,αδ (K1,K2,K3))

So for any u ∈M1

∆(u,T x,Ty)≤ αδ (K1,K2,K3) implies δ (Tu,K1,K3)≤ αδ (K1,K2,K3)

which shows T (M1)⊆M2.

In a similar manner we can see T (M2)⊆M3 and T (M3)⊆M1.

Hence K′1∪K2∪K3 ∈ Γ. But δ (M1,M2,M3) ≤ αδ (K1,K2,K3)and this contradicts the mini-

mality of K.
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