

SOME FIXED POINTS RESULTS USING (ψ, φ) GENERALIZED WEAKLY CONTRACTIVE MAP ON A GENERALIZED 2-METRIC SPACE

PRAVIN SINGH ${ }^{1}$, SHIVANI SINGH ${ }^{2}$, VIRATH SINGH ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, University of KwaZulu-Natal, Private Bag X54001 Durban, South Africa
${ }^{2}$ Department of Decision Sciences, University of South Africa, PO Box 392 Pretoria 0003, South Africa
Copyright © 2023 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The main purpose of this paper is to define a generalized 2-metric and prove the existence and uniqueness of fixed points for (ψ, φ) generalized weakly contractive mappings in a generalized 2-metric space.

Keywords: fixed points; weak contraction; sub-linear.
2020 AMS Subject Classification: 47H10, 54H25.

1. Introduction

The study of fixed point theorems for self maps satisfying different contraction conditions is the center of rigorous research activities. Dutta et al. introduced (ψ, φ)-weakly contractive maps in 2008 and obtained some fixed point results for such contractions, [4]. Later, G. V. R. Babu et al. introduced (ψ, φ)-almost weakly contractive maps in G-metric space, [1]. Fixed points of contractive maps on S-metric spaces were studied by several authors and since then, several contractions have been considered for proving fixed point theorems, [6, 2, 3, 10]. The authors D. Venkatesh et al. further proved some fixed point outcomes in S_{b}-metric spaces using (ψ, φ)-generalized weakly contractive maps in S_{b}-metric spaces, [7].

[^0]The concept of an area of a triangle in \mathbb{R}^{2} inspired, Gähler to introduced the concept of a 2metric, as a generalization of the metric, [5].

Definition 1.1. [5] Let X be a non-empty set and $d: X \times X \times X \rightarrow[0, \infty)$ be a map satisfying the following properties
(i) If $x, y, z \in X$ then $d(x, y, z)=0$ only if at least two of the three points are the same.
(ii) For $x, y \in X$ such that $x \neq y$ there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.
(iii) symmetry property: for $x, y, z \in X$,

$$
d(x, y, z)=d(x, z, y)=d(y, x, z)=d(y, z, x)=d(z, x, y)=d(z, y, x) .
$$

(iv) rectangle inequality:

$$
d(x, y, z) \leq d(x, y, t)+d(y, z, t)+d(z, x, t)
$$

for $x, y, z, t \in X$.
Then d is a 2-metric and (X, d) is a 2-metric space.

Definition 1.2. Let X be a non-empty set and $d: X \times X \times X \rightarrow[0, \infty)$ be a map satisfying the following properties:
(i) If $x, y, z \in X$ then $d(x, y, z)=0$ only if at least two of the three points are the same.
(ii) For $x, y \in X$ such that $x \neq y$ there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.
(iii) symmetry property: for $x, y, z \in X$,

$$
d(x, y, z)=d(x, z, y)=d(y, x, z)=d(y, z, x)=d(z, x, y)=d(z, y, x) .
$$

(iv) modified rectangle inequality:there exists $\alpha, \beta, \gamma \geq 1$ such that

$$
d(x, y, z) \leq \alpha d(x, y, t)+\beta d(y, z, t)+\gamma d(z, x, t)
$$

for $x, y, z, t \in X$.
Then d is a generalized 2-metric and (X, d) is a generalized 2- metric space.

If $\alpha=\beta=\gamma=1$ then a generalized 2-metric is a 2-metric.

Definition 1.3. Let (X, d) be a generalized 2-metric space. Let $x, y \in X$ and $\varepsilon>0$. Then the subset

$$
B_{\varepsilon}(x, y)=\{z \in X ; d(x, y, z)<\varepsilon\}
$$

of X is called a generalized 2-ball centered at x, y with radius ε. A topology can be generated in X by taking the collection of all generalized 2-balls as a subbasis, which we call the generalized 2-metric topology and is denoted by τ. Thus (X, τ) is a generalized 2-metric topological space. Members of τ are called 2-open sets. From the property of the metric is can easily be seen that $B_{\varepsilon}(x, y)=B_{\varepsilon}(y, x)$ for $\varepsilon>0$.

Example 1.4. Let $X=[0,1]$ and define
(1) $d(x, y, z)=\left\{\begin{array}{cc}0 & , \text { only if at least two of the three points are the same } \\ e^{|x-y|+|y-z|+|z-x|} & , \quad \text { otherwise }\end{array}\right.$

For $x, y, z \in X$ and using Jensens' inequality, we get

$$
\begin{aligned}
& d(x, y, z) \\
& =e^{|x-y|+|y-z|+|z-x|} \\
& =e^{\frac{1}{2}|x-y|+\frac{1}{3}|y-z|+\frac{1}{6}|z-x|} e^{\frac{1}{2}|x-y|+\frac{2}{3}|y-z|+\frac{5}{6}|z-x|} \\
& \leq e^{2} e^{\frac{1}{2}|x-y|+\frac{1}{3}|y-z|+\frac{1}{6}|z-x|} \\
& \leq e^{2}\left\{\frac{1}{2} e^{|x-y|}+\frac{1}{3} e^{|y-z|}+\frac{1}{6} e^{|z-x|}\right\} \\
& \leq e^{2}\left\{\frac{1}{2} e^{|x-y|+|y-t|+|t-x|}+\frac{1}{3} e^{|z-y|+|y-t|+|t-z|}+\frac{1}{6} e^{|z-x|+|x-t|+|t-z|}\right\} \\
& =\alpha d(x, y, t)+\beta d(z, y, t)+\gamma d(z, x, t)
\end{aligned}
$$

where $\alpha=\frac{1}{2} e^{2} \geq 1, \beta=\frac{1}{3} e^{2} \geq 1$ and $\gamma=\frac{1}{6} e^{2} \geq 1$. It follows that d is a generalized 2 -metric.

Definition 1.5. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in a generalized 2-metric space (X, d).
a) the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is convergent to $x \in X$ iff for all $\xi \in X$,

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x, \xi\right)=0
$$

b) the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in X iff for all $\xi \in X$,

$$
\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}, \xi\right)=0
$$

2. MAIN Result

Definition 2.1. [8] A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is an altering distance function if it satisfies:
(i) ψ is continuous and non-decreasing.
(ii) $\psi(t)=0 \Longleftrightarrow t=0$.

To this prove uniqueness and existence of a fixed point the definition was amended to include:
(iii) ψ is sublinear function.

Denote the class of all altering distances functions by Ψ.

Definition 2.2. Let (X, d) be a generalized $2-$ metric space and $T: X \rightarrow X$ is a contraction if there exists $0 \leq \lambda<1$ such that

$$
d(T x, T y, \xi) \leq \lambda d(x, y, \xi)
$$

for all $x, y, \xi \in X$.

In [9], authors have proved a similar result in a b_{2} metric space with the additional property that the set is partially ordered.

Definition 2.3. Let (X, d) be a generalized 2-metric space and a mapping $T: X \rightarrow X$ is a (ψ, φ) generalized almost weakly contraction if it satisfies the inequality

$$
\begin{align*}
& \beta \psi(d(T x, T y, \xi)) \\
& \leq \psi\left(\max \left\{d(x, y, \xi), \frac{d(x, T x, \xi) d(y, T y, \xi)}{1+d(x, y, \xi)}, \frac{d(x, T x, \xi) d(y, T y, \xi)}{1+d(T x, T y, \xi)}\right\}\right) \\
& -\varphi\left(\max \left\{d(x, y, \xi), \frac{d(x, T x, \xi) d(y, T y, \xi)}{1+d(x, y, \xi)}, \frac{d(x, T x, \xi) d(y, T y, \xi)}{1+d(T x, T y, \xi)}\right\}\right) \\
& +\mu \min \{d(x, T x, \xi), d(x, T y, \xi), d(y, T x, \xi), d(y, T y, \xi)\} \tag{2}
\end{align*}
$$

where $x, y, z \in X, \mu \geq 0$ and $\psi, \varphi \in \Psi$.

Theorem 2.4. Let (X, d) be a generalized complete 2 -metric space and $T: X \rightarrow X$ be a (ψ, φ) generalized almost weakly contractive mapping. Then T has a unique fixed point.

Proof. Let $x_{0} \in X$ and define a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in X by

$$
x_{n}=T x_{n-1},
$$

for all $n \in \mathbb{N}$. If $x_{n}=x_{n+1}$ for some $n \in \mathbb{N}$ then we have a fixed point. We assume that $x_{n} \neq$ x_{n+1} and we shall show that the sequence $\left\{d\left(x_{n}, x_{n+1}, \xi\right)\right\}_{n \in \mathbb{N}}$ is a decreasing sequence of real numbers. By (2), we get

$$
\begin{align*}
& \psi\left(d\left(x_{n}, x_{n+1}, \xi\right)\right) \\
& =\psi\left(d\left(T x_{n-1}, T x_{n}, \xi\right)\right) \\
& \leq \frac{1}{\beta}\left[\psi\left(\max \left\{d\left(x_{n-1}, x_{n}, \xi\right), \frac{d\left(x_{n-1}, T x_{n-1}, \xi\right) d\left(x_{n}, T x_{n}, \xi\right)}{1+d\left(T x_{n-1}, T x_{n}, \xi\right)}, \frac{d\left(x_{n-1}, T x_{n-1}, \xi\right) d\left(x_{n}, T x_{n}, \xi\right)}{1+d\left(x_{n-1}, x_{n}, \xi\right)}\right\}\right)\right. \\
& -\varphi\left(\max \left\{d\left(x_{n-1}, x_{n}, \xi\right), \frac{d\left(x_{n-1}, T x_{n-1}, \xi\right) d\left(x_{n}, T x_{n}, \xi\right)}{1+d\left(T x_{n-1}, T x_{n}, \xi\right)}, \frac{d\left(x_{n-1}, T x_{n-1}, \xi\right) d\left(x_{n}, T x_{n}, \xi\right)}{1+d\left(x_{n-1}, x_{n}, \xi\right)}\right\}\right) \\
& \left.+\mu \min \left\{d\left(x_{n-1}, T x_{n}, \xi\right), d\left(x_{n}, T x_{n}, \xi\right), d\left(x_{n-1}, T x_{n-1}, \xi\right), d\left(x_{n}, T x_{n-1}, \xi\right)\right\}\right] \tag{3}
\end{align*}
$$

since $\frac{1}{\beta}<1$, we get

$$
\begin{align*}
& \psi\left(d\left(x_{n}, x_{n+1}, \xi\right)\right) \\
& =\psi\left(d\left(T x_{n-1}, T x_{n}, \xi\right)\right) \\
& \leq \psi\left(\max \left\{d\left(x_{n-1}, x_{n}, \xi\right), \frac{d\left(x_{n-1}, T x_{n-1}, \xi\right) d\left(x_{n}, T x_{n}, \xi\right)}{1+d\left(T x_{n-1}, T x_{n}, \xi\right)}, \frac{d\left(x_{n-1}, T x_{n-1}, \xi\right) d\left(x_{n}, T x_{n}, \xi\right)}{1+d\left(x_{n-1}, x_{n}, \xi\right)}\right\}\right) \\
& -\varphi\left(\max \left\{d\left(x_{n-1}, x_{n}, \xi\right), \frac{d\left(x_{n-1}, T x_{n-1}, \xi\right) d\left(x_{n}, T x_{n}, \xi\right)}{1+d\left(T x_{n-1}, T x_{n}, \xi\right)}, \frac{d\left(x_{n-1}, T x_{n-1}, \xi\right) d\left(x_{n}, T x_{n}, \xi\right)}{1+d\left(x_{n-1}, x_{n}, \xi\right)}\right\}\right) \\
& +\mu \min \left\{d\left(x_{n-1}, T x_{n}, \xi\right), d\left(x_{n}, T x_{n}, \xi\right), d\left(x_{n-1}, T x_{n-1}, \xi\right), d\left(x_{n}, T x_{n-1}, \xi\right)\right\} \tag{4}
\end{align*}
$$

Inequality (4), can be reduced since

$$
\begin{aligned}
& \min \left\{d\left(x_{n-1}, T x_{n}, \xi\right), d\left(x_{n}, T x_{n}, \xi\right), d\left(x_{n-1}, T x_{n-1}, \xi\right), d\left(x_{n}, T x_{n-1}, \xi\right)\right\} \\
& =\min \left\{d\left(x_{n-1}, x_{n+1}, \xi\right), d\left(x_{n}, x_{n+1}, \xi\right), d\left(x_{n-1}, x_{n}, \xi\right), d\left(x_{n}, x_{n}, \xi\right)\right\}
\end{aligned}
$$

$$
\text { (5) } \quad=0
$$

Using (5), inequality (4) reduces to

$$
\psi\left(d\left(x_{n}, x_{n+1}, \xi\right)\right)
$$

$$
\begin{equation*}
\leq \psi\left(\max \left\{d\left(x_{n-1}, x_{n}, \xi\right), d\left(x_{n}, x_{n+1}, \xi\right)\right\}\right)-\varphi\left(\max \left\{d\left(x_{n-1}, x_{n}, \xi\right), d\left(x_{n}, x_{n+1}, \xi\right)\right\}\right) \tag{6}
\end{equation*}
$$

Inequality (6) further reduces, if we assume that

$$
\max \left\{d\left(x_{n-1}, x_{n}, \xi\right), d\left(x_{n}, x_{n+1}, \xi\right)\right\}=d\left(x_{n-1}, x_{n}, \xi\right)
$$

for otherwise, we assume that

$$
\max \left\{d\left(x_{n-1}, x_{n}, \xi\right), d\left(x_{n}, x_{n+1}, \xi\right)\right\}=d\left(x_{n}, x_{n+1}, \xi\right)
$$

In the latter case, inequality (6), reduces to

$$
\begin{equation*}
\psi\left(d\left(x_{n}, x_{n+1}, \xi\right)\right) \leq \psi\left(d\left(x_{n}, x_{n+1}, \xi\right)\right)-\varphi\left(d\left(x_{n}, x_{n+1}, \xi\right)\right) \tag{7}
\end{equation*}
$$

It follows that $0 \leq-\varphi\left(d\left(x_{n}, x_{n+1}, \xi\right)\right)$ which leads to a contradiction. Thus $\max \left\{d\left(x_{n-1}, x_{n}, \xi\right), d\left(x_{n}, x_{n+1}, \xi\right)\right\}=d\left(x_{n-1}, x_{n}, \xi\right)$. Hence, we have

$$
\begin{align*}
\psi\left(d\left(x_{n}, x_{n+1}, \xi\right)\right) & \leq \psi\left(d\left(x_{n-1}, x_{n}, \xi\right)\right)-\varphi\left(d\left(x_{n-1}, x_{n}, \xi\right)\right) \\
& \leq \psi\left(d\left(x_{n-1}, x_{n}, \xi\right)\right) \tag{8}
\end{align*}
$$

It follows that $\left\{d\left(x_{n}, x_{n+1}, \xi\right)\right\}_{n \in \mathbb{N}}$ is a decreasing sequence.
We next shall show that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}, \xi\right)=0$. Suppose that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}, \xi\right)=r$ where $r>0$ then taking limit as $n \rightarrow \infty$ in inequality (7) we get

$$
\begin{equation*}
\psi(r) \leq \psi(r)-\varphi(r) \tag{9}
\end{equation*}
$$

which is a contradiction unless we have that $r=0$ thus $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}, \xi\right)=0$.

We next shall prove that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in X. From the modified rectangular inequality we obtain,

$$
\begin{align*}
d\left(x_{n}, x_{m}, \xi\right) & \leq \alpha d\left(x_{n}, x_{m}, x_{n+1}\right)+\beta d\left(x_{m}, \xi, x_{n+1}\right)+\gamma d\left(\xi, x_{n}, x_{n+1}\right) \\
& \leq \alpha d\left(x_{n}, x_{n+1}, x_{m}\right)+\beta \alpha d\left(x_{m}, x_{m+1}, \xi\right)+\beta^{2} d\left(x_{n+1}, x_{m+1}, \xi\right) \\
& +\beta \gamma d\left(x_{m}, x_{m+1}, x_{n+1}\right)+\gamma d\left(x_{n}, x_{n+1}, \xi\right) \tag{10}
\end{align*}
$$

Using properties of the altering distance functions we get,

$$
\begin{align*}
& \psi\left(d\left(x_{n}, x_{m}, \xi\right)\right) \\
& \leq \alpha \psi\left(d\left(x_{n}, x_{n+1}, x_{m}\right)\right)+\beta \alpha \psi\left(d\left(x_{m}, x_{m+1}, \xi\right)\right)+\beta^{2} \psi\left(d\left(x_{n+1}, x_{m+1}, \xi\right)\right) \\
& +\beta \gamma \psi\left(d\left(x_{m}, x_{m+1}, x_{n+1}\right)\right)+\gamma \psi\left(d\left(x_{n}, x_{n+1}, \xi\right)\right) \tag{11}
\end{align*}
$$

Using inequality (2) in (11) we get

$$
\begin{align*}
& \psi\left(d\left(x_{n}, x_{m}, \xi\right)\right) \\
& \leq \alpha \psi\left(d\left(x_{n}, x_{n+1}, x_{m}\right)\right)+\beta \alpha \psi\left(d\left(x_{m}, x_{m+1}, \xi\right)\right) \\
& +\beta \psi\left(\max \left\{d\left(x_{n}, x_{m}, \xi\right), \frac{d\left(x_{n}, T x_{n}, \xi\right) d\left(x_{m}, T x_{m}, \xi\right)}{1+d\left(T x_{n}, T x_{m}, \xi\right)}, \frac{d\left(x_{n}, T x_{n}, \xi\right) d\left(x_{m}, T x_{m}, \xi\right)}{1+d\left(x_{n}, x_{m}, \xi\right)}\right\}\right) \\
& -\beta \varphi\left(\max \left\{d\left(x_{n}, x_{m}, \xi\right), \frac{d\left(x_{n}, T x_{n}, \xi\right) d\left(x_{m}, T x_{m}, \xi\right)}{1+d\left(T x_{n}, T x_{m}, \xi\right)}, \frac{d\left(x_{n}, T x_{n}, \xi\right) d\left(x_{m}, T x_{m}, \xi\right)}{1+d\left(x_{n}, x_{m}, \xi\right)}\right\}\right) \\
& +\beta \mu \min \left\{d\left(x_{n}, T x_{n}, \xi\right), d\left(x_{n}, T x_{m}, \xi\right), d\left(x_{m}, T x_{n}, \xi\right), d\left(x_{m}, T x_{m}, \xi\right)\right\} \\
& +\beta \gamma \psi\left(d\left(x_{m}, x_{m+1}, x_{n+1}\right)\right)+\gamma \psi\left(d\left(x_{n}, x_{n+1}, \xi\right)\right) \tag{12}
\end{align*}
$$

Taking $m, n \rightarrow \infty$ we get,

$$
\begin{align*}
& \lim _{m, n \rightarrow \infty} \max \left\{d\left(x_{n}, x_{m}, \xi\right), \frac{d\left(x_{n}, T x_{n}, \xi\right) d\left(x_{m}, T x_{m}, \xi\right)}{1+d\left(T x_{n}, T x_{m}, \xi\right)}, \frac{d\left(x_{n}, T x_{n}, \xi\right) d\left(x_{m}, T x_{m}, \xi\right)}{1+d\left(x_{n}, x_{m}, \xi\right)}\right\} \\
& =\lim _{m, n \rightarrow \infty} \max \left\{d\left(x_{n}, x_{m}, \xi\right), \frac{d\left(x_{n}, x_{n+1}, \xi\right) d\left(x_{m}, x_{m+1}, \xi\right)}{1+d\left(x_{n+1}, x_{m+1}, \xi\right)}, \frac{d\left(x_{n}, x_{n+1}, \xi\right) d\left(x_{m}, x_{m+1}, \xi\right)}{1+d\left(x_{n}, x_{m}, \xi\right)}\right\} \\
& =\lim _{m, n \rightarrow \infty} d\left(x_{n}, x_{m}, \xi\right) \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
& \lim _{m, n \rightarrow \infty} \min \left\{d\left(x_{n}, T x_{n}, \xi\right), d\left(x_{n}, T x_{m}, \boldsymbol{\xi}\right), d\left(x_{m}, T x_{n}, \xi\right), d\left(x_{m}, T x_{m}, \boldsymbol{\xi}\right)\right\} \\
& =\lim _{m, n \rightarrow \infty} \min \left\{d\left(x_{n}, x_{n+1}, \xi\right), d\left(x_{n}, x_{m+1}, \xi\right), d\left(x_{m}, x_{n+1}, \xi\right), d\left(x_{m}, x_{m+1}, \xi\right)\right\} \\
& =0 \tag{14}
\end{align*}
$$

Taking $m, n \rightarrow \infty$ in (12), using (13) and (14) we get

$$
\begin{equation*}
\psi\left(\lim _{m, n \rightarrow \infty} d\left(x_{n}, x_{m}, \xi\right)\right) \leq \beta \psi\left(\lim _{m, n \rightarrow \infty} d\left(x_{n}, x_{m}, \xi\right)\right)-\beta \varphi\left(\lim _{m, n \rightarrow \infty} d\left(x_{n}, x_{m}, \xi\right)\right) \tag{15}
\end{equation*}
$$

Inequality (15) is only true if $\lim _{m, n \rightarrow \infty} d\left(x_{n}, x_{m}, \xi\right)=0$. Thus we conclude that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in X. Since (X, d) is complete there exists $x^{\prime} \in X$ such that $\lim _{m, n \rightarrow \infty} d\left(x_{n}, x^{\prime}, \xi\right)=0$.

We now show that $T x^{\prime}=x^{\prime}$. Replacing $x_{n}=x_{n+1}, x_{m}=T x^{\prime}$ in inequality (15), we get

$$
\begin{equation*}
\psi\left(\lim _{n \rightarrow \infty} d\left(x_{n+1}, T x^{\prime}, \xi\right)\right) \leq \beta \psi\left(\lim _{n \rightarrow \infty} d\left(x_{n+1}, T x^{\prime}, \xi\right)\right)-\beta \varphi\left(\lim _{n \rightarrow \infty} d\left(x_{n+1}, T x^{\prime}, \xi\right)\right) \tag{16}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\psi\left(d\left(x^{\prime}, T x^{\prime}, \xi\right)\right) \leq \beta \psi\left(d\left(x^{\prime}, T x^{\prime}, \xi\right)\right)-\beta \varphi\left(d\left(x^{\prime}, T x^{\prime}, \xi\right)\right) \tag{17}
\end{equation*}
$$

which leads to a contradiction, unless we have $d\left(x^{\prime}, T x^{\prime}, \xi\right)=0$ i.e., $T x^{\prime}=x^{\prime}$. To prove uniqueness of x^{\prime}, we assume that $x^{\prime \prime}$ is a fixed point of T such that $x^{\prime} \neq x^{\prime \prime}$. From inequality (2),

$$
\begin{align*}
& \beta \psi\left(d\left(x^{\prime}, x^{\prime \prime}, \xi\right)\right) \\
& \beta \psi\left(d\left(T x^{\prime}, T x^{\prime \prime}, \xi\right)\right) \\
& \leq \psi\left(\max \left\{d\left(x^{\prime}, x^{\prime \prime}, \xi\right), \frac{d\left(x^{\prime}, T x^{\prime}, \xi\right) d\left(x^{\prime \prime}, T x^{\prime \prime}, \xi\right)}{1+d\left(x^{\prime}, x^{\prime \prime}, \xi\right)}, \frac{d\left(x^{\prime}, T x^{\prime}, \xi\right) d\left(x^{\prime \prime}, T x^{\prime \prime}, \xi\right)}{1+d\left(T x^{\prime}, T x^{\prime \prime}, \xi\right)}\right)\right) \\
& -\varphi\left(\max \left\{d\left(x^{\prime}, x^{\prime \prime}, \xi\right), \frac{d\left(x^{\prime}, T x^{\prime}, \xi\right) d\left(x^{\prime \prime}, T x^{\prime \prime}, \xi\right)}{1+d\left(x^{\prime}, x^{\prime \prime}, \xi\right)}, \frac{d\left(x^{\prime}, T x^{\prime}, \xi\right) d\left(x^{\prime \prime}, T x^{\prime \prime}, \xi\right)}{1+d\left(T x^{\prime}, T x^{\prime \prime}, \xi\right)}\right)\right) \\
& +\mu \min \left\{d\left(x^{\prime}, T x^{\prime}, \boldsymbol{\xi}\right), d\left(x^{\prime}, T x^{\prime \prime}, \xi\right), d\left(x^{\prime \prime}, T x^{\prime}, \xi\right), d\left(x^{\prime \prime}, T x^{\prime \prime}, \xi\right)\right\} \tag{18}
\end{align*}
$$

$$
\begin{equation*}
\beta \psi\left(d\left(x^{\prime}, x^{\prime \prime}, \xi\right)\right) \leq \psi\left(d\left(x^{\prime}, x^{\prime \prime}, \xi\right)\right)-\varphi\left(d\left(x^{\prime}, x^{\prime \prime}, \xi\right)\right) \tag{19}
\end{equation*}
$$

is a contradiction unless $d\left(x^{\prime}, x^{\prime \prime}, \xi\right)=0$ which implies that $x^{\prime}=x^{\prime \prime}$.
Corollary 2.5. Let (X, d) be a generalized complete 2-metric space and a mapping $T: X \rightarrow X$ be a self mapping. If there exists $\psi, \varphi \in \Psi$ such that

$$
\begin{align*}
\beta \psi(d(T x, T y, \xi)) & \leq \psi\left(\max \left\{d(x, y, \xi), \frac{d(x, T x, \xi) d(y, T y, \xi)}{1+d(x, y, \xi)}, \frac{d(x, T x, \xi) d(y, T y, \xi)}{1+d(T x, T y, \xi)}\right\}\right) \\
& -\varphi\left(\max \left\{d(x, y, \xi), \frac{d(x, T x, \xi) d(y, T y, \xi)}{1+d(x, y, \xi)}, \frac{d(x, T x, \xi) d(y, T y, \xi)}{1+d(T x, T y, \xi)}\right\}\right) \tag{20}
\end{align*}
$$

where $x, y, z \in X$ and $\psi, \varphi \in \Psi$. Then T has a unique fixed point.

Proof. Follows from theorem 2.4 by taking $\mu=0$.

Corollary 2.6. Let (X, d) be a generalized complete 2-metric space and a mapping $T: X \rightarrow X$ be a self mapping. If there exists $\varphi \in \Psi$ such that

$$
\begin{align*}
& \beta(d(T x, T y, \xi)) \\
& \leq\left(\max \left\{d(x, y, \xi), \frac{d(x, T x, \xi) d(y, T y, \xi)}{1+d(x, y, \xi)}, \frac{d(x, T x, \xi) d(y, T y, \xi)}{1+d(T x, T y, \xi)}\right\}\right) \\
& -\varphi\left(\max \left\{d(x, y, \xi), \frac{d(x, T x, \xi) d(y, T y, \xi)}{1+d(x, y, \xi)}, \frac{d(x, T x, \xi) d(y, T y, \xi)}{1+d(T x, T y, \xi)}\right\}\right) \tag{21}
\end{align*}
$$

where $x, y, z \in X$ and $\varphi \in \Psi$. Then T has a unique fixed point.

Proof. Follows from theorem 2.4 by taking ψ - the identity mapping

Example 2.7. Let $X=[0,1]$ and define
(22) $d(x, y, z)=\left\{\begin{array}{cc}0 & , \text { if at least two of the three points are the same } \\ e^{|x-y|+|y-z|+|z-x|} & , \quad \text { otherwise }\end{array}\right.$

It can be shown that d is a generalized 2-metric.
d is a generalized 2-metric.
Let $T: X \rightarrow X$ be defined by

$$
T(x)=\sin x
$$

then for $x \neq y \neq z \in X$,

$$
\begin{aligned}
& |T x-T y|+|T y-z|+|z-T x| \\
& =|\sin x-\sin y|+\left|\sin y-\sin \left(\sin ^{-1} z\right)\right|+\left|\sin x-\sin \left(\sin ^{-1} z\right)\right| \\
& \leq|x-y|+\left|y-\sin ^{-1} z\right|+\left|x-\sin ^{-1} z\right| \\
& \leq|x-y|+|y-z|+|x-z|
\end{aligned}
$$

Since the exponential function is increasing, it follows that

$$
\begin{equation*}
e^{|T x-T y|+|T y-z|+|z-T x|} \leq e^{|x-y|+\mid y-z)|+|x-z|} \tag{23}
\end{equation*}
$$

Let $\psi(t)=t$ then it follows that for some $\beta \geq 1$

$$
\begin{aligned}
& \beta \psi(d(T x, T y, z)) \\
& \leq \psi(d(x, y, z)) \\
& \leq \psi\left(\max \left\{d(x, y, z), \frac{d(x, T x, z) d(y, T y, z)}{1+d(x, y, z)}, \frac{d(x, T x, z) d(y, T y, z)}{1+d(T x, T y, z)}\right\}\right)
\end{aligned}
$$

It follows from theorem (2.4), that T has a unique fixed point in X.

3. Conclusion

In this paper, we proved the existence and uniqueness of a fixed point for a (ψ, φ)-weakly contractive mapping in a generalized 2-metric space by further imposing a sublinearity property on the class of all altering distance functions.

CONFLICT OF Interests

The authors declare that there is no conflict of interests.

References

[1] G.V.R. Babu, D.R. Babu, K.N. Rao, et al. Fixed points of (ψ, φ)-almost weakly contractive maps in G-metric spaces, Appl. Math. E-Notes, 4 (2014), 69-85.
[2] G. Babu Venkata, L. Kumssa Bekere, Fixed points of (α, ψ, φ) - generalized contractive maps and property (P) in S-metric spaces, Filomat. 31 (2017), 4469-4481. https://doi.org/10.2298/fil1714469b.
[3] G.V.R. Babu, P.D. Sailaja, G. Srichandana, Common fixed points of (α, ψ, φ) - almost generalized weakly contractive maps in S-metric spaces, Commun. Nonlinear Anal. 7 (2019), 17-35.
[4] P.N. Dutta, B.S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl. 2008 (2008), 406368. https://doi.org/10.1155/2008/406368.
[5] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115-148. https: //doi.org/10.1002/mana. 19630260109.
[6] D. Venkatesh, V. N. Raju, Some fixed point results using (ψ, φ)-generalized almost weakly contractive maps in S-metric spaces, Ratio Math. 47 (2023), 244-259. https://doi.org/10.23755/rm.v47i0.855.
[7] D. Venkatesh, V.N. Raju, Some fixed point outcomes in $\operatorname{Sb-metric~spaces~using~}(\psi, \varphi)$-generalized weakly contractive maps in S_{b}-metric spaces, Global J. Pure Appl. Math. 18 (2022), 753-770.
[8] M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distance between points, Bull. Aust. Math. Soc., 30 (1984), 1-9.
[9] R.J. Shahkoohi, Z. Bagheri, Rational geraghty contractive mappings and fixed point theorems in ordered $b_{2^{-}}$ metric spaces, Sahand Commun. Math. Anal. 13 (2019), 179-212. https://doi.org/10.22130/scma.2017.292 63.
[10] V. Singh, P. Singh, Fixed point Theorems in a generalized S-metric space, Adv. Math.: Sci. J. 10 (2021), 1237-1248. https://doi.org/10.37418/amsj.10.3.12.

[^0]: *Corresponding author
 E-mail address: singhv@ukzn.ac.za
 Received September 14, 2023

