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Abstract. The main purpose of this paper is to define a generalized 2-metric and prove the existence and unique-

ness of fixed points for (ψ,ϕ) generalized weakly contractive mappings in a generalized 2-metric space.

Keywords: fixed points; weak contraction; sub-linear.

2020 AMS Subject Classification: 47H10, 54H25.

1. INTRODUCTION

The study of fixed point theorems for self maps satisfying different contraction conditions

is the center of rigorous research activities. Dutta et al. introduced (ψ,ϕ)-weakly contractive

maps in 2008 and obtained some fixed point results for such contractions, [4]. Later, G. V. R.

Babu et al. introduced (ψ,ϕ)-almost weakly contractive maps in G-metric space, [1]. Fixed

points of contractive maps on S-metric spaces were studied by several authors and since then,

several contractions have been considered for proving fixed point theorems, [6, 2, 3, 10]. The

authors D. Venkatesh et al. further proved some fixed point outcomes in Sb-metric spaces using

(ψ,ϕ)-generalized weakly contractive maps in Sb-metric spaces, [7].
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The concept of an area of a triangle in R2 inspired, Gähler to introduced the concept of a 2-

metric, as a generalization of the metric, [5].

Definition 1.1. [5] Let X be a non-empty set and d : X ×X ×X → [0,∞) be a map satisfying

the following properties

(i) If x,y,z ∈ X then d(x,y,z) = 0 only if at least two of the three points are the same.

(ii) For x,y ∈ X such that x 6= y there exists a point z ∈ X such that d(x,y,z) 6= 0.

(iii) symmetry property: for x,y,z ∈ X ,

d(x,y,z) = d(x,z,y) = d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,y,x).

(iv) rectangle inequality:

d(x,y,z)≤ d(x,y, t)+d(y,z, t)+d(z,x, t)

for x,y,z, t ∈ X .

Then d is a 2-metric and (X ,d) is a 2-metric space.

Definition 1.2. Let X be a non-empty set and d : X ×X ×X → [0,∞) be a map satisfying the

following properties:

(i) If x,y,z ∈ X then d(x,y,z) = 0 only if at least two of the three points are the same.

(ii) For x,y ∈ X such that x 6= y there exists a point z ∈ X such that d(x,y,z) 6= 0.

(iii) symmetry property: for x,y,z ∈ X ,

d(x,y,z) = d(x,z,y) = d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,y,x).

(iv) modified rectangle inequality:there exists α,β ,γ ≥ 1 such that

d(x,y,z)≤ αd(x,y, t)+βd(y,z, t)+ γd(z,x, t)

for x,y,z, t ∈ X .

Then d is a generalized 2-metric and (X ,d) is a generalized 2- metric space.

If α = β = γ = 1 then a generalized 2-metric is a 2-metric.
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Definition 1.3. Let (X ,d) be a generalized 2-metric space. Let x,y ∈ X and ε > 0. Then the

subset

Bε(x,y) = {z ∈ X ;d(x,y,z)< ε}

of X is called a generalized 2-ball centered at x,y with radius ε . A topology can be generated in

X by taking the collection of all generalized 2-balls as a subbasis, which we call the generalized

2-metric topology and is denoted by τ . Thus (X ,τ) is a generalized 2-metric topological space.

Members of τ are called 2-open sets. From the property of the metric is can easily be seen that

Bε(x,y) = Bε(y,x) for ε > 0.

Example 1.4. Let X = [0,1] and define

d(x,y,z) =

 0 , only if at least two of the three points are the same

e|x−y|+|y−z|+|z−x| , otherwise
(1)

For x,y,z ∈ X and using Jensens’ inequality, we get

d(x,y,z)

= e|x−y|+|y−z|+|z−x|

= e
1
2 |x−y|+ 1

3 |y−z|+ 1
6 |z−x|e

1
2 |x−y|+ 2

3 |y−z|+ 5
6 |z−x|

≤ e2e
1
2 |x−y|+ 1

3 |y−z|+ 1
6 |z−x|

≤ e2
{

1
2

e|x−y|+
1
3

e|y−z|+
1
6

e|z−x|
}

≤ e2
{

1
2

e|x−y|+|y−t|+|t−x|+
1
3

e|z−y|+|y−t|+|t−z|+
1
6

e|z−x|+|x−t|+|t−z|
}

= αd(x,y, t)+βd(z,y, t)+ γd(z,x, t)

where α = 1
2e2 ≥ 1, β = 1

3e2 ≥ 1 and γ = 1
6e2 ≥ 1. It follows that d is a generalized 2-metric.

Definition 1.5. Let {xn}n∈N be a sequence in a generalized 2-metric space (X ,d).

a) the sequence {xn}n∈N is convergent to x ∈ X iff for all ξ ∈ X,

lim
n→∞

d(xn,x,ξ ) = 0.
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b) the sequence {xn}n∈N is a Cauchy sequence in X iff for all ξ ∈ X,

lim
n,m→∞

d(xn,xm,ξ ) = 0.

2. MAIN RESULT

Definition 2.1. [8] A function ψ : [0,∞)→ [0,∞) is an altering distance function if it satisfies:

(i) ψ is continuous and non-decreasing.

(ii) ψ(t) = 0 ⇐⇒ t = 0.

To this prove uniqueness and existence of a fixed point the definition was amended to include:

(iii) ψ is sublinear function.

Denote the class of all altering distances functions by Ψ.

Definition 2.2. Let (X ,d) be a generalized 2−metric space and T : X → X is a contraction if

there exists 0≤ λ < 1 such that

d(T x,Ty,ξ )≤ λd(x,y,ξ )

for all x,y,ξ ∈ X .

In [9], authors have proved a similar result in a b2 metric space with the additional property

that the set is partially ordered.

Definition 2.3. Let (X ,d) be a generalized 2-metric space and a mapping T : X→ X is a (ψ,ϕ)

generalized almost weakly contraction if it satisfies the inequality

βψ(d(T x,Ty,ξ ))

≤ ψ

(
max

{
d(x,y,ξ ), d(x,T x,ξ )d(y,Ty,ξ )

1+d(x,y,ξ ) , d(x,T x,ξ )d(y,Ty,ξ )
1+d(T x,Ty,ξ )

})
−ϕ

(
max

{
d(x,y,ξ ), d(x,T x,ξ )d(y,Ty,ξ )

1+d(x,y,ξ ) , d(x,T x,ξ )d(y,Ty,ξ )
1+d(T x,Ty,ξ )

})
+µ min{d(x,T x,ξ ),d(x,Ty,ξ ),d(y,T x,ξ ),d(y,Ty,ξ )}(2)

where x,y,z ∈ X, µ ≥ 0 and ψ,ϕ ∈Ψ.

Theorem 2.4. Let (X ,d) be a generalized complete 2−metric space and T : X→ X be a (ψ,ϕ)

generalized almost weakly contractive mapping. Then T has a unique fixed point.
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Proof. Let x0 ∈ X and define a sequence {xn}n∈N in X by

xn = T xn−1,

for all n ∈ N. If xn = xn+1 for some n ∈ N then we have a fixed point. We assume that xn 6=

xn+1 and we shall show that the sequence {d(xn,xn+1,ξ )}n∈N is a decreasing sequence of real

numbers. By (2), we get

ψ (d(xn,xn+1,ξ ))

= ψ (d(T xn−1,T xn,ξ ))

≤ 1
β

[
ψ

(
max

{
d(xn−1,xn,ξ ),

d(xn−1,T xn−1,ξ )d(xn,T xn,ξ )
1+d(T xn−1,T xn,ξ )

, d(xn−1,T xn−1,ξ )d(xn,T xn,ξ )
1+d(xn−1,xn,ξ )

})
−ϕ

(
max

{
d(xn−1,xn,ξ ),

d(xn−1,T xn−1,ξ )d(xn,T xn,ξ )
1+d(T xn−1,T xn,ξ )

, d(xn−1,T xn−1,ξ )d(xn,T xn,ξ )
1+d(xn−1,xn,ξ )

})
+µ min{d(xn−1,T xn,ξ ),d(xn,T xn,ξ ),d(xn−1,T xn−1,ξ ),d(xn,T xn−1,ξ )}](3)

since 1
β
< 1, we get

ψ (d(xn,xn+1,ξ ))

= ψ (d(T xn−1,T xn,ξ ))

≤ ψ

(
max

{
d(xn−1,xn,ξ ),

d(xn−1,T xn−1,ξ )d(xn,T xn,ξ )
1+d(T xn−1,T xn,ξ )

, d(xn−1,T xn−1,ξ )d(xn,T xn,ξ )
1+d(xn−1,xn,ξ )

})
−ϕ

(
max

{
d(xn−1,xn,ξ ),

d(xn−1,T xn−1,ξ )d(xn,T xn,ξ )
1+d(T xn−1,T xn,ξ )

, d(xn−1,T xn−1,ξ )d(xn,T xn,ξ )
1+d(xn−1,xn,ξ )

})
+µ min{d(xn−1,T xn,ξ ),d(xn,T xn,ξ ),d(xn−1,T xn−1,ξ ),d(xn,T xn−1,ξ )}(4)

Inequality (4), can be reduced since

min{d(xn−1,T xn,ξ ),d(xn,T xn,ξ ),d(xn−1,T xn−1,ξ ),d(xn,T xn−1,ξ )}

= min{d(xn−1,xn+1,ξ ),d(xn,xn+1,ξ ),d(xn−1,xn,ξ ),d(xn,xn,ξ )}

= 0.(5)

Using (5), inequality (4) reduces to

ψ (d(xn,xn+1,ξ ))

≤ ψ (max{d(xn−1,xn,ξ ),d(xn,xn+1,ξ )})−ϕ (max{d(xn−1,xn,ξ ),d(xn,xn+1,ξ )})(6)



6 PRAVIN SINGH, SHIVANI SINGH, VIRATH SINGH

Inequality (6) further reduces, if we assume that

max{d(xn−1,xn,ξ ),d(xn,xn+1,ξ )}= d(xn−1,xn,ξ )

for otherwise, we assume that

max{d(xn−1,xn,ξ ),d(xn,xn+1,ξ )}= d(xn,xn+1,ξ ).

In the latter case, inequality (6), reduces to

ψ (d(xn,xn+1,ξ ))≤ ψ (d(xn,xn+1,ξ ))−ϕ (d(xn,xn+1,ξ ))

(7)

It follows that 0≤−ϕ (d(xn,xn+1,ξ )) which leads to a contradiction. Thus

max{d(xn−1,xn,ξ ),d(xn,xn+1,ξ )}= d(xn−1,xn,ξ ). Hence, we have

ψ (d(xn,xn+1,ξ ))≤ ψ (d(xn−1,xn,ξ ))−ϕ (d(xn−1,xn,ξ ))

≤ ψ (d(xn−1,xn,ξ ))(8)

It follows that {d(xn,xn+1,ξ )}n∈N is a decreasing sequence.

We next shall show that limn→∞ d(xn,xn+1,ξ ) = 0. Suppose that

limn→∞ d(xn,xn+1,ξ ) = r where r > 0 then taking limit as n→ ∞ in inequality (7) we get

ψ(r)≤ ψ(r)−ϕ(r)(9)

which is a contradiction unless we have that r = 0 thus

limn→∞ d(xn,xn+1,ξ ) = 0.

We next shall prove that {xn}n∈N is a Cauchy sequence in X . From the modified rectan-

gular inequality we obtain,

d(xn,xm,ξ )≤ αd(xn,xm,xn+1)+βd(xm,ξ ,xn+1)+ γd(ξ ,xn,xn+1)

≤ αd(xn,xn+1,xm)+βαd(xm,xm+1,ξ )+β
2d(xn+1,xm+1,ξ )

+βγd(xm,xm+1,xn+1)+ γd(xn,xn+1,ξ )

(10)
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Using properties of the altering distance functions we get,

ψ (d(xn,xm,ξ ))

≤ αψ (d(xn,xn+1,xm))+βαψ (d(xm,xm+1,ξ ))+β
2
ψ (d(xn+1,xm+1,ξ ))

+βγψ (d(xm,xm+1,xn+1))+ γψ (d(xn,xn+1,ξ ))

(11)

Using inequality (2) in (11) we get

ψ (d(xn,xm,ξ ))

≤ αψ (d(xn,xn+1,xm))+βαψ (d(xm,xm+1,ξ ))

+βψ

(
max

{
d(xn,xm,ξ ),

d(xn,T xn,ξ )d(xm,T xm,ξ )
1+d(T xn,T xm,ξ )

, d(xn,T xn,ξ )d(xm,T xm,ξ )
1+d(xn,xm,ξ )

})
−βϕ

(
max

{
d(xn,xm,ξ ),

d(xn,T xn,ξ )d(xm,T xm,ξ )
1+d(T xn,T xm,ξ )

, d(xn,T xn,ξ )d(xm,T xm,ξ )
1+d(xn,xm,ξ )

})
+β µ min{d(xn,T xn,ξ ),d(xn,T xm,ξ ),d(xm,T xn,ξ ),d(xm,T xm,ξ )}

+βγψ (d(xm,xm+1,xn+1))+ γψ (d(xn,xn+1,ξ ))(12)

Taking m,n→ ∞ we get,

lim
m,n→∞

max
{

d(xn,xm,ξ ),
d(xn,T xn,ξ )d(xm,T xm,ξ )

1+d(T xn,T xm,ξ )
, d(xn,T xn,ξ )d(xm,T xm,ξ )

1+d(xn,xm,ξ )

}
= lim

m,n→∞
max

{
d(xn,xm,ξ ),

d(xn,xn+1,ξ )d(xm,xm+1,ξ )
1+d(xn+1,xm+1,ξ )

, d(xn,xn+1,ξ )d(xm,xm+1,ξ )
1+d(xn,xm,ξ )

}
= lim

m,n→∞
d(xn,xm,ξ )(13)

and

lim
m,n→∞

min{d(xn,T xn,ξ ),d(xn,T xm,ξ ),d(xm,T xn,ξ ),d(xm,T xm,ξ )}

= lim
m,n→∞

min{d(xn,xn+1,ξ ),d(xn,xm+1,ξ ),d(xm,xn+1,ξ ),d(xm,xm+1,ξ )}

= 0(14)

Taking m,n→ ∞ in (12), using (13) and (14) we get

ψ

(
lim

m,n→∞
d(xn,xm,ξ )

)
≤ βψ

(
lim

m,n→∞
d(xn,xm,ξ )

)
−βϕ

(
lim

m,n→∞
d(xn,xm,ξ )

)
(15)
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Inequality (15) is only true if limm,n→∞ d(xn,xm,ξ ) = 0. Thus we conclude that {xn}n∈N

is a Cauchy sequence in X . Since (X ,d) is complete there exists x′ ∈ X such that

limm,n→∞ d(xn,x′,ξ ) = 0.

We now show that T x′ = x′. Replacing xn = xn+1, xm = T x′ in inequality (15), we get

ψ

(
lim
n→∞

d(xn+1,T x′,ξ )
)
≤ βψ

(
lim
n→∞

d(xn+1,T x′,ξ )
)
−βϕ

(
lim
n→∞

d(xn+1,T x′,ξ )
)

(16)

It follows that

ψ
(
d(x′,T x′,ξ )

)
≤ βψ

(
d(x′,T x′,ξ )

)
−βϕ

(
d(x′,T x′,ξ )

)
(17)

which leads to a contradiction, unless we have d(x′,T x′,ξ ) = 0 i.e., T x′ = x′. To prove unique-

ness of x′, we assume that x′′ is a fixed point of T such that x′ 6= x′′. From inequality (2),

βψ(d(x′,x′′,ξ ))

βψ(d(T x′,T x′′,ξ ))

≤ ψ

(
max

{
d(x′,x′′,ξ ), d(x′,T x′,ξ )d(x′′,T x′′,ξ )

1+d(x′,x′′,ξ ) , d(x′,T x′,ξ )d(x′′,T x′′,ξ )
1+d(T x′,T x′′,ξ )

))
−ϕ

(
max

{
d(x′,x′′,ξ ), d(x′,T x′,ξ )d(x′′,T x′′,ξ )

1+d(x′,x′′,ξ ) , d(x′,T x′,ξ )d(x′′,T x′′,ξ )
1+d(T x′,T x′′,ξ )

))
+µ min

{
d(x′,T x′,ξ ),d(x′,T x′′,ξ ),d(x′′,T x′,ξ ),d(x′′,T x′′,ξ )

}
(18)

It follows that

βψ(d(x′,x′′,ξ ))≤ ψ
(
d(x′,x′′,ξ )

)
−ϕ

(
d(x′,x′′,ξ )

)
(19)

is a contradiction unless d(x′,x′′,ξ ) = 0 which implies that x′ = x′′. �

Corollary 2.5. Let (X ,d) be a generalized complete 2-metric space and a mapping T : X → X

be a self mapping. If there exists ψ,ϕ ∈Ψ such that

βψ(d(T x,Ty,ξ ))≤ ψ

(
max

{
d(x,y,ξ ), d(x,T x,ξ )d(y,Ty,ξ )

1+d(x,y,ξ ) , d(x,T x,ξ )d(y,Ty,ξ )
1+d(T x,Ty,ξ )

})
−ϕ

(
max

{
d(x,y,ξ ), d(x,T x,ξ )d(y,Ty,ξ )

1+d(x,y,ξ ) , d(x,T x,ξ )d(y,Ty,ξ )
1+d(T x,Ty,ξ )

})
(20)

where x,y,z ∈ X and ψ,ϕ ∈Ψ. Then T has a unique fixed point.
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Proof. Follows from theorem 2.4 by taking µ = 0. �

Corollary 2.6. Let (X ,d) be a generalized complete 2-metric space and a mapping T : X → X

be a self mapping. If there exists ϕ ∈Ψ such that

β (d(T x,Ty,ξ ))

≤
(

max
{

d(x,y,ξ ), d(x,T x,ξ )d(y,Ty,ξ )
1+d(x,y,ξ ) , d(x,T x,ξ )d(y,Ty,ξ )

1+d(T x,Ty,ξ )

})
−ϕ

(
max

{
d(x,y,ξ ), d(x,T x,ξ )d(y,Ty,ξ )

1+d(x,y,ξ ) , d(x,T x,ξ )d(y,Ty,ξ )
1+d(T x,Ty,ξ )

})
(21)

where x,y,z ∈ X and ϕ ∈Ψ. Then T has a unique fixed point.

Proof. Follows from theorem 2.4 by taking ψ- the identity mapping �

Example 2.7. Let X = [0,1] and define

d(x,y,z) =

 0 , if at least two of the three points are the same

e|x−y|+|y−z|+|z−x| , otherwise
(22)

It can be shown that d is a generalized 2-metric.

d is a generalized 2-metric.

Let T : X → X be defined by

T (x) = sinx

then for x 6= y 6= z ∈ X,

|T x−Ty|+ |Ty− z|+ |z−T x|

= |sinx− siny|+
∣∣siny− sin(sin−1 z)

∣∣+ ∣∣sinx− sin(sin−1 z)
∣∣

≤ |x− y|+
∣∣y− sin−1 z

∣∣+ ∣∣x− sin−1 z
∣∣

≤ |x− y|+ |y− z|+ |x− z|

Since the exponential function is increasing, it follows that

e|T x−Ty|+|Ty−z|+|z−T x| ≤ e|x−y|+|y−z)|+|x−z|(23)
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Let ψ(t) = t then it follows that for some β ≥ 1

βψ(d(T x,Ty,z))

≤ ψ(d(x,y,z))

≤ ψ

(
max

{
d(x,y,z), d(x,T x,z)d(y,Ty,z)

1+d(x,y,z) , d(x,T x,z)d(y,Ty,z)
1+d(T x,Ty,z)

})
It follows from theorem (2.4), that T has a unique fixed point in X.

3. CONCLUSION

In this paper, we proved the existence and uniqueness of a fixed point for a (ψ,ϕ)-weakly

contractive mapping in a generalized 2-metric space by further imposing a sublinearity property

on the class of all altering distance functions.
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