
Available online at http://scik.org

Adv. Fixed Point Theory, 2023, 13:29

https://doi.org/10.28919/afpt/8235

ISSN: 1927-6303

FIXED POINT THEOREMS IN FUZZY b-METRIC SPACES USING TWO
DIFFERENT t-NORMS

NAVEEN MANI1, MEGHA PINGALE2, RAHUL SHUKLA3,∗, RENU PATHAK2

1Department of Mathematics, Chandigarh University, Punjab, India

2Department of Mathematics, Sandip University, Nashik, Maharashtra, India

3Department of Mathematical Sciences and Computing, Walter Sisulu University, Mthatha 5117, South Africa

Copyright © 2023 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. The primary objective of this study is to derive some theorems in fuzzy b-metric spaces under some
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1. INTRODUCTION

The most active and growing area of research in pure mathematics is the theory of fixed

points. Many different types of nonlinear problems that arise in numerous scientific fields can

be expressed as fixed point problems. The Banach [4] contraction principle is an important tool

to deal problems of this kind. In general, fixed point theory has continued to be successful in

posing and resolving a variety of problems and has made a significant contribution to many

real-life problems. However, with some strong assumptions, many robust fixed point theorems

have been established. The focus of research in recent years have been on understanding the
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principles of fixed point problems and easing the constraints on them by substituting weak-

ened versions of these original, strong assumptions. That’s why now days for scientists and

mathematicians, it is a topic of significant interest (refer to see [25, 26, 29]).

Zadeh [40], in 1965, led down a lovely concept that stands for the justification of ambigu-

ity, imprecision, and manipulation. Compared with classical set theory, this theory is far more

intriguing and helpful. These methods are utilized across various scientific and technical do-

mains, including navigation, image processing, fractals, and many more. Since then, various

authors have significantly broadened the theory of fuzzy sets and its practical uses in order to

utilize this idea in topology and analysis.

In 1975, Authors in [27] introduced fuzzy metric space. Fuzzy metric spaces are just one

of numerous extensions of the metric and metric space. This modification broadens the prob-

abilistic metric space to encompass fuzzy situations. George and Veeramani [9] introduced

and modified the notion of a fuzzy metric space which has crucial implications for quan-

tum particle physics, particularly in relation to the E− infinity and string theories, see also

[37]. This research establishes a strong basis for the extension of fixed-point theory in fuzzy

metric space. Grabiec [11], in 1983, outlined the fuzzy metric’s completeness property and

extended the Banach contraction theorem in these spaces. Since then many generalizations

[10, 12, 21, 22, 8, 7, 23, 28, 35, 18, 13, 14, 19, 20, 15, 16, 38, 17, 38, 39]. and extensions have

been given by various authors

The notion of b−metric was initiated from the works of Bourbaki [5] and Bakhtin [3]. Later,

Czerwik [6] introduced and formally defined the notion of b-metric space. Examples and fixed

point results about these spaces were discussed by different authors [2, 1, 31]. On the other

hand, Sedghi and Shobe [33, 34] introduced the notion of fuzzy b− metric space, which is in

fact far wider than that of fuzzy metric spaces, by replacing the triangle inequality with weaker

one i.e.

B(g,z, t +u)≥W(B(g,e,
t
λ
),B(e,z,

u
λ
)) with λ ≥ 1.

In 2020, Oner and Sostak [30] laid out the properties and definition of strong fuzzy b− metric

spaces. Some fixed point results in complete fuzzy strong b-metric spaces was also proved by

Kanwal et al.[24].
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Next section, will provide an overview of some important concepts (such as t- norm) re-

lated to fuzzy metric spaces, b-metric spaces and fuzzy b-metric spaces. Additionally, several

fundamental terms and results that will be relevant to the sequel are discussed.

2. FUNDAMENTAL CONCEPTS AND RELEVANT LITERATURE

Let’s start by defining the terms “t− norm or conjunction”.

Definition 2.1. [32] Let I = [0,1]. A binary operation W : I× I → I is said to be continuous

conjunction or t-norm if the following conditions are satisfied:

(1) W is continuous, commutative and associative,

(2) W(g,1) = g for all g ∈ [0,1], (boundary condition)

(3) W(g,e)≤W(h,k) for g,e,h,k ∈ [0,1] such that g≤ h and e≤ k. (Monotonicity)

There are three most commonly used t-norms in literature:

(1) WP(g,e) = ge , is called product triangular norm

(2) Wmin(g,e) = min{g,e}, is called minimum triangular norm

(3) WL(g,e) = max{g+ e−1,0}, is called Lukasiewicz triangular norm

Definition 2.2. [27] Let W be a continuous t-norm, Y is an arbitrary (nonempty) set and B is a

fuzzy set on Y2× (0,∞). Then a 3-tuple (Y,B,W) is known as a fuzzy metric space if for all

t,s > 0 and for all g,e,z ∈ Y, following conditions hold:

B -1.) B(g,e, t)> 0,

B -2.) B(g,e, t) = 1 if and only if g = e,

B -3.) B(g,e, t) = B(e,g, t),

B -4.) W(B(g,e, t),B(e,z,s))≤ B(g,z, t + s),

B -5.) B(g,e, ·) : (0,∞)→ [0,1] is continuous.

Example 2.3. Let B : Y×Y×R+∪{0} −→ [0,1], and define B for all l ≥ 0, by

B(g,e, l) =
min{g,e}+ l
max{g,e}+ l

∀ g,e ∈ Y.

Then B is a fuzzy metric.
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Definition 2.4. [33] Let W be a continuous conjunction, b≥ 1 is a real number, Y is an arbitrary

(nonempty) set and B is a fuzzy set on Y2×(0,∞). Then a 3-tuple (Y,B,W) is known as a fuzzy

b− metric space if for all t,s > 0 and for all g,e,z ∈ Y, following conditions hold:

FB-1.) B(g,e, t)> 0,

FB-2.) B(g,e, t) = 1 if and only if g = e,

FB-3.) B(g,e, t) = B(e,g, t),

FB-4.) W
(
B
(
g,e, t

b

)
,B
(
e,z, s

b

))
≤ B(g,z, t + s),

FB-5.) B(g,e, ·) : (0,∞)→ [0,1] is continuous.

Following are few examples of fuzzy b−metric spaces.

Example 2.5. [33] Suppose d is a b− metric on Y and define B(g,e, t) = e−
−d(g,e)

t . Define t−

norm as g∗ e = ge ∀ g,e ∈ [0,1]. Then B is a fuzzy b-metric.

Example 2.6. [34] Suppose d is a b− metric on Y and define B(g,e, t) = t
t+d(g,e) . If we set t−

norm as g∗ e = ge ∀ g,e ∈ [0,1]. Then B is a fuzzy b-metric.

Example 2.7. [34] Let B(g,e, t) = e
−|g−e|q

t , where q > 1 is a real number. Then B is a fuzzy b−

metric with b = 2q−1.

If we set q = 2, in above example (Example 2.7),then it can be easily verify that (Y,B,W)

is not a fuzzy metric space. It means that, in general, not every fuzzy b-metric on Y is a fuzzy

metric on Y.

Definition 2.8. [31] We say a function h defined from R to R be a b-non-decreasing function if

for all g,e ∈ R, g > e implies f (g)≥ f (e).

Lemma 2.9. [34] Let B(g,e, ·) be a fuzzy b-metric space. Then B(g,e, t) is b non-decreasing

with respect to t for all g,e ∈ Y.

Let us recollect the ideas of convergence, completeness and some important definitions and

propositions in a fuzzy b-metric space.
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Definition 2.10. [34] Let (Y,B,W) be a fuzzy b-metric space. Define an open sphere B(g,r, t)

with center at g ∈ Y and radius r ∈ (0,1) as

B(g,r, t) = {e ∈ Y : B(g,e, t)> 1− r}, ∀ t > 0.

Definition 2.11. [34] Suppose (Y,B,W) is fuzzy b-metric space. Then we say that a sequence

{gi} ∈ Y:

(1) converges to g if B(gi,g, t)→ 1 as i→ ∞ for each t > 0.

(2) is called a Cauchy sequence, if for all t > 0 and ε ∈ (0,1), there exists j0 ∈ N such that

1− ε < B
(
gi,g j, t

)
for all i, j ≥ j0.

Remark 2.12. Triplet (Y,B,W) is said to be complete fuzzy b-metric space, if every Cauchy

sequence in Y is convergent.

Lemma 2.13. [34] In a fuzzy b−metric space (Y,B,W), if a sequence {gn} in Y converges to

g, then

(1) g is always unique.

(2) it is a Cauchy sequence.

Lets recall the following proposition.

Proposition 2.14. [34] Suppose we have a sequence {gn} converges to g in a fuzzy b− metric

space (Y,B,W). Then

B
(

g,e,
t
b

)
≤ limsup

n→∞

B(gn,e, t)≤ B(g,e,bt),

B
(

g,e,
t
b

)
≤ liminf

n→∞
B(gn,e, t)≤ B(g,e,bt).

Lemma 2.15. [31] Let (Y,B,W) be a fuzzy b− metric space and {gn} ∈ Y is a sequence. If

there exists 0 < λ < 1
b such that

B(gn,gn+1, t)≥ B
(

gn−1,gn,
t
λ

)
, n ∈ N, t > 0,

and there exist g0,g1 ∈ Y and v ∈ (0,1) such that

lim
n→∞

W∞
i=nB

(
g0,g1,

t
vi

)
= 1, t > 0.

Then {gn} is a Cauchy sequence.
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Remark 2.16. In this paper, we’ll additionally utilize a fuzzy b - metric space in the context of

the Definition 2.4 with an extra constraint limt→∞B(g,e, t) = 1.

The primary objective of this paper is to present two theorems, which guarantees the existence

and uniqueness of fixed points under some assumptions on t - norms, within the context of a

fuzzy b-metric spaces, satisfying rational contractions. In section 4, some consequence results

of our main finding and an example is given to justify the stability and importance of our result.

3. MAIN RESULT

In this section, first we prove the following Lemma which is important in proving our main

result. Secondly, we derive two results satisfying two different types rational contractions for

two different type of t-norms, for single-valued continuous and discontinuous mappings.

Lemma 3.1. If for some λ ∈ (0,1) and g,e ∈ Y,

1
B(g,e, t)

≤ 1
B
(
g,e, t

λ

) , t > 0,(3.1)

then g = e.

Proof. Condition (3.1) gives that

1
B(g,e, t)

≤ 1
B
(
g,e, t

λ

) , t > 0,

implies that

B(g,e, t)≥ B
(

g,e,
t

λ n

)
, n ∈ N, t > 0.

taking limit n→ ∞, we get

B(g,e, t)≥ lim
n→∞

B
(

g,e,
t

λ n

)
= 1, t > 0,

and by condition (B1) it follows that g = e. �

Theorem 3.2. Let f : Y→ Y be a map defined on complete fuzzy b-metric space (Y,B,W).

Suppose, if there exists a 0 < λ < 1
b such that for all g,e ∈ Y and t > 0,

B( f g, f e, t)≥ N(g,e,
t
λ
),(3.2)
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where

N(g,e,
t
λ
) = min

{
B
(
g,e, t

λ

)
,
B( f g,g, t

λ
)B( f e,e, t

λ
)

B(g,e, t
λ
)

,
B( f g,g, t

λ
)[1+B( f e,e, t

λ
)]

[1+B(g,e, t
λ
)]

}
(3.3)

and there exist g0 ∈ Y and v ∈ (0,1) such that for all t > 0

lim
n→∞

W∞
i=nB

(
g0, f g0,

t
vi

)
= 1.

Then there exist a unique g ∈ Y such that f g = g.

Proof. Since Y is non-empty, therefore there exists g0 ∈ Y and gn+1 = f gn,n ∈ N. By (3.2) for

every n ∈ N and for all t > 0, with g = gn and e = gn−1, we have

B(gn+1,gn, t) = B( f gn, f gn−1, t)≥ N(gn,gn−1,
t
λ
),(3.4)

where

N(gn,gn−1,
t
λ
) = min


B
(
gn,gn−1,

t
λ

)
,
B( f gn,gn,

t
λ
)B( f gn−1,gn−1,

t
λ
)

B(gn,gn−1,
t
λ
)

,

B( f gn,gn,
t
λ
)[1+B( f gn−1,gn−1,

t
λ
)]

[1+B(gn,gn−1,
t
λ
)]


= min


B
(
gn,gn−1,

t
λ

)
,
B(gn+1,gn,

t
λ
)B(gn,gn−1,

t
λ
)

B(gn,gn−1,
t
λ
)

,

B(gn+1,gn,
t
λ
)[1+B(gn,gn−1,

t
λ
)]

[1+B(gn,gn−1,
t
λ
)]


= min

{
B
(

gn,gn−1,
t
λ

)
,B
(

gn+1,gn,
t
λ

)}
If B

(
gn+1,gn,

t
λ

)
< B

(
gn,gn−1,

t
λ

)
, then N(gn,gn−1,

t
λ
) = B

(
gn+1,gn,

t
λ

)
. Therefore on using

Eq (3.4) and by Lemma 3.1 it follows that gn = gn+1, n ∈N. This implies that N(gn,gn−1,
t
λ
) =

B
(
gn,gn−1,

t
λ

)
, and so again Eq (3.4) gives

B(gn+1,gn, t)≥ B
(

gn,gn−1,
t
λ

)
, n ∈ N, t > 0

Thus we get {gn} is a Cauchy sequence (using Lemma 2.15.Therefore there exists g ∈ Y such

that

lim
n→∞

gn = g and lim
n→∞

B(g,gn, t) = 1, t > 0.(3.5)
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Next, We will show that f g = g. i.e. g is a fixed point of f . Let σ1 ∈ (λb,1) and σ2 = 1−σ1.

By Eq. (3.2) we have

B( f g,g, t)≥W
(
B
(

f g, f gn,
tσ1

b

)
,B
(

gn+1,g,
tσ2

b

))
≥W

(
N
(

g,gn,
tσ1

b

)
,B
(

gn+1,g,
tσ2

b

))
(3.6)

where

N
(

g,gn,
tσ1

b

)
= min


B
(
g,gn,

tσ1
b

)
,
B( f g,g, tσ1

b )B( f gn,gn,
tσ1

b )
B(g,gn,

tσ1
b )

,

B( f g,g, tσ1
b )[1+B( f gn,gn,

tσ1
b )]

[1+B(g,gn,
tσ1

b )]


= min


B
(
g,gn,

tσ1
b

)
,
B( f g,g, tσ1

b )B(gn+1,gn,
tσ1

b )
B(g,gn,

tσ1
b )

,

B( f g,g, tσ1
b )[1+B(gn+1,gn,

tσ1
b )]

[1+B(g,gn,
tσ1

b )]


Taking n→ ∞ and using Eq.(3.5), we get

lim
n→∞

N
(

g,gn,
tσ1

b

)
= min

{
1,B

(
f g,g,

tσ1

b

)}
(3.7)

Thus in Eq.(3.6), on taking n→ ∞ and using Eq. (3.7), we have

B( f g,g, t)≥W
(
B
(

g, f g,
tσ1

bλ

)
,1
)
= B

(
g, f g,

t
v

)
, t > 0,(3.8)

where v = bλ

σ1
∈ (0,1). So for all t > 0,

B( f g,g, t)≥ B
(

f g,g,
t
v

)
,

and hence it follows that f g = g (by Lemma 3.1).

For uniqueness, suppose that g 6= e are two fixed points for f , that is, f g = g and f e = e.

From Eq. (3.2), we have

B( f g, f e, t)≥ N(g,e,
t
λ
),(3.9)

where

N(g,e,
t
λ
)

= min

{
B
(

g,e,
t
λ

)
,
B
(

f g,g, t
λ

)
B
(

f e,e, t
λ

)
B
(
g,e, t

λ

) ,
B
(

f g,g, t
λ

)
[1+B

(
f e,e, t

λ

)
]

[1+B
(
g,e, t

λ

)
]

}
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= min

{
B
(

g,e,
t
λ

)
,
B
(
g,g, t

λ

)
B
(
e,e, t

λ

)
B
(
g,e, t

λ

) ,
B
(
g,g, t

λ

)
[1+B

(
e,e, t

λ

)
]

[1+B
(
g,e, t

λ

)
]

}

= min

{
B
(

g,e,
t
λ

)
,

1
B
(
g,e, t

λ

) , 2
[1+B

(
g,e, t

λ

)
]

}
(3.10)

Case - 1 If B
(
g,e, t

λ

)
= 1, then Eq. (3.10) implies that N(g,e, t

λ
) = 1. Consequently we get

B( f g, f e, t) = 1. This is possible only if g = e. Hence the proof.

Case - 2 If 0<B
(
g,e, t

λ

)
6= 1, and B

(
g,e, t

λ

)
<min

{
1

B(g,e, t
λ
)
, 2
[1+B(g,e, t

λ
)]

}
, then N(g,e, t

λ
)=

B
(
g,e, t

λ

)
. Hence from Eq. (3.9), we get

B( f g, f e, t)≥ B(g,e,
t
λ
) = B(g,e,

t
λ
)

This is possible ony if g = e.

Case - 3 If 0 < B
(
g,e, t

λ

)
6= 1, and 1

B(g,e, t
λ
)
< min

{
B
(
g,e, t

λ

)
, 2
[1+B(g,e, t

λ
)]

}
or 2

[1+B(g,e, t
λ
)]
<

min
{
B
(
g,e, t

λ

)
, 1
B(g,e, t

λ
)

}
then

N(g,e,
t
λ
) =

1
B
(
g,e, t

λ

) or N(g,e,
t
λ
) =

2
[1+B

(
g,e, t

λ

)
]

Thus from inequalities (3.9), we get either

B( f g, f e, t)≥ 1
B
(
g,e, t

λ

) or B( f g, f e, t)≥ 2
[1+B

(
g,e, t

λ

)
]

implies that

B( f g, f e, t)≥ 1
B
(

f g, f e, t
λ

) or B( f g, f e, t)≥ 2
[1+B

(
f g, f e, t

λ

)
]

Consequently on using the condition (3.1) (in both cases), we get

B( f g, f e, t)≥ 1

This implies that g = e. This completes the proof.

�

In our next Theorem, we refine the contraction and will make use of Wmin conjunction to get

unique fixed point for self maps in fuzzy b-metric space.
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Theorem 3.3. Let f : Y→ Y be a map defined on complete fuzzy b-metric space (Y,B,Wmin).

Suppose, if there exists a 0 < λ < 1
b such that for all g,e ∈ Y and t > 0,

B( f g, f e, t)≥min

{
B
(

f g,e, 2t
λ

)
B
(

f e,g, t
λ

)
B
(
g, f g, t

λ

) ,
B
(

f g,g, t
λ

)
B
(

f e,e, t
λ

)
B
(
g,e, t

λ

) }
(3.11)

for all g,e ∈ Y, t > 0. Then there exist a unique g ∈ Y such that f g = g.

Proof. Let g0 ∈ Y and gn+1 = f gn,n ∈ N. By (3.11) with g = gn and e = gn−1, for every n ∈ N

and every t > 0, we have

B( f gn, f gn−1, t) = B(gn+1,gn, t)

≥min

{
B
(

f gn,gn−1,
2t
λ

)
B
(

f gn−1,gn,
t
λ

)
B
(
gn, f gn,

t
λ

) ,
B
(

f gn,gn,
t
λ

)
B
(

f gn−1,gn−1,
t
λ

)
B
(
gn,gn−1,

t
λ

) }

≥min

{
B
(
gn+1,gn−1,

2t
λ

)
B
(
gn,gn,

t
λ

)
B
(
gn,gn+1,

t
λ

) ,
B
(
gn+1,gn,

t
λ

)
B
(
gn,gn−1,

t
λ

)
B
(
gn,gn−1,

t
λ

) }
(3.12)

On using condition (B 4) (of Definition 2.4) and assumption that W=Wmin, we have

B(gn+1,gn, t)

≥min

{
min

{
B
(
gn+1,gn,

t
bλ

)
,B
(
gn,gn−1,

t
bλ

)}
B
(
gn,gn+1,

t
λ

) ,B
(

gn+1,gn,
t
λ

)}

> min

{
B
(
gn+1,gn,

t
bλ

)
,B
(
gn,gn−1,

t
bλ

)
B
(
gn,gn+1,

t
bλ

) ,B
(

gn+1,gn,
t

bλ

)}

≥min
{
B
(

gn,gn−1,
t

bλ

)
,B
(

gn+1,gn,
t

bλ

)}
(3.13)

If B
(
gn+1,gn,

t
bλ

)
< B

(
gn,gn−1,

t
bλ

)
, then on using Eq (3.13) and by Lemma 3.1 it follows that

gn = gn+1, n ∈ N. This proves the result.

Thus assume that B
(
gn+1,gn,

t
bλ

)
> B

(
gn,gn−1,

t
bλ

)
and so from Eq (3.13), we get

B(gn+1,gn, t)≥ B
(

gn,gn−1,
t

bλ

)
, n ∈ N, t > 0

Thus we get {gn} is a Cauchy sequence (using Lemma 2.15.Therefore there exists g ∈ Y such

that

lim
n→∞

gn = g and lim
n→∞

B(g,gn, t) = 1, t > 0.(3.14)
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Next we prove that g is a fixed point for f .

Let σ1 ∈ (λb2,1) and σ2 = 1−σ1. On using property (B 4) for W=Wmin, we have

B( f g,g, t)≥min
{
B
(

f g, f gn,
tσ1

b

)
,B
(

gn+1,g,
tσ2

b

)}
(3.15)

From Eq. (3.11) for n ∈ N, t > 0, we have

B
(

f g, f gn,
tσ1

b

)
≥min

B
(

f g,gn,
2tσ1
bλ

)
B
(

f gn,g, tσ1
bλ

)
B
(
g, f g, tσ1

bλ

) ,
B
(

f g,g, tσ1
bλ

)
B
(

f gn,gn,
tσ1
bλ

)
B
(
g,gn,

tσ1
bλ

)


≥min

B
(

f g,gn,
2tσ1
bλ

)
B
(
gn+1,g,

tσ1
bλ

)
B
(
g, f g, tσ1

bλ

) ,
B
(

f g,g, tσ1
bλ

)
B
(
gn+1,gn,

tσ1
bλ

)
B
(
g,gn,

tσ1
bλ

)


≥min


min
{
B
(

f g,g, tσ1
b2λ

)
,B
(

g,gn,
tσ1
b2λ

)}
B(gn+1,g,

tσ1
bλ
)

B(g, f g, tσ1
bλ
)

,

B( f g,g, tσ1
bλ
)B(gn+1,gn,

tσ1
bλ
)

B(g,gn,
tσ1
bλ
)


Taking n→ ∞ and using Eq.(3.14), we get

lim
n→∞

B
(

f g, f gn,
tσ1

b

)
≥min

min
{
B
(

f g,g, tσ1
b2λ

)
,1
}

B
(
g, f g, tσ1

bλ

) ,B
(

f g,g,
tσ1

bλ

)
> min

{
1,B

(
f g,g,

tσ1

bλ

)}
.(3.16)

On taking n→ ∞ in Eq.(3.15) and using Eq. (3.16), we have

B( f g,g, t)≥min
{

1,B
(

f g,g,
tσ1

bλ

)
,1
}

≥ B
(

f g,g,
t
v

)
, t > 0,

where v = bλ

σ1
∈ (0,1).Therefore Lemma 3.1 implies that f g = g.

For uniqueness, suppose that g and e are fixed points for f , that is, f g = g and f e = e.

By Eq. (3.11), we get

B(g,e, t) = B( f g, f e, t)

≥min

{
B
(

f g,e, 2t
λ

)
B
(

f e,g, t
λ

)
B
(
g, f g, t

λ

) ,
B
(

f g,g, t
λ

)
B
(

f e,e, t
λ

)
B
(
g,e, t

λ

) }
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≥min

{
B
(

f g,e, 2t
λ

)
B
(
e,g, t

λ

)
B
(
g,g, t

λ

) ,
B
(
g,g, t

λ

)
B
(
e,e, t

λ

)
B
(
g,e, t

λ

) }

≥min

{
min

{
B
(

f g,g,
t

bλ

)
,B
(

f g,e,
t

bλ

)}
,

1
B
(
g,e, t

λ

)}

≥min

{
1,B

(
f g,e,

t
bλ

)
,

1
B
(
g,e, t

λ

)}(3.17)

This implies that either

B(g,e, t) = 1 or B(g,e, t) = B
(

f g,e,
t

bλ

)
or B(g,e, t) =

1
B
(
g,e, t

λ

)
In all three cases, if we use conditions of Definition 2.4 and Lemma 3.1, we get that g = e i.e

fixed point is unique. This completes the proof of the Theorem. �

4. COROLLARIES AND EXAMPLES

Here first we present some consequences of our main finding. Some of them are new in nature

and few are generalized version of previous derived results. Later we furnish two examples in

support of our main findings. Consider for all g,e ∈ Y, t > 0,

N(g,e,
t
λ
) = min

{
B
(
g,e, t

λ

)
,
B( f g,g, t

λ
)B( f e,e, t

λ
)

B(g,e, t
λ
)

,
B( f g,g, t

λ
)[1+B( f e,e, t

λ
)]

[1+B(g,e, t
λ
)]

}
In general, either

N(g,e,
t
λ
) = B

(
g,e,

t
λ

)
or

N(g,e,
t
λ
) =

B
(

f g,g, t
λ

)
B
(

f e,e, t
λ

)
B
(
g,e, t

λ

)
or

N(g,e,
t
λ
) =

B
(

f g,g, t
λ

)
[1+B

(
f e,e, t

λ

)
]

[1+B
(
g,e, t

λ

)
]

On making use of above three equalities in Theorem 3.2, we get the following three results.

Corollary 4.1. Let f : Y→ Y be a map defined on complete fuzzy b-metric space (Y,B,W).

Suppose, if there exists a 0 < λ < 1
b such that for all g,e ∈ Y and t > 0,

B( f g, f e, t)≥ B(g,e,
t
λ
),
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and there exist g0 ∈ Y and v ∈ (0,1) such that for all t > 0.

lim
n→∞

W∞
i=nB

(
g0, f g0,

t
vi

)
= 1.

Then f has a unique fixed point in Y.

Corollary 4.2. Let f : Y→ Y be a map defined on complete fuzzy b-metric space (Y,B,W).

Suppose, if there exists a 0 < λ < 1
b such that for all g,e ∈ Y and t > 0,

B( f g, f e, t)≥
B
(

f g,g, t
λ

)
B
(

f e,e, t
λ

)
B
(
g,e, t

λ

) ,

and there exist g0 ∈ Y and v ∈ (0,1) such that for all t > 0

lim
n→∞

W∞
i=nB

(
g0, f g0,

t
vi

)
= 1.

Then f has a unique fixed point in Y.

Corollary 4.3. Let f : Y→ Y be a map defined on complete fuzzy b-metric space (Y,B,W).

Suppose, if there exists a 0 < λ < 1
b such that for all g,e ∈ Y and t > 0,

B( f g, f e, t)≥
B
(

f g,g, t
λ

)
[1+B

(
f e,e, t

λ

)
]

[1+B
(
g,e, t

λ

)
]

,

and there exist g0 ∈ Y and v ∈ (0,1) such that for all t > 0

lim
n→∞

W∞
i=nB

(
g0, f g0,

t
vi

)
= 1.

Then f has a unique fixed point in Y.

Corollary 4.4. Let f : Y→ Y be a map defined on complete fuzzy b-metric space (Y,B,W).

Suppose, if there exists a 0 < λ < 1
b such that for all g,e ∈ Y and t > 0,

B( f g, f e, t)≥ k1
B
(

f g,e, 2t
λ

)
B
(

f e,g, t
λ

)
B
(
g, f g, t

λ

) + k2
B
(

f g,g, t
λ

)
B
(

f e,e, t
λ

)
B
(
g,e, t

λ

)
where k1,k2 > 0 with k1 + k2 > 1, and there exist g0 ∈ Y and v ∈ (0,1) such that for all t > 0

lim
n→∞

W∞
i=nB

(
g0, f g0,

t
vi

)
= 1.

Then f has a unique fixed point in Y.
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Proof. For all k1,k2 > 0, we have

B( f g, f e, t)≥ k1
B
(

f g,e, 2t
λ

)
B
(

f e,g, t
λ

)
B
(
g, f g, t

λ

) + k2
B
(

f g,g, t
λ

)
B
(

f e,e, t
λ

)
B
(
g,e, t

λ

)
≥ (k1 + k2)min

{
B
(

f g,e, 2t
λ

)
B
(

f e,g, t
λ

)
B
(
g, f g, t

λ

) ,
B
(

f g,g, t
λ

)
B
(

f e,e, t
λ

)
B
(
g,e, t

λ

) }
.

Since k1 + k2 > 1, then

B( f g, f e, t)≥min

{
B
(

f g,e, 2t
λ

)
B
(

f e,g, t
λ

)
B
(
g, f g, t

λ

) ,
B
(

f g,g, t
λ

)
B
(

f e,e, t
λ

)
B
(
g,e, t

λ

) }
.

On applying Theorem 3.3, we get result. �

FIGURE 1. Graph of the function f (g) and the inequality (3.2).

Example 4.5. Let Y= [0,4]. Define

B(g,e, t) = exp
(
−(g− e)2

t

)
and f (g) =

3
5

g

for all g,e ∈ Y, and t > 0. Clearly the triplet (Y,B,W) is a fuzzy b-metric space with b =

22−1 = 2.

Also, f (0) = 0 is the only one fixed point of f in Y= [0,4] (see Figure 1).

Now from eq (3.2), for all g,e ∈ [0,1] and for λ ∈ (1
5 ,

1
2), we have

B( f g, f e, t) = exp
(
−(3/5)2(g− e)2

t

)
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= exp
(
−9(g− e)2

25t

)
≥ N

(
g,e,

t
λ

)
.

In order to get the better understanding of the example, Graphical representation of function

f (g) and the inequality (3.2) are given in Fig. 1.

Example 4.6. Let Y = (0,1],B(g,e, t) = e−
(g−e)2

t and define W = Wp(a,b) = ab. Then

(Y,B,W) is a complete b-fuzzy metric space with b = 2.

Let us define a function

h(g) =


3
2 , g ∈ (0,1)

1, g = 1

FIGURE 2. Graph of the function h(g) and the inequality (3.11) for different cases.

Case- E1: Let us start with trivial case, that is, if g = e = 1. Then B(hg,he, t) = 1 =

min{1,1} , t > 0. Thus Condition (3.11) of Theorem 3.3 satisfied.

Case- E2: If g,e ∈ (0,1), then for any 0 < λ < 1
4 = 1

b2 , and by referring Fig 2 -(b), we can see

that condition (3.11) of Theorem 3.3 holds good.
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Case- E3: If g ∈ (0,1) and e = 1, then for any 0 < λ < 1
4 = 1

b2 , Condition (3.11) of Theorem

3.3 holds good (refer to see Fig 2 -(c)).

Case- E4: If e ∈ (0,1) and g = 1, then for any 0 < λ < 1
4 = 1

b2 , Condition (3.11) of Theorem

3.3 holds good. (refer to see Fig 2 -(d))

Thus all the conditions of Theorem 3.3 are satisfied. Also 1 is the unique fixed point of the map

h(g).

5. CONCLUSION

In this article, two theorems (Theorem 3.2 and Theorem 3.3) are proved under two different

t- norms which guarantee the existence and uniqueness of fixed points in fuzzy b-metric spaces

satisfying rational expression. We have also presented some consequence results. Some of them

are extension of existing results of literature, such as Grabiec [11] and Gupta and Mani [17],

and few of them are new in nature (such as Corollary 4.3 and Corollary 4.4). In support of our

main findings, two examples (Example 2.3 and Example 2.5) are demonstrated with graphical

representation of inequalities.
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