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Abstract. In this paper, we introduce and study a modified inertial subgradient extragradient iterative method for

solving bilevel split quasimonotone variational inequality problems in the framework of real Hilbert spaces. The

method involves strongly monotone operators and quasimonotone operators as the cost operators. In addition,

we obtain a strong convergence result of the proposed method under some standard conditions on the control

parameters of the method. Our method does not require the prior knowledge of the operator norm or the coefficient

of the underlying operator in the space of infinite dimensional real Hilbert spaces. Finally, we provide some

numerical experiments to demonstrate the efficiency of our proposed methods in comparison with some existing

methods. Our result generalizes and improves some well-known results in literature.
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1. INTRODUCTION

Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and H2 re-

spectively, A : H1→ H1, B : H2→ H2 are two operators and T : H1→ H2 is a bounded linear
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operator. The split variational inequality problem (SVIP) as introduced and studied by Censor

et al. in [5, 7] is defined as:

Find x∗ ∈C that solves 〈Ax∗,x− x∗〉 ≥ 0 ∀ x ∈C(1)

and

y∗ = T x∗ ∈ Q that solves 〈By∗,y− y∗〉 ≥ 0 ∀ y ∈ Q.(2)

We denote the solution set of the problems (1), (2) and (1)-(2) by V I(C,A), V I(Q,B) and Γ,

respectively. The SVIP has wide applications in many fields such as phase retrieval, medical

image reconstruction, signal processing, and radiation therapy treatment planning see ([3, 8, 9])

and the references therein. It is easy see that, the SVIP (1) -(2) is a combination of the classical

variational inequality problems (VIP) introduced and studied independently by by Stampacchia

[26] and Fichera [10, 11] and the well-known split feasibility problem (SFP) introduced and

studied by Censor and Elfving in [9]: Find x∗ ∈C such that

y∗ = T x∗ ∈ Q.(3)

The notion of SVIP has been studied extensively by many researchers, see [7, 19, 20, 25, 26] and

the reference therein for details. In 2017, Anh et al., [1] introduced and studied the notion of

a Bilevel Split Variational Inequality Problem (BSVIP) involving a strongly monotone operator

and a pseudomonotone operator. The BSVIP is defined as follows:

Find x∗ ∈ Γ such that 〈Fx∗,x− x∗〉 ≥ 0 ∀ x ∈ Γ,(4)

where Γ is the solution set of a SVIP (1)-(2) and F : H1→ H1 is a strongly monotone and L-

Lipschitz continuous operator on H1. It is easy to see that (4) is a generalization of SVIP (1)-(2).

Over the years one of the interesting techniques for approximating the solution of any bilevel

problem is the method of regularization or the use of the penalty function. These methods

will only work if the underlying cost operators are monotone, else, the methods will not be

applicable. For example, if the underlying operator is pseudomonotone, the regularization or

the use of the penalty function will not be applicable, because, the sum of a strongly monotone
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operator and a pseudomonotone operator is not always certain to be a monotone operator or a

pseudomonotone operator. Due to this drawback, researchers have employed the use of extra-

gradient method (EM), subgradient extragradient method (SEGM), the projection contraction

methods (PCM) and the Tseng’s extragradient methods for solving any form of bilevel prob-

lems. In particular, Anh et al., [1] applied the SEGM method to solve BSVIP in the framework

of Hilbert spaces. They defined their iterative method as follows.



un = T xn,

vn = PQ(un−µnF2un),

wn = PQn(un−µnF2vn),

where Qn = {w ∈ H2 : 〈un−µnF2un− vn,w− vn〉 ≤ 0}

yn = xn +δnT ∗(wn−un)

tn = PC(yn−λnF1yn)

zn = PCn(yn−λF1tn)

where Cn = {y ∈ H1 : 〈yn−λnF1yn− tn,y− tn〉 ≤ 0}

xn+1 = ηnxn +(1−ηn)zn−αnµFzn,

(5)

where F : H1→ H1 is β -strongly monotone and L-Lipschitz continuous on H1, F1 : H1→ H1

is pseudomonotone and L1-Lipschitz continuous on H1, F2 : H2→ H2 is pseudomonotone and

L2-Lipschitz continuous on H2, δn ⊂ [a,b] for some a,b ∈
(

0, 1
‖T‖+1

)
,λn ⊂ [c,d] for some

c,d ∈
(

0, 1
L1

)
and µn ⊂ [e, f ] for some e, f ∈

(
0, 1

L2

)
. They established that the sequence

generated by the iterative method (5) converges strongly to a unique solution of the BSVIP (4).

However, we have the following remarks regarding the iterative method (5):

Remark 1.1. (1) The operators F2 and F1 are pseudomonotone and Lipschitz continuous.

It is natural to ask if it is possible to weaken the operators F1 and F2.

(2) It will be very difficult or impossible to compute the value of δn, since, it depends on

the value of the operator norm. That is δn ⊂ [a,b] for some a,b ∈
(

0, 1
‖T‖+1

)
.
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(3) Similarly, it will be difficult or impossible to compute the values of λn and µn since

λn ⊂ [c,d] for some c,d ∈
(

0, 1
L1

)
and µn ⊂ [e, f ] for some e, f ∈

(
0, 1

L2

)
.

(4) Is it possible to improve the convergence rate of the iterative method.

Furthermore, Huy et al., [16] introduced and studied a modified Tseng’s EM for solving BSVIP

as follows: 

un = T xn,

vn = PQ(un−µnF2un),

wn = vn−µn(F2vn−F2un),

yn = xn +δnT ∗(wn−un)

zn = PC(yn−λnF1yn)

tn = zn−λn(F1zn−F1yn)

xn+1 = ηnxn +(1−ηn)tn−αnµFtn,

(6)

where

µn+1 =


min

{ ‖un−vn‖
‖F2un−F2vn‖ ,µn}, if F2un 6= F2vn

µn, F2un = F2vn,

(7)

δn+1 =



‖wn−un‖
2‖T ∗(wn−un)‖ , if T ∗(wn−un) 6= 0

0, T ∗(wn−un) = 0,

(8)

F : H1→ H1 is β -strongly monotone and L-Lipschitz continuous on H1, F1 : H1→ H1 is pseu-

domonotone and L1-Lipschitz continuous on H1, F2 : H2 → H2 is pseudomonotone and L2-

Lipschitz continuous on H2. They established that the sequence generated by the iterative

method (6) converges strongly to a unique solution of the BSVIP (4). It is easy to see that

the iterative method (6) provides an affirmative solution to some of the concerns in the iterative
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method (5). However, the iterative method (6) can still be improved, if the following questions

are considered:

Remark 1.2. (1) Is it possible to weaken the underlying operators F2 and F1 from pseu-

domonotone and Lipschitz continuous operators to quasiomonotone and Lipschitz con-

tinuous operators?

(2) Is it possible to construct an iterative method that outperforms the above listed methods?

The purpose of this paper is to introduce and study a modified iterative method for solving a

BSVIP (4) in infinite dimensional real Hilbert spaces, in which the underlying cost operators

are quaismonotone and Lipschitz continuous, and strongly monotone, and Lipschitz continuous.

We propose a modified SGEM for solving the BSVIP with the following properties:

(1) In comparison with different iterative techniques for solving BSVIP (4), our proposed

iterative method is made up of two different types of step-sizes.

(2) In comparison with different iterative techniques for solving BSVIP (4), the way our

P′Cs are defined is a modification of what we have in the literature.

(3) In comparison with different iterative techniques for solving BSVIP (4), our proposed

iterative method is designed in such a way that the underlying cost operators are

quasimonotone, Lipschitz continuous, and sequentially weakly continuous, and strongly

monotone and Lipschitz continuous.

(4) Our proposed iterative method does not depend on the knowledge of the bounded linear

operator ‖T‖ unlike the following iterative methods in which knowledge of the bounded

linear operator is relevant for their implementation (see [7, 21, 28] and the references

therein).

(5) The sequence generated by the proposed methods converges strongly to a unique solu-

tion of the BSVIP in real Hilbert spaces.

(6) Our proposed iterative technique includes inertial extrapolation steps. We emphasise

that the inertial extrapolation step helps to improve the rate of convergence of an it-

erative method. The inertial steps remarkably increase the convergence speed of these

algorithms when compared with others without extrapolation step (see [1, 16] and the

references therein).
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To the best of our knowledge, no literature has reported the BSVIP in which the cost operators

are quasimonotone, Lipschitz continuous, and sequentially weakly continuous, and strongly

monotone and Lipschitz continuous. In addition, our numerical experiments justify that our

method is better than other methods in the literature for solving the BSVIP.

The rest of this paper is organized as follows: In Section 2, we recall some useful definitions

and results that are relevant for our study. In Section 3, we present our proposed method. In

Section 4, we establish strong convergence of our method and in Section 5, we present some

numerical experiments to show the efficiency and applicability of our method in the framework

of infinite dimensional Hilbert spaces. Lastly in Section 6, we give the conclusion of the paper.

2. PRELIMINARIES

In this section, we begin by recalling some known and useful results which are needed in the

sequel. Let H be a real Hilbert space. The set of fixed points of a nonlinear mapping T : H →

H will be denoted by F(T ), that is F(T ) = {x ∈ H : T x = x}. We denotes strong and weak

convergence by ”→” and ”⇀”, respectively. For any x,y ∈ H and α ∈ [0,1], it is well-known

that

‖x− y‖2 = ‖x‖2−2〈x,y〉+‖y‖2.(9)

‖x+ y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2.(10)

‖x− y‖2 ≤ ‖x‖2 +2〈y,x− y〉.(11)

‖αx+(1−α)y‖2 = α‖x‖2 +(1−α)‖y‖2−α(1−α)‖x− y‖2.(12)

Definition 2.1. Let T : H→ H be an operator. Then T is called

(a) L-Lipschitz continuous if there exists L > 0 such that

‖T x−Ty‖ ≤ L‖x− y‖,

for all x,y ∈ H. If L = 1, then T is called nonexpansive. If y ∈ F(T ), and

‖T x− y‖ ≤ ‖x− y‖,
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for all x ∈ H. Then T is called quasinonexpansive.

(b) monotone if

〈T x−Ty,x− y〉 ≥ 0, ∀x,y ∈ H;

(c) pseudomonotone if

〈T x,y− x〉 ≥ 0⇒ 〈Ty,y− x〉 ≥ 0, ∀x,y ∈ H;

(d) α- strongly monotone if there exists α > 0, such that

〈T x−Ty,x− y〉 ≥ α‖x− y‖2, ∀ x,y ∈ H;

(e) quasimonotone

〈T x,x− y〉> 0⇒ 〈Ty,x− y〉 ≥ 0 ∀ x,y ∈ H;

(f) sequentially weakly continuous if for each sequence {xn}, we obtain {xn} converges

weakly to x implies that T xn converges weakly to T x.

Remark 2.2. It is well-known that α-strongly monotone⇒ monotone⇒ pseudomonotone⇒

quasimonotone. However, the converses are not generally true.

Let C be a nonempty, closed and convex subset of H. For any u ∈H, there exists a unique point

PCu ∈C such that

‖u−PCu‖ ≤ ‖u− y‖ ∀y ∈C.

The operator PC is called the metric projection of H onto C. It is well-known that PC is a

nonexpansive mapping and that PC satisfies

〈x− y,PCx−PCy〉 ≥ ‖PCx−PCy‖2,(13)

for all x,y ∈ H. Furthermore, PC is characterized by the property

‖x− y‖2 ≥ ‖x−PCx‖2 +‖y−PCx‖2

and

〈x−PCx,y−PCx〉 ≤ 0,(14)

for all x ∈ H and y ∈C.
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Lemma 2.3. [13, 29] Let C be a nonempty, closed and convex subset of a Hilbert space H and

A : H → H ba L-Lipschitzian and quasimonotone operator. Suppose that y ∈ C and for some

p ∈C, we have 〈Ay, p− y〉 ≥ 0, then at least on of the following hold

〈Ap, p− y〉 ≥ 0 or 〈Ay,q− y〉 ≤ 0

for all q ∈C.

Lemma 2.4. [24] Let {an} be a sequence of positive real numbers, {αn} be a sequence of real

numbers in (0,1) such that ∑
∞
n=1 αn = ∞ and {dn} be a sequence of real numbers. Suppose that

an+1 ≤ (1−αn)an +αndn,n≥ 1.

If limsupk→∞ dnk ≤ 0 for all subsequences {ank} of {an} satisfying the condition

liminf
k→∞

{ank+1−ank} ≥ 0,

then, lim
k→∞

an = 0.

Lemma 2.5. [1] Let C be nonempty closed convex subset of a real Hilbert space H. For any

x ∈ H and z ∈C, we have z = PCx if and only if 〈x− z,y− z〉 ≤ 0 ∀ y ∈C.

Lemma 2.6. [1] Let H be a Hilbert space and F : H → H be a τ-strongly monotone and L-

Lipschitz continuous operator on H. Let α ∈ (0,1) and γ ∈ (0, 2τ

L2 ). Then for any nonexpansive

operator T : H→H, we can associate T γ : H→H defined by T γx = (I−αγF)T x for all x∈H.

Then, T γ is a contraction. That is

‖T γx−T γy‖ ≤ (1−αν)‖x− y‖

for all x,y ∈ H, where ν = 1−
√

1− γ(2τ− γL2) ∈ (0,1).

3. PROPOSED ALGORITHM

In this section, we present our proposed method for solving a bilevel split variational inequality

problem in which the cost operators are quasimonotone and strongly monotone operators.

Assumption 3.1. Condition A.
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(1) The feasible sets C and Q are nonempty set, closed and convex subsets of the real Hilbert

spaces H1 and H2 respectively.

(2) A : H2→ H2 and B : H1→ H1 are quasimonotone, sequentially weakly continuous and

Lipschitz continuous with Lipschitz constant L1 and L2 respectively.

(3) F : H1 → H1 is ρ-strongly monotone and L3- Lipschitz continuous on H1 such that

φ = 1−
√

1−ω(2ρ−ωL2
3) where ω ∈ (0, 2ρ

L2
3
)

(4) T : H1→ H2 is a bounded linear operator.

(5) The solution set of problem BSVIP (4) is denoted by Ω 6= /0.

Condition B.

(1) αn ⊂ (0,1), lim
n→∞

αn = 0 and ∑
∞
n=0 αn = ∞.

(2) γ,κ > 0, l, j,δ1,δ2 ∈ (0,1),η ∈ (0, 2
δ1
),β ∈ (η

2 ,
1
δ1
),ψ ∈ (0, 2

δ2
),α ∈ (ψ

2 ,
1
δ2
)

We present the following iterative algorithm.

Algorithm 3.2. Initialization Step:

Step 1: Choose x0,x1 ∈ H1, given the iterates xn−1 and xn for all n ∈ N, choose θn such that

0≤ θn ≤ θ̄n, where

θ̄n =


min

{
θ , εn
‖xn−xn−1‖}

}
, if xn 6= xn−1

θ , otherwise,

(15)

with θ been a positive constant and {εn} is a positive sequence such that εn = ◦(αn).

Step 2. Set

wn = xn +θn(xn− xn−1).

Then, compute

yn = PQ(Twn−βλnATwn),(16)

where the step size λn is chosen to be the largest λ ∈ {γ,γl,γl2, · · ·} satisfying

λ‖ATwn−Ayn‖ ≤ δ1‖Twn− yn‖(17)
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zn = PΦn(Twn−ητnλnAyn)(18)

Φn = {w ∈ H2 : 〈Twn−βλnATwn− yn,w− yn〉 ≤ 0} and

τn =
(1−βδ1)‖Twn− yn‖2

‖dn‖2 , dn = Twn− yn−βλn(ATwn−Ayn).(19)

Step 3. Compute

vn = wn + γnT ∗(zn−Twn),(20)

un = PC(vn−αµnBvn),(21)

where the step size µn is chosen to be the largest µ ∈ {κ,κ j,κ j2, · · ·} satisfying

µ‖Bvn−Bun‖ ≤ δ2‖vn−un‖(22)

and γn is chosen such that for small enough ε > 0, γn ∈
[

ε, ‖Twn−zn‖2

‖T ∗(Twn−zn)‖2 − ε

]
if Twn 6= zn,

otherwise γn = γ.

tn = PΨn(vn−ψνnµnBun),(23)

where Ψn = {v ∈ H1 : 〈vn−αµnBvn−un,v−un〉 ≤ 0} and

and

νn =
(1−αδ2)‖vn−un‖2

‖bn‖2 , bn = vn−un−αµn(Bvn−Bun).(24)

Step 4. Compute

xn+1 = tn−ωαnFtn(25)

4. CONVERGENCE ANALYSIS

Lemma 4.1. Suppose the Assumptions 3.1 hold. Then the Armijo-like criteria (17) and (22) in

Algorithm 3.2 are well defined. In addition, the step size γn is also well defined.

Proof. The proof that γn is well define follows similar approach as in Lemma 3.1 of [18]. In

addition, the proof that the Armijo-like criteria (17) and (22) are well defined follows a similar

approach as in and Lemma 3.1 of [28], thus we omit it. �
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Lemma 4.2. Let {xn} be a sequence sequence generated by Algorithm 3.2 under the Assump-

tion 3.1. Then {xn} is bounded.

Proof: Let p ∈ Ω, it follows that T p ∈ V I(A,Q) ⊂ Q. Since limn→∞
θn
αn
‖xn− xn−1‖ = 0, there

exist N1 > 0 such that θn
αn
‖xn− xn−1‖ ≤ N1 for all n ∈ N. Thus, using Algorithm 2.2, we have

‖wn− p‖= ‖xn +θn(xn− xn−1)− p‖

≤ ‖xn− p‖+θn‖(xn− xn−1)‖

≤ ‖xn− p‖+αn
θn

αn
‖(xn− xn−1)‖

≤ ‖xn− p‖+αnN1.(26)

Also using Algorithm 3.2 and (13), we have

2‖zn−T p‖2 = 2‖PΦn(Twn−ητnλnAyn)−PΦn(T p)‖2

≤ 2〈zn−T p,Twn−ητnλnAyn−T p〉

= ‖zn−T p‖2 +‖Twn−ητnλnAyn−T p‖2−‖zn−Twn +ητnλnAyn‖2

= ‖zn−T p‖2 +‖Twn−T p‖2 +η
2
τn

2
λn

2‖Ayn‖2−2〈Twn−T p,ητnλnAyn〉

−‖zn−Twn‖2−η
2
τn

2
λn

2‖Ayn‖2−2〈zn−Twn,ητnλnAyn〉

= ‖zn−T p‖2 +‖Twn−T p‖2−‖zn−Twn‖2−2〈zn−T p,ητnλnAyn〉,

which implies

‖zn−T p‖2 ≤ ‖Twn−T p‖2−‖zn−Twn‖2−2〈zn−T p,ητnλnAyn〉.(27)

Now observe that

‖dn‖= ‖Twn− yn−βλn(ATwn−Ayn)‖

≤ ‖Twn− yn‖+βλn‖ATwn−Ayn‖

≤ ‖Twn− yn‖+βδ1‖Twn− yn‖

= (1+βδ1)‖Twn− yn‖.(28)
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Moreso, since yn ∈ Q and T p ∈ V I(Q,A), we have 〈AT p,yn−T p〉 ≥ 0 and using Lemma 2.3,

we have 〈Ayn,yn−T p〉 ≥ 0. Thus, we have

〈Ayn,zn− yn〉 ≤ 〈Ayn,zn−T p〉 =⇒ 〈Ayn,zn−T p〉 ≥ 〈Ayn,zn− yn〉.(29)

Thus, we have

−2ητnλn〈Ayn,zn−T p〉 ≤ −2ητnλn〈Ayn,zn− yn〉.(30)

More so, using the fact that 〈Twn−βλnATwn− yn,w− yn〉 ≤ 0 ∀ w ∈ Q⊂ H2, we have

〈dn,zn− yn〉= 〈Twn− yn−βλn(ATwn−Ayn),zn− yn〉

= 〈Twn− yn−βλnATwn,zn− yn〉+βλn〈Ayn,zn− yn〉

≤ βλn〈Ayn,zn− yn〉.(31)

This implies that

〈dn,zn− yn〉 ≤ βλn〈Ayn,zn− yn〉

−βλn〈Ayn,zn− yn〉 ≤ −〈dn,zn− yn〉

−2ητnλn〈Ayn,zn− yn〉 ≤
−2ητn

β
〈dn,zn− yn〉.(32)

Using (30) and (32), we have

−2ητnλn〈Ayn,zn−T p〉 ≤ −2ητnλn〈Ayn,zn− yn〉

≤ −2ητn

β
〈dn,zn− yn〉

=−2ητn

β
〈dn,zn−Twn +Twn− yn〉

=−2ητn

β
〈dn,Twn− yn〉+

2ητn

β
〈dn,Twn− zn〉(33)

In addition, using (19), we have

〈dn,Twn− yn〉= 〈Twn− yn−βλn(ATwn−Ayn),Twn− yn〉

≥ ‖Twn− yn‖2−βλn‖ATwn−Ayn‖‖Twn− yn‖

≥ ‖Twn− yn‖2−βδ1‖Twn− yn‖2
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= (1−βδ1)‖|Twn− yn‖2

= τn‖dn‖2,(34)

we then have that

−2ητn

β
〈dn,Twn− yn〉 ≤

−2ητn
2

β
‖dn‖2(35)

and (34) becomes

−2ητnλn〈Ayn,zn−T p〉 ≤ −2ητn
2

β
‖dn‖2 +

2ητn

β
〈dn,Twn− zn〉.(36)

Furthermore, using (19), we have

2ητn

β
〈dn,Twn− zn〉

= 2〈ητn

β
dn,Twn− zn〉

= ‖Twn− zn‖2 +
η2

β 2 τ
2
n‖dn‖2−‖Twn− zn−

η

β
τndn‖2

= ‖Twn− zn‖2 +
η2

β 2 (1−βδ1)
2 ‖Twn− yn‖4

‖dn‖4 ‖dn‖2−‖Twn− zn−
η

β
τndn‖2

≤ ‖Twn− zn‖2 +
η2

β 2 (1−βδ1)
2‖Twn− yn‖4.

1
(1+βδ1)2‖Twn− yn‖2 −‖Twn− zn−

η

β
τdn‖2

= ‖Twn− zn‖2 +
η2(1−βδ1)

2

β 2(1+βδ1)2 ‖Twn− yn‖2−‖Twn− zn−
η

β
τndn‖2.(37)

Thus, (36) becomes

−2ητnλn〈Ayn,zn−T p〉 ≤ −2ητn
2

β
‖dn‖2 +‖Twn− zn‖2 +

η2(1−βδ1)
2

β 2(1+βδ1)2‖Twn− yn‖2(38)

−‖Twn− zn−
η

β
τndn‖2.

Hence, (27) becomes

‖zn−T p‖2

≤ ‖Twn−T p‖2−‖zn−Twn‖−
2η

β
τn

2‖d‖2 +‖Twn− zn‖+
η2(1−βδ1)

2

β 2(1+βδ1)2‖Twn− yn‖2

−‖Twn− zn−
η

β
τndn‖2

= ‖Twn−T p‖2− 2ητn
2

β

(1−βδ1)

τn
‖Twn− yn‖2 +

η2(1−βδ1)
2

β 2(1+βδ1)2‖Twn− yn‖2
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−‖Twn− zn−
η

β
τndn‖2

= ‖Twn−T p‖2− η

β 2
(1−βδ1)

2

(1+βδ1)2‖Twn− yn‖2−‖Twn− zn−
η

β
τndn‖2

≤ ‖Twn−T p‖2.(39)

Which implies that

‖zn−T p‖ ≤ ‖Twn−T p‖(40)

Furthermore, using Algorithm 3.2, step-size (γn) and (40), we have

‖vn− p‖2 = ‖wn + γnT ∗(zn−Twn)− p‖

= ‖wn− p‖2 + γ
2
n‖T ∗(zn−Twn)‖2 +2γn〈wn− p,T ∗(zn−Twn)〉

= ‖wn− p‖2 + γ
2
n‖T ∗(zn−Twn)‖2 +2γn〈Twn−T p,zn−Twn〉

= ‖wn− p‖2 + γ
2
n‖T ∗(zn−Twn)‖2 + γn‖zn−T p‖2− γn‖Twn−T p‖2− γn‖zn−Twn‖2

≤ ‖wn− p‖2 + γ
2
n‖T ∗(zn−Twn)‖2 + γn‖Twn−T p‖2− γn‖Twn−T p‖2− γn‖zn−Twn‖2

≤ ‖wn− p‖2 + γ
2
n‖T ∗(zn−Twn)‖2− γn(γn + ε)‖T ∗(zn−Twn)‖2

= ‖wn− p‖2− γnε‖T ∗(zn−Twn)‖2

≤ ‖wn− p‖2,(41)

which implies that

‖vn− p‖ ≤ ‖wn− p‖.(42)

Using a similar approach that we use to obtain the inequality (40), we have

‖tn− p‖2 ≤ ‖vn− p‖2− ψ(1−αδ2)
2

α(1+αδ2)2 ‖vn−un‖2−‖vn− tn−
ψ

α
νnbn‖2.(43)

Which implies that

‖tn− p‖ ≤ ‖vn− p‖(44)

In addition, using Algorithm 3.2, Lemma 2.6 and the fact that φ = 1−
√

1−ω(2ρ−ωL2
3) ∈

(0,1), we have
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‖xn+1− p‖= ‖tn−αnωFtn− p‖

= ‖(1−αnωF)tn− (1−αnωF)p−αnωF p‖

≤ (1−φαn)‖tn− p‖+αnω‖Gp‖

≤ (1−φαn)‖vn− p‖+ωαn‖F p‖

≤ (1−φαn)‖wn− p‖+ωαn‖F p‖

≤ (1−φαn)[‖xn− p‖+αnN1]+ωαn‖F2 p‖

≤ (1−φαn)‖xn− p‖+φαn[
N1 +ω‖F p‖

φ
]

≤max{‖xn− p‖, [N1 +ω‖F p‖
φ

}

...(45)

≤max{‖x1− p‖, [N1 +ω‖F p‖
φ

}.(46)

Therefore, {xn} is bounded.

Lemma 4.3. Let {xn} be a sequence generated by Algorithm 3.2 under Assumption 3.1 and

suppose that there exists a subsequence {xnk of {xn} which converges weakly to x∗ ∈ H1 and

limk→∞ ‖wnx− vnk‖= 0 = limk→∞ ‖tnx− vnk‖.Then, x∗ ∈ Γ.

Proof. We suppose that znk 6= Twnk . It is easy to see from (41) that

‖vnk− p‖2 ≤ ‖wnk− p‖2− γnkε‖T ∗(znk−Twnk)‖
2

≤ ‖wnk− p‖2− ε
2‖T ∗(znk−Twnk)‖,(47)

which implies that

ε
2‖T ∗(znk−Twnk)‖

2

≤ ‖wnk− p‖2−‖vnk− p‖2

≤ (‖wnk− vnk‖+‖vnk− p‖)2−‖vnk− p‖2
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≤ ‖wnk− vnk‖
2 +2‖wnk− vnk‖‖vnk− p‖+‖vnk− p‖2−‖vnk− p‖2

= ‖wnk− vnk‖
2 +2‖wnk− vnk‖‖vnk− p‖(48)

using our hypothesis, we have

lim
k→∞
‖T ∗(znk−Twnk)‖= 0.(49)

More so, we have

‖vnk− p‖2 ≤ ‖wnk− p‖2 + γ
2
n‖T ∗(znk−Twnk)‖

2− γn‖znk−Twnk‖
2,(50)

which implies that

γnk‖znk−Twnk‖
2 ≤ ‖wnk− p‖2−‖vnk− p‖2 + γ

2
nk
‖T ∗(znk−Twnk)‖

2

≤ ‖wnk− vnk‖
2 +2‖wnk− vnk‖‖vnk− p‖+ γ

2
nk
‖T ∗(znk−Twnk)‖

2,(51)

using our hypothesis, we have

lim
k→∞
‖znk−Twnk‖= 0.(52)

From (39), we have

‖znk−T p‖2 ≤ ‖Twn−T p‖2− η

β 2
(1−βδ1)

2

(1+βδ1)2‖Twn− yn‖2−‖Twn− zn−
η

β
τndn‖2.(53)

Now, observe that

‖znk−T p‖2 = ‖znk−Twnk +Twnk−T p‖2

= ‖Twnk−T p− (Twnk− znk)‖
2

= ‖Twnk−T p‖2−2〈Twnk−T p,Twnk− zn〉+‖Twnk− znk‖
2

≥ ‖Twnk−T p‖2−2‖T (wnk− p)‖‖Twnk− znk‖+‖Twn− zn‖2

≥ ‖Twnk−T p‖2−2‖T‖‖wnk− p‖‖Twnk− znk‖+‖Twnk− znk‖
2,(54)

this implies that

−‖znk−T p‖2 ≤−‖Twnk−T p‖2 +2‖T‖‖wnk− p‖‖Twnk− znk‖−‖Twnk− znk‖
2.(55)
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Adding (53) and (55), we have

η

β 2
(1−βδ1)

2

(1+βδ1)2‖Twn− yn‖2 +‖Twn− zn−
η

β
τndn‖2

≤ 2‖T‖‖wnk− p‖‖Twnk− znk‖−‖Twnk− znk‖
2,(56)

using (52), we have

lim
k→∞
‖Twnk− ynk‖= 0 = lim

k→∞
‖Twn− zn−

η

β
τndn‖.(57)

Since ynk = PQ(Twnk −βλnkATwnk), then from the characteristic of the metric projection, we

have

〈Twnk−βλnkATwnk− ynk ,x− ynk〉 ≤ 0 ∀ x ∈ Q,(58)

which implies that

〈Twnk− ynk ,x− ynk〉−βλnk〈ATwnk ,x− ynk〉 ≤ 0,(59)

which implies that

〈Twnk− ynk ,x− ynk〉 ≤ βλnk〈ATwnk ,x− ynk〉(60)

= βλnk〈ATwnk ,Twnk− ynk〉+βλnk〈ATwnk ,x−Twnk〉.(61)

Since λnk ,β > 0, we have

1
βλnk

〈Twnk− ynk ,x− ynk〉+ 〈ATwnk ,ynk−Twnk〉 ≤ 〈ATwnk ,x−Twnk〉.(62)

Using (98), we have

0≤ liminf
k→∞

〈ATwnk ,x−Twnk〉 ≤ limsup
k→∞

〈ATwnk ,x−Twnk〉.(63)

Now, observe that

〈Aynk ,x− ynk〉= 〈Aynk ,x−Twnk〉+ 〈Aynk ,Twnk− ynk〉

= 〈Aynk−ATwnk ,x−Twnk〉+ 〈ATwnk ,x−Twnk〉+ 〈Aynk ,Twnk− ynk〉.(64)

Since A is Lipschitz continuous on H2 and (98)

lim
k→∞
‖ATwnk−Aynk‖ ≤ L1 lim

k→∞
‖Twnk− ynk‖= 0.(65)
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Combining (63), (64) and (65), we have

0≤ liminf
k→∞

〈Aynk ,x− ynk〉 ≤ limsup
k→∞

〈Aynk ,x− ynk〉.(66)

In what follows, we now establish that T x∗ ∈ V I(A,Q). To start with, we consider the case in

which limsupk→∞〈Aynk ,x− ynk〉 > 0 for all x ∈ Q. Then there exists a subsequence {ynkm
} of

sequence {ynk} such that limsupm→∞〈Aynkm
,x− ynkm

〉 > 0 for all x ∈ Q. It follows that we can

find N0 such that

〈Aynkm
,x− ynkm

〉> 0 ∀m > N0.(67)

Since A is quasimonotone, it follows that

〈Ax,x− ynkm
〉> 0 ∀m > N0.(68)

Now observe that

‖wnkm
− xnkm

‖= αnkm

θnkm

αnkm

‖xnkm
− xnkm−1‖→ 0 as m→ ∞.(69)

Since, the subsequence {xnk} of {xn} is weakly convergent to a point x∗ ∈ H1. Again, since T

is a bounded linear operator, we obtain that {Twnk} converges weakly to T x∗. Hence, using the

fact that lim
n→∞
‖Twnkm

− ynkm
‖ = 0, we have that {ynkm

} also converges to T x∗. Now passing the

limit as m→ ∞ in (68), we have

lim
m→∞
〈Ax,x− ynkm

〉= 〈Ax,x−T x∗〉> 0.(70)

Hence, T x∗ ∈V I(A,Q).

Secondly, we consider the case in which limsupk→∞〈Aynk ,x− ynk〉= 0 for x ∈ Q. Let {δk} be a

non-increasing positive sequence defined by

δk = |〈Aynk ,x− ynk〉|+
1

k+1
.(71)

By our hypothesis, it is easy to see that

lim
k→∞

δk = lim
k→∞
〈Aynk ,x− ynk〉+ lim

k→∞

1
k+1

= 0.(72)
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By our hypothesis and (71), we have

〈Aynk ,x− ynk〉+δk > 0(73)

for each k ≥ 1, since {ynk} ⊂ Q, it implies that {Aynk} is strictly non-zero and

liminfk→∞ ‖Aynk‖= N0 > 0. We therefore deduce that

‖Aynk‖>
N0

2
(74)

In addition, let {εnk} be a sequence defined by εnk =
Aynk
‖Aynk‖

2 . It implies that

〈Aynk ,εnk〉= 1.(75)

Combining (73) and (75), we have

〈Aynk ,x+δkεnk− ynk〉> 0.(76)

By quasimonotonicity of the operator A on H2, we get that

〈A(x+δkεnk),x+δkεnk− ynk〉 ≥ 0.(77)

Now, observe that

〈Ax,x+δkεnk− ynk〉= 〈Ax−A(x+δkεnk)+A(x+δkεnk),x+δkεnk− ynk〉

(78)

= 〈Ax−A(x+δkεnk),x+δkεnk− ynk〉+ 〈A(x+δkεnk),x+δkεnk− ynk〉(79)

Combining (77), (78) and applying the well known Cauchy Schwartz inequality, we have

〈Ax,x+δkεnk− ynk〉 ≥ 〈Ax−A(x+δkεnk),x+δkεnk− yn〉(80)

≥−‖Ax−A(x+δkεnk)‖‖x+δkεnk− ynk‖.(81)

Since A is Lipschitz continuous, we have

〈Ax,x+δkεnk− ynk〉+L1‖δkεnk‖‖x+δkεnk− ynk‖ ≥ 0(82)

Combining (74) and (82) and using the definition of {εnk}, we have

〈Ax,x+δkεnk− ynk〉+
2L1

N0
δk‖x+δkεnk− ynk‖ ≥ 0.(83)
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Since, the subsequence {xnk} of {xn} is weakly convergent to a point x∗ ∈ H1. Again, since T

is a bounded linear operator, we obtain that {Twnk} converges T x∗. Hence, using the fact that

lim
n→∞
‖Twnk − ynk‖ = 0, we have that {ynk} also converges to T x∗. Taking limit as k→ ∞, since

δk→ 0, we have

lim
k→∞

[
〈Ax,x+δkεnk− ynk〉+

2L1

N0
δk‖x+δkεnk− ynk‖

]
= 〈Ax,x−T x∗〉> 0.(84)

Hence T x∗ ∈V I(A,Q).

Using a similar approach, we have x∗ ∈V I(B,C). Hence, we conclude that x∗ ∈ Γ.

�

Theorem 4.4. Let {xn} be a sequence generated by Algorithm 3.2 under Assumption 3.1. Then,

{xn} converges strongly to p ∈Ω, which is the unique solution of BSVIP (4).

Proof. Let p ∈Ω. Using Algorithm 3.2, we have

‖wn− p‖2 = ‖xn +θn(xn− xn−1)− p‖2

= ‖xn− p‖2 +2θn〈xn− p,xn− xn−1〉+θ
2
n ‖xn− xn−1‖2

≤ ‖xn− p‖2 +2θn‖xn− xn−1‖‖xn− p‖+θ
2
n ‖xn− xn−1‖2

≤ ‖xn− p‖2 +θn‖xn− xn−1‖[2‖xn− p‖+θn‖xn− xn−1‖]

= ‖xn− p‖2 +θn‖xn− xn−1‖[2‖xn− p‖+αn
θn

αn
‖xn− xn−1‖]

≤ ‖xn− p‖2 +θn‖xn− xn−1‖[2‖xn− p‖+αnN1]

≤ ‖xn− p‖2 +θn‖xn− xn−1‖N2.(85)

for some N2 > 0.

‖xn+1− p‖2 = ‖tn−ωαnFtn− p‖2

= ‖(1−αnωF)tn− (1−αnωF)p−αnωF p‖2

≤ ‖(1−αnωF)tn− (1−αnωF)p‖2−2αnω〈F p,xn+1− p〉

≤ (1−φαn)
2‖tn− p‖2 +2αnω〈F p, p− xn+1〉
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≤ (1−φαn)
2‖vn− p‖2 +2αnω〈F p, p− xn+1〉

≤ (1−φαn)‖wn− p‖2 +2αnω〈F p, p− xn+1〉

≤ (1−φαn)[‖xn− p‖2 +θn‖xn− xn−1‖N2]+2αnω〈F p, p− xn+1〉

= (1−φαn)‖xn− p‖2 +φαn

[
θn

φαn
‖xn− xn−1‖N2 +2

ω

φ
〈F p, p− xn+1〉

]
= (1−φαn)‖xn− p‖2 +φαnΨn(86)

where Ψn =
θn

φαn
‖xn− xn−1‖N2 +2ω

φ
〈F p, p− xn+1〉. According to Lemma 2.4, to conclude our

proof, it is sufficient to establish that limsupk→∞ Ψn ≤ 0 for every subsequence {‖xnk − p‖} of

{‖xn− p‖} satisfying the condition:

liminf
k→∞

{‖xnk+1− p‖−‖xnk− p‖} ≥ 0.(87)

To establish that limsupk→∞ Ψnk ≤ 0, we suppose that for every subsequence {‖xnk − p‖} of

{‖xn− p‖} such that (87) holds. Then, According to Lemma 2.4, to conclude our proof, it is

sufficient to establish that limsupn→∞ Ψn ≤ 0 for every subsequence {‖xnk− p‖} of {‖xn− p‖}

satisfying the condition:

liminf
k→∞

{‖xnk+1− p‖−‖xnk− p‖} ≥ 0.(88)

To establish that limsupk→∞ Ψnk ≤ 0, we suppose that for every subsequence {‖xnk − p‖} of

{‖xn− p‖} such that (87) holds. Then,

liminf
k→∞

{‖xnk+1− p‖2−‖xnk− p‖2}

= liminf
k→∞

{(‖xnk+1− p‖−‖xnk− p‖)(‖xnk+1− p‖+‖xnk− p‖)} ≥ 0.(89)

From (86) and using (43), (41) that

‖xnk+1− p‖2

≤ ‖tnk− p‖+2αnkω〈F p, p− xnk+1〉

≤ ‖vnk− p‖2− ψ(1−αδ2)
2

α(1+αδ2)2 ‖vnk−unk‖
2−‖vnk− tnk−

ψ

α
νnkbnk‖

2 +2αnkω〈F p, p− xnk+1〉
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≤ |wnk− p‖2− γnkε‖T ∗(znk−Twnk)‖
2− ψ(1−αδ2)

2

α(1+αδ2)2 ‖vn−un‖2

−‖vn− tn−
ψ

α
νnkbnk‖

2 +2αnkω〈F p, p− xn+1〉

≤ ‖xnk− p‖2 +θnk‖xnk− xnk−1‖N2− γnkε‖T ∗(znk−Twnk)‖
2

− ψ(1−αδ2)
2

α(1+αδ2)2 ‖vnk−unk‖
2−‖vnk− tnk−

ψ

α
νnkbnk‖

2 +2αnkω〈F p, p− xnk+1〉,(90)

which implies that

limsup
k→∞

(
γnkε‖T ∗(znk−Twnk)‖

2 +
ψ(1−αδ2)

2

α(1+αδ2)2 ‖vnk−unk‖
2 +‖vnk− tnk−

ψ

α
νnkbnk‖

2
)

≤ limsup
k→∞

[
‖xnk− p‖2 +αnk

θnk

αnk

‖xnk− xnk−1‖N2 +αnkN3 +2αnkω〈F p, p− xn+1〉−‖xnk+1− p‖2
]

≤− liminf
k→∞

[‖xnk+1− p‖2−‖xnk− p‖2]≤ 0.

Thus, we have

lim
k→∞
‖T ∗(znk−Twnk)‖= lim

k→∞
‖vnk−unk‖= lim

k→∞
‖vnk− tnk−

ψ

α
νnkbnk‖= 0.(91)

Thus, using argument as in (90), (91) and Lemma 4.1, we have

lim
k→∞
‖znk−Twnk‖= 0.(92)

Also, using s similar approach as in (28), we obtain ‖bn‖ ≥ (1− δ2α)‖unk − vnk‖. Using, this

fact, we obtain

‖vnk− tnk‖= ‖vnk− tnk−
ψ

α
νnkbnk +

ψ

α
νnkbnk‖

≤ ‖vnk− tnk−
ψ

α
νnkbnk‖+

ψ

α
νnk‖bnk‖

= ‖vnk− tnk−
ψ

α
νnkbnk‖+

ψ

α
(1−αδ2)

‖unk− vnk‖2

‖bnk‖

≤ ‖vnk− tnk−
ψ

α
νnkbnk‖+

ψ

α
‖unk− vnk‖.(93)

Using (91), we have

lim
k→∞
‖vnk− tnk‖= 0.(94)
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Using the triangular inequality and (94), we have

lim
k→∞
‖tnk−unk‖ ≤ lim

k→∞
‖tnk− vnk‖+ lim

k→∞
‖vnk−unk‖= 0(95)

Using similarly approach as in 3.2 and (91), we have

lim
k→∞
‖vnk−wnk‖= lim

k→∞
‖wnk + γnkT ∗(znk−Twnk)−wnk‖= γnk lim

k→∞
‖T ∗(znk−Twnk)‖= 0.

(96)

From (53) and (55), we have

η

β 2
(1−βδ1)

2

(1+βδ1)2‖Twn− yn‖2 +‖Twn− zn−
η

β
τndn‖2

≤ 2‖T‖‖wnk− p‖‖Twnk− znk‖−‖Twnk− znk‖
2,(97)

using (92), we have

lim
k→∞
‖Twnk− ynk‖= 0 = lim

k→∞
‖Twnk− znk−

η

β
τnkdnk‖.(98)

Also, using s similar approach as in (28), we obtain ‖dn‖ ≥ (1−δ1β )‖Twnk− ynk‖. Using, this

fact, we obtain

‖Twnk− znk‖= ‖Twnk− znk−
η

β
τnkdnk +

η

β
τnkdnk‖

≤ ‖Twnk− znk−
η

β
τnkdnk‖+

η

β
τnk‖dnk‖

≤ ‖Twnk− znk−
η

β
τnkdnk‖+

η

β
(1−δ1β )

‖Twnk− ynk‖2

‖dnk‖

≤ ‖Twnk− znk−
η

β
τnkdnk‖+

η

β
‖Twnk− ynk‖.(99)

Using, (98), we have

lim
k→∞
‖Twnk− znk‖= 0.(100)

In addition, we have

lim
k→∞
‖ynk− znk‖ ≤ lim

k→∞
‖ynk−Twnk‖+ lim

k→∞
‖Twnk− znk‖= 0(101)

It is easy to see that, as k→ ∞, we have

‖wnk− xnk‖= θnk‖xnk− xnk−1||= αnk ·
θnk

αnk

‖xnk− xnk−1|| → 0.(102)
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In addition, we have that

‖vnk− xnk‖ ≤ ‖wnk− xnk‖+ γn‖T ∗(znk−Twnk)‖→ 0 as k→ ∞.(103)

‖wnk− vnk‖ ≤ ‖wnk− xnk‖+‖xnk− vnk‖→ 0 as k→ ∞.(104)

‖tnk− xnk‖ ≤ ‖tnk− vnk‖+‖vnk− xnk‖→ 0 as k→ ∞.(105)

‖tnk−wnk‖ ≤ ‖tnk− xnk‖+‖xnk−wnk‖→ 0 as k→ ∞.(106)

‖unk− xnk‖ ≤ ‖unk− vnk‖+‖vnk− xnk‖→ 0 as k→ ∞.(107)

‖xnk+1− tnk‖ ≤ ‖tnk−αnkωFtnk− tnk‖= αnk‖ωFtnk‖ → 0 as k→ ∞.(108)

‖xnk+1− xnk‖ ≤ ‖xnk+1− tnk‖+‖tnk− xnk‖ → 0 as k→ ∞.(109)

Now, since {xnk} is bounded, then, there exists a subsequence {xnk j
} of {xnk} such that {xnk j

}

converges weakly to x∗ ∈H. In addition, using (105) and the boundedness of {tnk}, there exists

there exists a subsequence {tnk j
} of {tnk} such that {tnk j

} converges weakly to x∗ ∈ H1. Hence,

by (94), (107) and Lemma 4.3, we obtain that x∗ ∈Ω. Furthermore, since xnk j
converges weakly

to x∗, we obtain

limsup
k→∞

〈F p, p− xnk〉= lim
j→∞
〈F p, p− xnk j

〉= 〈F p, p− x∗〉.(110)

Hence, since p is a unique solution of Ω, it follows that

limsup
k→∞

〈F p, p− xnk〉= 〈F p, p− x∗〉 ≤ 0,(111)

we have obtain from (111) and (109)

limsup
k→∞

〈F p, p− xnk+1〉 ≤ 0.(112)

Using our assumption and (111), we have that lim
k→∞

Ψnk = lim
k→∞

(
θn

φαn
‖xn−xn−1‖N2+2ω

φ
〈F p, p−

xn+1〉
)
≤ 0. Thus, From Lemma 2.4, we have that lim

n→∞
‖xn− p‖= 0. �
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5. NUMERICAL EXAMPLE

In this section, we will give some numerical examples which will show the applicability and the

efficiency of our proposed iterative technique in comparison to Algorithm 5, and Algorithm 6.

Example 5.1. Let H1 = H2 = L2([0,1]) be equipped with the inner product

〈x,y〉=
∫ 1

0
x(t)y(t)dt ∀ x,y ∈ L2([0,1]) and ‖x‖2 :=

∫ 1

0
|x(t)|2dt ∀x,y,∈ L2([0,1]).

Let A;B;F,T : L2([0,1])→ L2([0,1]) be defined by

Ax(t) = e‖x‖ ∈t
0 x(s)ds, ∀ x ∈ L2([0,1]),

Fx(t) =
x(t)

2
, t ∈ [0,1],

T x(s) =
∫ 1

0
K(s, t)x(t)dt ∀ x ∈ L2([0,1]),

Bx(t) = f (x)Nx(t) ∀ x ∈ Q,

where f : Q → R is defined as f (x) = 1
1+‖x‖ ,N : L2([0,1]) → L2([0,1]) is defined as

Nx(t) =
∫ t

0 x(s)ds. Then, A,B are pseudomonotone and Lipschitz continuous but not mono-

tone on L2([0,1]), see [?]. It is easy to see that T is a bounded linear operator with T ∗ =∫ 1
0 K(t,s)x(t)dt ∀ x ∈ L2([0,1]) and F strongly monotone on L2([0,1]) (we use this example

due to Remark 2.2). Let C be defined by C = Q = {x ∈ L2 : 〈a,x〉= b} where a 6= 0 and b = 2.

Thus, we have

PC(x̄) = PQ(x̄) = max
{

0,
b−〈a, x̄〉
‖a‖2

}
a+ x̄.

We note that F1 and F2 of Algorithm 5, and Algorithm 6 are equal to A and B in our Algorithm

3.2. We choose αn =
2

200n+5 ,γ = 1.1, l = 0.5,κ = 1.2,δ1 = 0.5,δ2 = 0.4,β = 0.7,α = 0.6,η =

1.4,ψ = 1.3,γn > 0 for all n ∈ N. Also if we consider ε = ‖xn− xn1‖ ≤ 10−5 as the stopping

criterion and choose the following as starting points:

Case I: x0(t) = t2 + t +2, x1(t) = t−2;

Case II: x0(t) = t + e2t +1, x1(t) = 3t3 +3t2;

Case III: x0(t) = t4 + e(3t2)+2, x1(t) = sin(2t);
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FIGURE 1. Example 5.1, Case 1 (top left); Case 2 (top right); Case 3 (bottom ).

Example 5.2. [18, 23] Let H1 = H2 = l2(R) := {x = (x1,x2,x3, · · ·),xi ∈R : ∑
∞
i=1 |xi|2 < ∞} and

‖x‖= (∑∞
i=1 |xi|2)

1
2 for all x ∈ l2(R). Suppose the operators T,A,B : l2(R)→ l2(R) are defined

by

T x = (0,x1,
x2

2
,
x3

3
, · · ·), x ∈ l2(R)

Ax = (7−‖x‖)x ∀ x ∈ l2(R),

Bx = (5−‖x‖)x ∀ x ∈ l2(R),

Fx = x− x0.

It is easy to see that T is a bounded linear operator with the adjoint operator T ∗y =

(0,y1,
y2
2 ,

y3
3 , · · ·) y ∈ l2(R) and A,B are quasimonotone, Lipschitzain continuous and weakly

sequentially continuous on l2(R), and F is strongly monotone as seen in [23]. Let C = Q =
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{x ∈ l2(R) : ‖x‖ ≤ 3}. Clearly, C and Q are nonempty, closed and convex subsets of l2(R).

Hence, we have

PC(x) = PQ(x) =


x if ‖x‖ ≤ 3,

3x
‖x‖ , if otherwise.

(113)

We note that F1 and F2 of Algorithm 5, and Algorithm 6 are equal to A and B in our Algorithm

3.2. We choose αn =
2

200n+5 ,γ = 1.1, l = 0.5,κ = 1.2,δ1 = 0.5,δ2 = 0.4,β = 0.7,α = 0.6,η =

1.4,ψ = 1.3,γn > 0 for all n ∈ N. Also if we consider ε = ‖xn− xn1‖ ≤ 10−5 as the stopping

criterion and choose the following as starting points:

Case I: x0 = (1,1,1, · · ·), x1 = (0.1,0.1,0.1, · · ·);

Case II: x0 = (1,2,3,4, · · ·), x1 = (2,2,2, · · ·);

Case III: x0 = (0.3,0.6,0.9, · · ·), x1 = (2,4,6, · · ·);
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FIGURE 2. Example 5.2, Case I (top left); Case II (top right); Case III (bottom ).
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6. CONCLUSION

A modified inertial subgradient extragradient inertial extrapolation iterative method ( with two

different types of step-sizes) is introduced and studied for solving the BSVIP (4) in infinite di-

mensional real Hilbert spaces when the cost operators are quasimonotone, and strongly mono-

tone and Lipschitz continuous. In addition, we established that the proposed iterative method

converges strongly to the solution set of BSVIP (4). Our method uses stepsizes that are gener-

ated at each iteration by some simple computations, which allow them to be easily implemented

without the prior knowledge of the operator norm or the coefficient of an underlying operator.

In addition, we present some examples and numerical experiment to show the efficiency and im-

plementation of our method in the framework of infinite and finite dimensional Hilbert spaces.

We emphasize that one of the novelty of this work is in the use of a weaker operator (quasi-

monotone), modified inertial term, modification of the PC’s introduced, and the method of proof

of the strong convergence of our iterative algorithm to the solution of the problem (4).
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