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1. INTRODUCTION AND PRELIMINARIES  

The first fixed point theorem for rational contraction conditions in metric space was established 

by Dass and Gupta [26].  

Theorem 1.1 (see [26]). Let (𝑋, 𝑑)  be a complete metric space, and let 𝒯: 𝑋 → 𝑋  be a self-

mapping. If there exist 𝛼, 𝛽 ∈ [0, 1) with 𝛼 + 𝛽 <  1  such that  

                                   𝑑(𝒯𝑥, 𝒯𝑦) ≤ 𝛼𝑑(𝑥, 𝑦) + 𝛽
[1 + 𝑑(𝑥,𝒯𝑥)]𝑑(𝑦,𝒯𝑦)

1 + 𝑑(𝑥,𝑦)
                                   (1.1) 

for all 𝑥, 𝑦 ∈ 𝑋, then 𝒯 has a unique fixed point 𝑥∗ ∈  𝑋. 
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A genuine generalization of the Dass-Gupta fixed point theorem within the framework of dualistic 

partial metric spaces was demonstrated by Nazam et al. [27]. As generalizations of metric spaces, 

Czerwik [1] presented a new class of generalized metric spaces known as b-metric spaces. 

Definition 1 (see [1]) Let 𝑋 be a nonempty set and 𝑠 ≥ 1. A function 𝑑𝑏: 𝑋 × 𝑋 ⟶ [0, ∞) is said 

to be a b -metric if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,  

(b1). 𝑑𝑏(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 

(b2). 𝑑𝑏(𝑥, 𝑦) = 𝑑𝑏(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 

(b3). 𝑑𝑏(𝑥, 𝑧) ≤ 𝑠[𝑑𝑏(𝑥, 𝑦) + 𝑑𝑏(𝑦, 𝑧)] 

Then, we refer to the pair (𝑋, 𝑑𝑏) as a b-metric space. Many fixed-point findings on such spaces 

were subsequently obtained (see to [2–7]). 

Extended b-metric spaces are a concept first introduced by Kamran et al. [8].  

Definition 2 (see [8]) Let 𝑋 be a nonempty set and 𝑝: 𝑋 × 𝑋 ⟶ [1, ∞) be a function. A function 

𝑑ℯ: 𝑋 × 𝑋 ⟶ [0, ∞) is called an extended b -metric if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,  

(e1). 𝑑ℯ(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 

(e2). 𝑑ℯ(𝑥, 𝑦) = 𝑑ℯ(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 

(e3). 𝑑ℯ(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑧)[𝑑ℯ(𝑥, 𝑦) + 𝑑ℯ(𝑦, 𝑧)] 

The pair (𝑋, 𝑑ℯ) is called an extended b-metric space.  

Mlaiki et al. have presented a novel type of generalized b-metric space [9].  

Definition 3 (see [9]) Let 𝑋 be a nonempty set and 𝑝: 𝑋 × 𝑋 ⟶ [1, ∞) be a function. A function 

𝑑𝒸: 𝑋 × 𝑋 ⟶ [0, ∞) is called a controlled metric if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,  

(c1). 𝑑𝒸(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 

(c2). 𝑑𝒸(𝑥, 𝑦) = 𝑑𝒸(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 

(c3). 𝑑𝒸(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦)𝑑𝒸(𝑥, 𝑦) + 𝑝(𝑦, 𝑧)𝑑𝒸(𝑦, 𝑧) 

The pair (𝑋, 𝑑𝒸) is called a controlled metric space (see also [10]).  

Definition 4 (see [9]) Let (𝑋, 𝑑𝒸) be a controlled metric space and {𝑥𝑛}𝑛≥0 be a sequence in 𝑋. 

Then,  
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1. The sequence {𝑥𝑛} converges to some 𝑥 in 𝑋 if for every 𝜀 > 0, there exists 𝑁 = 𝑁(𝜀) ∈

ℕ such that 𝑑𝒸(𝑥𝑛, 𝑥) < 𝜀 for all 𝑛 ≥ 𝑁. In this case, we write lim
𝑛→∞

𝑥𝑛 = 𝑥. 

2. The sequence {𝑥𝑛}  is Cauchy if for every 𝜀 > 0,  there exists 𝑁 = 𝑁(𝜀) ∈ ℕ  such that 

𝑑𝒸(𝑥𝑛, 𝑥𝑚) < 𝜀 for all 𝑛, 𝑚 ≥ 𝑁. 

3. The controlled metric space (𝑋, 𝑑𝒸) is called complete if every Cauchy sequence is 

convergent. 

Definition 5 (see [9]) Let (𝑋, 𝑑𝒸) be a controlled metric space. Let 𝑥 ∈ 𝑋 and 𝜀 > 0. 

1. The open ball 𝐵(𝑥, 𝜀) is             

                          𝐵(𝑥, 𝜀) = {𝑦 ∈ 𝑋: 𝑑𝒸(𝑦, 𝑥) < 𝜀}. 

2. The mapping 𝐹: 𝑋 ⟶ 𝑋 is said to be continuous at 𝑥 ∈ 𝑋 if for all 𝜀 > 0, there exists 𝛿 >

0 such that 𝐹(𝐵(𝑥, 𝜀)) ⊆ 𝐵(𝐹𝑥, 𝜀). 

This study aims to introduce a fixed-point theorem for (𝜆, 𝛼)-interpolative Kannan contraction, 

(𝜆, 𝛼, 𝛽)-interpolative Kannan contraction and (𝜆, 𝛼, 𝛽, 𝛾)-interpolative Reich contraction in the 

context of complete controlled metric spaces. These theorems also extend and apply to the 

controlled metric environment several interesting results from metric fixed-point theory. Our result 

generalizes and extends some well-known results in the literature.   

 

2. MAIN RESULT  

We begin by defining the terms below. 

Definition 2.1 Let (𝑋, 𝑑𝒸) be a controlled metric space. Let 𝐹: 𝑋 ⟶ 𝑋 be a self-map. We shall call 

F a (𝜆, 𝛼)-interpolative Kannan contraction, if there exist 𝜆 ∈ [0,1), 𝛼 ∈ (0,1) such that  

                                      𝑑𝒸(F𝑥, 𝐹𝑦) ≤ 𝜆(𝑑𝒸(𝑥, F𝑥))
𝛼

(𝑑𝒸(𝑦, 𝐹𝑦))
1−𝛼

                                 (2.1) 

for all 𝑥, 𝑦 ∈ 𝑋, with 𝑥 ≠  𝑦.  

Definition 2.2 Let (𝑋, 𝑑𝒸) be a controlled metric space. Let 𝐹: 𝑋 ⟶ 𝑋 be a self-map. We shall call 

F a (𝜆, 𝛼, 𝛽)-interpolative Kannan contraction, if there exist 𝜆 ∈ [0,1), 𝛼, 𝛽 ∈ (0,1), 𝛼 + 𝛽 < 1 

such that  
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                                     𝑑𝒸(F𝑥, 𝐹𝑦) ≤ 𝜆(𝑑𝒸(𝑥, F𝑥))
𝛼

(𝑑𝒸(𝑦, 𝐹𝑦))
𝛽

                                        (2.2)   

for all 𝑥, 𝑦 ∈ 𝑋, with 𝑥 ≠  𝑦.  

Definition 2.3 Let (𝑋, 𝑑𝒸) be a controlled metric space. Let 𝐹: 𝑋 ⟶ 𝑋 be a self-map. We shall call 

F a (𝜆, 𝛼, 𝛽, 𝛾)-interpolative Reich contraction, if there exist 𝜆 ∈ [0,1), 𝛼, 𝛽, 𝛾 ∈ (0,1), 𝛼 + 𝛽 +

𝛾 < 1 such that  

                                     𝑑𝒸(F𝑥, 𝐹𝑦) ≤ 𝜆(𝑑𝒸(𝑥, 𝑦))
𝛼

(𝑑𝒸(𝑥, F𝑥))
𝛽

(𝑑𝒸(𝑦, 𝐹𝑦))
𝛾
                     (2.3)   

for all 𝑥, 𝑦 ∈ 𝑋, with 𝑥 ≠  𝑦.  

Our first main result as follows. 

Theorem 2.4 Let (𝑋, 𝑑𝒸) be a complete controlled metric space. Let 𝐹: 𝑋 ⟶ 𝑋  be a (𝜆, 𝛼) -

interpolative Kannan contraction. For 𝑥0 ∈ 𝑋, take 𝑥𝑛 = 𝐹𝑛𝑥0. Assume that 

                                        sup
𝑚≥1

lim
𝑖→∞

𝑝(𝑥𝑖+1,𝑥𝑖+2)𝑝(𝑥𝑖+1,𝑥𝑚)

𝑝(𝑥𝑖,𝑥𝑖+1)
<

1

𝜆
                                                       (2.4) 

Then 𝐹 has a unique fixed point. 

Proof. Let 𝑥0 ∈ 𝑋 be initial point. Define a sequence {𝑥𝑛} as 𝑥𝑛+1 = 𝐹𝑥𝑛, ∀ 𝑛 ∈ ℕ. Obviously, if 

∃ 𝑛0 ∈ ℕ for which 𝑥𝑛0+1 = 𝑥𝑛0
, then 𝐹𝑥𝑛0

= 𝑥𝑛0
, and the proof is finished. Thus, we suppose 

that 𝑥𝑛+1 ≠ 𝑥𝑛 for each 𝑛 ∈ ℕ. Thus, by (2.1), we have 

           𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) = 𝑑𝒸(𝐹𝑥𝑛−1, 𝐹𝑥𝑛) 

                                 ≤ 𝜆(𝑑𝒸(𝑥𝑛−1, F𝑥𝑛−1))
𝛼

(𝑑𝒸(𝑥𝑛, 𝐹𝑥𝑛))
1−𝛼

            

                                 = 𝜆(𝑑𝒸(𝑥𝑛−1, 𝑥𝑛))
𝛼

(𝑑𝒸(𝑥𝑛, 𝑥𝑛+1))
1−𝛼

                  

The last inequality gives  

                                          𝑑𝒸(𝑥𝑛, 𝑥𝑛+1)𝛼 ≤ 𝜆𝑑𝒸(𝑥𝑛−1, 𝑥𝑛)𝛼                                                    (2.5) 

Since 𝛼 < 1, we have 

                             𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) ≤ 𝜆
1

𝛼𝑑𝒸(𝑥𝑛−1, 𝑥𝑛) ≤ 𝜆𝑑𝒸(𝑥𝑛−1, 𝑥𝑛) 

and then 

                  𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) ≤ 𝜆𝑑𝒸(𝑥𝑛−1, 𝑥𝑛) ≤ 𝜆2𝑑𝒸(𝑥𝑛−2, 𝑥𝑛−1) ≤ ⋯ ≤ 𝜆𝑛𝑑𝒸(𝑥0, 𝑥1)             (2.6) 
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For all 𝑛, 𝑚 ∈ ℕ and 𝑛 < 𝑚, we have 

  𝑑𝒸(𝑥𝑛, 𝑥𝑚) ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) + 𝑝(𝑥𝑛+1, 𝑥𝑚)𝑑𝒸(𝑥𝑛+1, 𝑥𝑚) 

                    ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) + 𝑝(𝑥𝑛+1, 𝑥𝑚)𝑝(𝑥𝑛+1, 𝑥𝑛+2)𝑑𝒸(𝑥𝑛+1, 𝑥𝑛+2) 

                    +𝑝(𝑥𝑛+1, 𝑥𝑚)𝑝(𝑥𝑛+2, 𝑥𝑚)𝑑𝒸(𝑥𝑛+2, 𝑥𝑚) 

                    ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) + 𝑝(𝑥𝑛+1, 𝑥𝑚)𝑝(𝑥𝑛+1, 𝑥𝑛+2)𝑑𝒸(𝑥𝑛+1, 𝑥𝑛+2) 

                    +𝑝(𝑥𝑛+1, 𝑥𝑚)𝑝(𝑥𝑛+2, 𝑥𝑚)𝑝(𝑥𝑛+2, 𝑥𝑛+3)𝑑𝒸(𝑥𝑛+2, 𝑥𝑛+3) 

                    +𝑝(𝑥𝑛+1, 𝑥𝑚)𝑝(𝑥𝑛+2, 𝑥𝑚)𝑝(𝑥𝑛+3, 𝑥𝑚)𝑑𝒸(𝑥𝑛+3, 𝑥𝑚) 

                    ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) 

                    + ∑ (∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑖
𝑗=𝑛+1 )𝑚−2

𝑖=𝑛+1 𝑝(𝑥𝑖, 𝑥𝑖+1)𝑑𝒸(𝑥𝑖, 𝑥𝑖+1) 

                    + ∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑚−1
𝑖=𝑛+1 𝑑𝒸(𝑥𝑚−1, 𝑥𝑚)                                                                      (2.7) 

This implies that 

                𝑑𝒸(𝑥𝑛, 𝑥𝑚) ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) 

                                  + ∑ (∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑖
𝑗=𝑛+1 )𝑚−2

𝑖=𝑛+1 𝑝(𝑥𝑖, 𝑥𝑖+1)𝑑𝒸(𝑥𝑖, 𝑥𝑖+1) 

                                  + ∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑚−1
𝑖=𝑛+1 𝑑𝒸(𝑥𝑚−1, 𝑥𝑚) 

                                  ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝜆𝑛𝑑𝒸(𝑥0, 𝑥1) 

                                  + ∑ (∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑖
𝑗=𝑛+1 )𝑚−2

𝑖=𝑛+1 𝑝(𝑥𝑖, 𝑥𝑖+1)𝜆𝑖𝑑𝒸(𝑥0, 𝑥1) 

                                  + ∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑚−1
𝑖=𝑛+1 𝜆𝑚−1𝑑𝒸(𝑥0, 𝑥1) 

                                   ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝜆𝑛𝑑𝒸(𝑥0, 𝑥1) 

                                  + ∑ (∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑖
𝑗=𝑛+1 )𝑚−1

𝑖=𝑛+1 𝑝(𝑥𝑖, 𝑥𝑖+1)𝜆𝑖𝑑𝒸(𝑥0, 𝑥1)                         (2.8) 

Let 

                                 𝜂𝑟 = ∑ (∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑖
𝑗=0 )𝑟

𝑖=0 𝑝(𝑥𝑖, 𝑥𝑖+1)𝜆𝑖𝑑𝒸(𝑥0, 𝑥1)                             (2.9) 

Consider  

                                  𝜇𝑖 = ∑ (∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑖
𝑗=0 )𝑟

𝑖=0 𝑝(𝑥𝑖, 𝑥𝑖+1)𝜆𝑖𝑑𝒸(𝑥0, 𝑥1)                            (2.10) 
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In view of condition (2.4) and the ratio test, we ensure that the series ∑ 𝜇𝑖𝑖  converges. Thus, 

lim
𝑛→∞

𝜂𝑛 exists. Hence, the real sequence {𝜂𝑛} is Cauchy. Now, using (2.6), we get 

                            𝑑𝒸(𝑥𝑛, 𝑥𝑚) ≤ 𝑑𝒸(𝑥0, 𝑥1)[𝜆𝑛𝑝(𝑥𝑛, 𝑥𝑛+1) + (𝜂𝑚−1 − 𝜂𝑛)]                        (2.11) 

Above, we used 𝑝(𝑥, 𝑦) ≥ 1. Letting 𝑛, 𝑚 ⟶ ∞ in (2.11), we obtain 

                                                      lim
𝑛,𝑚→∞

𝑑𝒸(𝑥𝑛, 𝑥𝑚) = 0                                                     (2.12) 

Thus, the sequence {𝑥𝑛} is Cauchy in the complete controlled metric space (𝑋, 𝑑𝒸). So, there is 

some 𝑥∗ ∈ 𝑋.So that  

                                                       lim
𝑛→∞

𝑑𝒸(𝑥𝑛, 𝑥∗) = 0;                                                       (2.13) 

that is, 𝑥𝑛 ⟶ 𝑥∗ as 𝑛 ⟶ ∞. Now, we will prove that 𝑥∗ is a fixed point of F. By (2.1) and 

condition (c3), we get 

𝑑𝒸(𝑥∗, 𝐹𝑥∗) ≤ 𝑝(𝑥∗, 𝑥𝑛+1)𝑑𝒸(𝑥∗, 𝑥𝑛+1) + 𝑝(𝑥𝑛+1, 𝐹𝑥∗)𝑑𝒸(𝑥𝑛+1, 𝐹𝑥∗) 

                                       = 𝑝(𝑥∗, 𝑥𝑛+1)𝑑𝒸(𝑥∗, 𝑥𝑛+1) + 𝑝(𝑥𝑛+1, 𝐹𝑥∗)𝑑𝒸(𝐹𝑥𝑛, 𝐹𝑥∗) 

                                       ≤ 𝑝(𝑥∗, 𝑥𝑛+1)𝑑𝒸(𝑥∗, 𝑥𝑛+1) 

                                       +𝑝(𝑥𝑛+1, 𝐹𝑥∗) [𝜆(𝑑𝒸(𝑥𝑛, 𝐹𝑥𝑛))
𝛼

(𝑑𝒸(𝑥∗, 𝐹𝑥∗))
1−𝛼

] 

                                       ≤ 𝑝(𝑥∗, 𝑥𝑛+1)𝑑𝒸(𝑥∗, 𝑥𝑛+1) 

                                       +𝑝(𝑥𝑛+1, 𝐹𝑥∗) [𝜆(𝑑𝒸(𝑥𝑛, 𝑥𝑛+1))
𝛼

(𝑑𝒸(𝑥∗, 𝐹𝑥∗))
1−𝛼

]                    (2.14) 

Taking the limit as 𝑛 ⟶ ∞ and using (2.10), (2.11) we obtain that 

                                                   𝑑𝒸(𝑥∗, 𝐹𝑥∗) = 0                                                                   (2.15) 

This yields that 𝑥∗ = 𝐹𝑥∗. Now, we prove the uniqueness of 𝑥∗. Let 𝑦∗ be another fixed point of 

𝐹 in 𝑋, then 𝐹𝑦∗ = 𝑦∗. Now, by (2.1), we have 

             𝑑𝒸(𝑥∗, 𝑦∗) = 𝑑𝒸(𝐹𝑥∗, 𝐹𝑦∗) 

                              ≤ 𝜆(𝑑𝒸(𝑥∗, 𝑥∗))
𝛼

(𝑑𝒸(𝑦∗, 𝑦∗))
1−𝛼

= 0                                                    (2.16)                                                                     

This yields that 𝑥∗ =  𝑦∗. It completes the proof. 
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Theorem 2.5 Let (𝑋, 𝑑𝒸) be a complete controlled metric space. Let 𝐹: 𝑋 ⟶ 𝑋 be a (𝜆, 𝛼, 𝛽)-

interpolative Kannan contraction with (2.4) and for 𝑥0 ∈ 𝑋, 𝑥𝑛 = 𝐹𝑛𝑥0. Then 𝐹 has a unique fixed 

point. 

Proof. Following the steps of proof of Theorem 2.4, we construct the sequence {𝑥𝑛}  by iterating 

𝑥𝑛+1 = 𝐹𝑥𝑛, ∀ 𝑛 ∈ ℕ, 

where 𝑥0 ∈ 𝑋 is arbitrary starting point. Then, by (2.2), we have 

           𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) = 𝑑𝒸(𝐹𝑥𝑛−1, 𝐹𝑥𝑛) 

                                 ≤ 𝜆(𝑑𝒸(𝑥𝑛−1, F𝑥𝑛−1))
𝛼

(𝑑𝒸(𝑥𝑛, 𝐹𝑥𝑛))
𝛽

            

                                 = 𝜆(𝑑𝒸(𝑥𝑛−1, 𝑥𝑛))
𝛼

(𝑑𝒸(𝑥𝑛, 𝑥𝑛+1))
𝛽

                  

Since 𝛼 < 1 − 𝛽, the last inequality gives  

                               𝑑𝒸(𝑥𝑛, 𝑥𝑛+1)1−𝛽 ≤ 𝜆𝑑𝒸(𝑥𝑛−1, 𝑥𝑛)𝛼 ≤ 𝜆𝑑𝒸(𝑥𝑛−1, 𝑥𝑛)1−𝛽                      (2.17)                                                  

Hence 

                                 𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) ≤ 𝜆
1

1−𝛽𝑑𝒸(𝑥𝑛−1, 𝑥𝑛) ≤ 𝜆𝑑𝒸(𝑥𝑛−1, 𝑥𝑛) 

and then 

                  𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) ≤ 𝜆𝑑𝒸(𝑥𝑛−1, 𝑥𝑛) ≤ 𝜆2𝑑𝒸(𝑥𝑛−2, 𝑥𝑛−1) ≤ ⋯ ≤ 𝜆𝑛𝑑𝒸(𝑥0, 𝑥1)        (2.18) 

As already elaborated in the proof of Theorem 2.4, the classical procedure leads to the existence 

of a fixed-point  𝑥∗ ∈ 𝑋. Now, we prove the uniqueness of 𝑥∗. Let 𝑦∗ be another fixed point of 𝐹 

in 𝑋, then 𝐹𝑦∗ = 𝑦∗. Now, by (2.2), we have 

             𝑑𝒸(𝑥∗, 𝑦∗) = 𝑑𝒸(𝐹𝑥∗, 𝐹𝑦∗) 

                              ≤ 𝜆(𝑑𝒸(𝑥∗, 𝑥∗))
𝛼

(𝑑𝒸(𝑦∗, 𝑦∗))
𝛽

= 0                                                       (2.19)                                                                     

This yields that 𝑥∗ =  𝑦∗. This completes the proof. 

Theorem 2.6 Let (𝑋, 𝑑𝒸) be a complete controlled metric space. Let 𝐹: 𝑋 ⟶ 𝑋 be a (𝜆, 𝛼, 𝛽, 𝛾)-

interpolative Reich contraction and assume that (2.4) hold for 𝑥0 ∈ 𝑋 and 𝑥𝑛 = 𝐹𝑛𝑥0. Then 𝐹 has 

a unique fixed point. 

Proof. Following the steps of proof of Theorem 2.4, we construct the sequence{𝑥𝑛}  by iterating 
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𝑥𝑛+1 = 𝐹𝑥𝑛, ∀ 𝑛 ∈ ℕ, 

where 𝑥0 ∈ 𝑋 is arbitrary starting point. Then, by (2.2), we have 

           𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) = 𝑑𝒸(𝐹𝑥𝑛−1, 𝐹𝑥𝑛) 

                                 ≤ 𝜆(𝑑𝒸(𝑥𝑛−1, 𝑥𝑛))
𝛼

(𝑑𝒸(𝑥𝑛−1, F𝑥𝑛−1))
𝛽

(𝑑𝒸(𝑥𝑛, 𝐹𝑥𝑛))
𝛾

            

                                 = 𝜆(𝑑𝒸(𝑥𝑛−1, 𝑥𝑛))
𝛼+𝛽

(𝑑𝒸(𝑥𝑛, 𝑥𝑛+1))
𝛾
                  

Since 𝛼 + 𝛽 < 1 − 𝛾, the last inequality gives  

                               𝑑𝒸(𝑥𝑛, 𝑥𝑛+1)1−𝛾 ≤ 𝜆𝑑𝒸(𝑥𝑛−1, 𝑥𝑛)𝛼+𝛽 ≤ 𝜆𝑑𝒸(𝑥𝑛−1, 𝑥𝑛)1−𝛾                   (2.20)                                                  

Hence 

                                 𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) ≤ 𝜆
1

1−𝛾𝑑𝒸(𝑥𝑛−1, 𝑥𝑛) ≤ 𝜆𝑑𝒸(𝑥𝑛−1, 𝑥𝑛) 

and then 

                  𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) ≤ 𝜆𝑑𝒸(𝑥𝑛−1, 𝑥𝑛) ≤ 𝜆2𝑑𝒸(𝑥𝑛−2, 𝑥𝑛−1) ≤ ⋯ ≤ 𝜆𝑛𝑑𝒸(𝑥0, 𝑥1)          (2.21) 

As already elaborated in the proof of Theorem 2.4, the classical procedure leads to the existence 

of a fixed-point  𝑥∗ ∈ 𝑋. Now, we prove the uniqueness of 𝑥∗. Let 𝑦∗ be another fixed point of 𝐹 

in 𝑋, then 𝐹𝑦∗ = 𝑦∗. Now, by (2.3), we have 

             𝑑𝒸(𝑥∗, 𝑦∗) = 𝑑𝒸(𝐹𝑥∗, 𝐹𝑦∗) 

                              ≤ 𝜆(𝑑𝒸(𝑥∗, 𝑦∗))
𝛼

(𝑑𝒸(𝑥∗, 𝑥∗))
𝛽

(𝑑𝒸(𝑦∗, 𝑦∗))
𝛾

= 0                                   (2.22)                                                                     

This yields that 𝑥∗ =  𝑦∗. This completes the proof. 
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