FIXED POINTS OF KANNAN AND REICH INTERPOLATIVE CONTRACTIONS IN CONTROLLED METRIC SPACES
DEEPAK SINGH\(^1\),
MANOJ UGHADE\(^2\),
ALOK KUMAR\(^1\),
MANOJ KUMAR SHUKLA\(^2\)

\(^1\)Department of Mathematics, Swami Vivekanand University, Sagar-470001, Madhya Pradesh, India
\(^2\)Department of Mathematics, Institute for Excellence in Higher Education (IEHE), Bhopal-462016, Madhya Pradesh, India

Abstract: In this paper, we introduce \((\lambda, \alpha)\)-interpolative Kannan contraction, \((\lambda, \alpha, \beta)\)-interpolative Kannan contraction and \((\lambda, \alpha, \beta, \gamma)\)-interpolative Reich contraction. Also, we establish some fixed-point theorems in complete controlled metric spaces. Additionally, these theorems expand and apply a number of intriguing findings from metric fixed-point theory to the controlled metric setting.

Keywords: fixed-point; iterative method; interpolative; contraction; controlled metric space.

2010 Mathematics Subject Classification: 46T99, 46N40, 47H10.

1. INTRODUCTION AND PRELIMINARIES

The first fixed point theorem for rational contraction conditions in metric space was established by Dass and Gupta [26].

Theorem 1.1 (see [26]). Let \((X, d)\) be a complete metric space, and let \(T: X \to X\) be a self-mapping. If there exist \(\alpha, \beta \in [0, 1)\) with \(\alpha + \beta < 1\) such that

\[
d(Tx, Ty) \leq \alpha d(x, y) + \beta \frac{1 + d(x, Tx) + d(y, Ty)}{1 + d(x, y)}
\]

for all \(x, y \in X\), then \(T\) has a unique fixed point \(x^* \in X\).

\(^*\)Corresponding author
E-mail addresses: deepaksinghresearch2023@gmail.com
Received November 02, 2023
A genuine generalization of the Dass-Gupta fixed point theorem within the framework of dualistic partial metric spaces was demonstrated by Nazam et al. [27]. As generalizations of metric spaces, Czerwik [1] presented a new class of generalized metric spaces known as b-metric spaces.

Definition 1 (see [1]) Let X be a nonempty set and $s \geq 1$. A function $d_b: X \times X \rightarrow [0, \infty)$ is said to be a b-metric if for all $x, y, z \in X$,

(b1). $d_b(x, y) = 0$ iff $x = y$

(b2). $d_b(x, y) = d_b(y, x)$ for all $x, y \in X$

(b3). $d_b(x, z) \leq s \left[d_b(x, y) + d_b(y, z)\right]$

Then, we refer to the pair (X, d_b) as a b-metric space. Many fixed-point findings on such spaces were subsequently obtained (see to [2–7]).

Extended b-metric spaces are a concept first introduced by Kamran et al. [8].

Definition 2 (see [8]) Let X be a nonempty set and $p: X \times X \rightarrow [1, \infty)$ be a function. A function $d_e: X \times X \rightarrow [0, \infty)$ is called an extended b-metric if for all $x, y, z \in X$,

(e1). $d_e(x, y) = 0$ iff $x = y$

(e2). $d_e(x, y) = d_e(y, x)$ for all $x, y \in X$

(e3). $d_e(x, z) \leq p(x, z)[d_e(x, y) + d_e(y, z)]$

The pair (X, d_e) is called an extended b-metric space.

Mlaiki et al. have presented a novel type of generalized b-metric space [9].

Definition 3 (see [9]) Let X be a nonempty set and $p: X \times X \rightarrow [1, \infty)$ be a function. A function $d_c: X \times X \rightarrow [0, \infty)$ is called a controlled metric if for all $x, y, z \in X$,

(c1). $d_c(x, y) = 0$ iff $x = y$

(c2). $d_c(x, y) = d_c(y, x)$ for all $x, y \in X$

(c3). $d_c(x, z) \leq p(x, y)d_c(x, y) + p(y, z)d_c(y, z)$

The pair (X, d_c) is called a controlled metric space (see also [10]).

Definition 4 (see [9]) Let (X, d_c) be a controlled metric space and $\{x_n\}_{n \geq 0}$ be a sequence in X. Then,
1. The sequence \(\{x_n\} \) converges to some \(x \) in \(X \) if for every \(\varepsilon > 0 \), there exists \(N = N(\varepsilon) \in \mathbb{N} \) such that \(d_c(x_n, x) < \varepsilon \) for all \(n \geq N \). In this case, we write \(\lim_{n \to \infty} x_n = x \).

2. The sequence \(\{x_n\} \) is Cauchy if for every \(\varepsilon > 0 \), there exists \(N = N(\varepsilon) \in \mathbb{N} \) such that \(d_c(x_n, x_m) < \varepsilon \) for all \(n, m \geq N \).

3. The controlled metric space \((X, d_c)\) is called complete if every Cauchy sequence is convergent.

Definition 5 (see [9]) Let \((X, d_c)\) be a controlled metric space. Let \(x \in X \) and \(\varepsilon > 0 \).

1. The open ball \(B(x, \varepsilon) \) is
 \[
 B(x, \varepsilon) = \{ y \in X : d_c(y, x) < \varepsilon \}.
 \]

2. The mapping \(F: X \to X \) is said to be continuous at \(x \in X \) if for all \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that \(F(B(x, \varepsilon)) \subseteq B(Fx, \varepsilon) \).

This study aims to introduce a fixed-point theorem for \((\lambda, \alpha)\)-interpolative Kannan contraction, \((\lambda, \alpha, \beta)\)-interpolative Kannan contraction and \((\lambda, \alpha, \beta, \gamma)\)-interpolative Reich contraction in the context of complete controlled metric spaces. These theorems also extend and apply to the controlled metric environment several interesting results from metric fixed-point theory. Our result generalizes and extends some well-known results in the literature.

2. Main Result

We begin by defining the terms below.

Definition 2.1 Let \((X, d_c)\) be a controlled metric space. Let \(F: X \to X \) be a self-map. We shall call \(F \) a \((\lambda, \alpha)\)-interpolative Kannan contraction, if there exist \(\lambda \in [0, 1) \) and \(\alpha \in (0, 1) \) such that
\[
 d_c(Fx, Fy) \leq \lambda d_c(x, Fx) + \alpha (d_c(y, Fy))^{1-\alpha}
\]
for all \(x, y \in X \), with \(x \neq y \).

Definition 2.2 Let \((X, d_c)\) be a controlled metric space. Let \(F: X \to X \) be a self-map. We shall call \(F \) a \((\lambda, \alpha, \beta)\)-interpolative Kannan contraction, if there exist \(\lambda \in [0, 1) \), \(\alpha, \beta \in (0, 1) \) such that
\[
 d_c(Fx, Fy) \leq \lambda d_c(x, Fx) + \alpha (d_c(y, Fy)) + \beta (d_c(x, y))^{1-\alpha}
\]
for all \(x, y \in X \), with \(x \neq y \).
\[d_c(Fx, Fy) \leq \lambda (d_c(x, Fx))^\alpha (d_c(y, Fy))^\beta \] \hspace{1cm} (2.2)

for all \(x, y \in X \), with \(x \neq y \).

Definition 2.3 Let \((X, d_c)\) be a controlled metric space. Let \(F: X \rightarrow X\) be a self-map. We shall call \(F\) a \((\lambda, \alpha, \beta, \gamma)\)-interpolative Reich contraction, if there exist \(\lambda \in [0, 1), \alpha, \beta, \gamma \in (0, 1), \alpha + \beta + \gamma < 1\) such that

\[d_c(Fx, Fy) \leq \lambda (d_c(x, y))^\alpha (d_c(x, Fx))^\beta (d_c(y, Fy))^\gamma \] \hspace{1cm} (2.3)

for all \(x, y \in X \), with \(x \neq y \).

Our first main result as follows.

Theorem 2.4 Let \((X, d_c)\) be a complete controlled metric space. Let \(F: X \rightarrow X\) be a \((\lambda, \alpha)\)-interpolative Kannan contraction. For \(x_0 \in X\), take \(x_n = F^n x_0\). Assume that

\[\sup_{m \geq 1} \lim_{i \rightarrow \infty} \frac{p(x_{i+1} - x_{i+2}) p(x_{i+2} - x_m)}{p(x_{i+1})} < \frac{1}{\lambda} \] \hspace{1cm} (2.4)

Then \(F\) has a unique fixed point.

Proof. Let \(x_0 \in X\) be initial point. Define a sequence \(\{x_n\}\) as \(x_{n+1} = Fx_n, \forall n \in \mathbb{N}\). Obviously, if \(\exists n_0 \in \mathbb{N} \) for which \(x_{n_0+1} = x_{n_0}\), then \(F x_{n_0} = x_{n_0}\), and the proof is finished. Thus, we suppose that \(x_{n+1} \neq x_n\) for each \(n \in \mathbb{N}\). Thus, by (2.1), we have

\[d_c(x_n, x_{n+1}) = d_c(Fx_{n-1}, Fx_n) \]

\[\leq \lambda (d_c(x_{n-1}, Fx_{n-1}))^\alpha (d_c(x_n, Fx_n))^{1-\alpha} \]

\[= \lambda (d_c(x_{n-1}, x_n))^\alpha (d_c(x_n, x_{n+1}))^{1-\alpha} \]

The last inequality gives

\[d_c(x_n, x_{n+1})^\alpha \leq \lambda d_c(x_{n-1}, x_n)^\alpha \] \hspace{1cm} (2.5)

Since \(\alpha < 1\), we have

\[d_c(x_n, x_{n+1}) \leq \frac{1}{\lambda^\alpha} d_c(x_{n-1}, x_n) \leq \lambda d_c(x_{n-1}, x_n) \]

and then

\[d_c(x_n, x_{n+1}) \leq \lambda d_c(x_{n-1}, x_n) \leq \lambda^2 d_c(x_{n-2}, x_n) \leq \cdots \leq \lambda^n d_c(x_0, x_1) \] \hspace{1cm} (2.6)
For all \(n, m \in \mathbb{N} \) and \(n < m \), we have

\[
d_c(x_n, x_m) \leq p(x_n, x_{n+1})d_c(x_n, x_{n+1}) + p(x_{n+1}, x_m)d_c(x_{n+1}, x_m)
\]

\[
\leq p(x_n, x_{n+1})d_c(x_n, x_{n+1}) + p(x_{n+1}, x_m)p(x_{n+1}, x_{n+2})d_c(x_{n+1}, x_{n+2})
\]

\[
+ p(x_{n+1}, x_m)p(x_{n+2}, x_m)d_c(x_{n+2}, x_m)
\]

\[
\leq p(x_n, x_{n+1})d_c(x_n, x_{n+1}) + p(x_{n+1}, x_m)p(x_{n+1}, x_{n+2})d_c(x_{n+1}, x_{n+2})
\]

\[
+ p(x_{n+1}, x_m)p(x_{n+2}, x_m)p(x_{n+2}, x_{n+3})d_c(x_{n+2}, x_{n+3})
\]

\[
+ p(x_{n+1}, x_m)p(x_{n+2}, x_m)p(x_{n+3}, x_m)d_c(x_{n+3}, x_m)
\]

\[
\leq p(x_n, x_{n+1})d_c(x_n, x_{n+1})
\]

\[
+ \sum_{i=n+1}^{m-2} (\prod_{j=n+1}^{i} p(x_j, x_m)) p(x_i, x_{i+1})d_c(x_i, x_{i+1})
\]

\[
+ \prod_{i=n+1}^{m-1} p(x_j, x_m) d_c(x_{m-1}, x_m)
\]

(2.7)

This implies that

\[
d_c(x_n, x_m) \leq p(x_n, x_{n+1})d_c(x_n, x_{n+1})
\]

\[
+ \sum_{i=n+1}^{m-2} (\prod_{j=n+1}^{i} p(x_j, x_m)) p(x_i, x_{i+1})d_c(x_i, x_{i+1})
\]

\[
+ \prod_{i=n+1}^{m-1} p(x_j, x_m) d_c(x_{m-1}, x_m)
\]

\[
\leq p(x_n, x_{n+1})d_c(x_0, x_1)
\]

\[
+ \sum_{i=n+1}^{m-2} (\prod_{j=n+1}^{i} p(x_j, x_m)) p(x_i, x_{i+1})\lambda^i d_c(x_0, x_1)
\]

\[
+ \prod_{i=n+1}^{m-1} p(x_j, x_m) \lambda^{m-1} d_c(x_0, x_1)
\]

\[
\leq p(x_n, x_{n+1})\lambda^n d_c(x_0, x_1)
\]

\[
+ \sum_{i=n+1}^{m-1} (\prod_{j=n+1}^{i} p(x_j, x_m)) p(x_i, x_{i+1})\lambda^i d_c(x_0, x_1)
\]

(2.8)

Let

\[
\eta_r = \sum_{i=0}^{r} (\prod_{j=0}^{i} p(x_j, x_m)) p(x_i, x_{i+1})\lambda^i d_c(x_0, x_1)
\]

(2.9)

Consider

\[
\mu_i = \sum_{i=0}^{r} (\prod_{j=0}^{i} p(x_j, x_m)) p(x_i, x_{i+1})\lambda^i d_c(x_0, x_1)
\]

(2.10)
In view of condition (2.4) and the ratio test, we ensure that the series $\sum \mu_i$ converges. Thus,
$$\lim_{n \to \infty} \eta_n$$
exists. Hence, the real sequence $\{\eta_n\}$ is Cauchy. Now, using (2.6), we get
$$d_c(x_n, x_m) \leq d_c(x_0, x_1)[\lambda^n p(x_n, x_{n+1}) + (\eta_{m-1} - \eta_n)]$$
(2.11)
Above, we used $p(x, y) \geq 1$. Letting $n, m \to \infty$ in (2.11), we obtain
$$\lim_{n, m \to \infty} d_c(x_n, x_m) = 0$$
(2.12)
Thus, the sequence $\{x_n\}$ is Cauchy in the complete controlled metric space (X, d_c). So, there is some $x^* \in X$. So that
$$\lim_{n \to \infty} d_c(x_n, x^*) = 0;$$
(2.13)
that is, $x_n \to x^*$ as $n \to \infty$. Now, we will prove that x^* is a fixed point of F. By (2.1) and condition (c3), we get
$$d_c(x^*, Fx^*) \leq p(x^*, x_{n+1})d_c(x^*, x_{n+1}) + p(x_{n+1},Fx^*)d_c(x_{n+1},Fx^*)$$
$$= p(x^*, x_{n+1})d_c(x^*, x_{n+1}) + p(x_{n+1},Fx^*)d_c(Fx_n,Fx^*)$$
$$\leq p(x^*, x_{n+1})d_c(x^*, x_{n+1})$$
$$+p(x_{n+1},Fx^*) \left[\lambda(d_c(x_n, Fx_n))^\alpha (d_c(x^*,Fx^*))^{1-\alpha}\right]$$
$$\leq p(x^*, x_{n+1})d_c(x^*, x_{n+1})$$
$$+p(x_{n+1},Fx^*) \left[\lambda(d_c(x_n, x_{n+1}))^\alpha (d_c(x^*,Fx^*))^{1-\alpha}\right]$$
(2.14)
Taking the limit as $n \to \infty$ and using (2.10), (2.11) we obtain that
$$d_c(x^*, Fx^*) = 0$$
(2.15)
This yields that $x^* = Fx^*$. Now, we prove the uniqueness of x^*. Let y^* be another fixed point of F in X, then $Fy^* = y^*$. Now, by (2.1), we have
$$d_c(x^*, y^*) = d_c(Fx^*,Fy^*)$$
$$\leq \lambda(d_c(x^*,x^*))^\alpha (d_c(y^*,y^*))^{1-\alpha} = 0$$
(2.16)
This yields that $x^* = y^*$. It completes the proof.
Theorem 2.5 Let \((X, d_c)\) be a complete controlled metric space. Let \(F: X \rightarrow X\) be a \((\lambda, \alpha, \beta)\)-interpolative Kannan contraction with (2.4) and for \(x_0 \in X\), \(x_n = F^n x_0\). Then \(F\) has a unique fixed point.

Proof. Following the steps of proof of Theorem 2.4, we construct the sequence \(\{x_n\}\) by iterating

\[
x_{n+1} = Fx_n, \quad \forall \ n \in \mathbb{N},
\]

where \(x_0 \in X\) is arbitrary starting point. Then, by (2.2), we have

\[
d_c(x_n, x_{n+1}) = d_c(Fx_{n-1}, Fx_n) \\
\leq \lambda (d_c(x_{n-1}, Fx_{n-1}))^\alpha (d_c(x_n, Fx_n))^\beta \\
= \lambda (d_c(x_{n-1}, x_n))^\alpha (d_c(x_n, x_{n+1}))^\beta
\]

Since \(\alpha < 1 - \beta\), the last inequality gives

\[
d_c(x_n, x_{n+1})^{1-\beta} \leq \lambda d_c(x_{n-1}, x_n)^\alpha \leq \lambda d_c(x_{n-1}, x_n)^{1-\beta} \tag{2.17}
\]

Hence

\[
d_c(x_n, x_{n+1}) \leq \lambda^{1-\beta} d_c(x_{n-1}, x_n) \leq \lambda d_c(x_{n-1}, x_n)
\]

and then

\[
d_c(x_n, x_{n+1}) \leq \lambda d_c(x_{n-1}, x_n) \leq \lambda^2 d_c(x_{n-2}, x_{n-1}) \leq \cdots \leq \lambda^n d_c(x_0, x_1) \tag{2.18}
\]

As already elaborated in the proof of Theorem 2.4, the classical procedure leads to the existence of a fixed-point \(x^* \in X\). Now, we prove the uniqueness of \(x^*\). Let \(y^*\) be another fixed point of \(F\) in \(X\), then \(Fy^* = y^*\). Now, by (2.2), we have

\[
d_c(x^*, y^*) = d_c(Fx^*, Fy^*) \\
\leq \lambda (d_c(x^*, x^*))^\alpha (d_c(y^*, y^*))^\beta = 0 \tag{2.19}
\]

This yields that \(x^* = y^*\). This completes the proof.

Theorem 2.6 Let \((X, d_c)\) be a complete controlled metric space. Let \(F: X \rightarrow X\) be a \((\lambda, \alpha, \beta, \gamma)\)-interpolative Reich contraction and assume that (2.4) hold for \(x_0 \in X\) and \(x_n = F^n x_0\). Then \(F\) has a unique fixed point.

Proof. Following the steps of proof of Theorem 2.4, we construct the sequence \(\{x_n\}\) by iterating
\[x_{n+1} = Fx_n, \forall \ n \in \mathbb{N}, \]

where \(x_0 \in X \) is arbitrary starting point. Then, by (2.2), we have
\[
d_c(x_n, x_{n+1}) = d_c(Fx_n, Fx_n) \\
\leq \lambda (d_c(x_{n-1}, x_n)^\alpha (d_c(x_{n-1}, Fx_{n-1}))^\beta (d_c(x_n, Fx_n))^\gamma \\
= \lambda (d_c(x_{n-1}, x_n)^{\alpha+\beta} (d_c(x_n, x_{n+1}))^\gamma \\
\]

Since \(\alpha + \beta < 1 - \gamma \), the last inequality gives
\[
d_c(x_n, x_{n+1})^{1-\gamma} \leq \lambda d_c(x_{n-1}, x_n)^{\alpha+\beta} \leq \lambda d_c(x_{n-1}, x_n)^{1-\gamma} \tag{2.20}
\]

Hence
\[
d_c(x_n, x_{n+1}) \leq \lambda^{1-\gamma} d_c(x_{n-1}, x_n) \leq \lambda d_c(x_{n-1}, x_n)
\]

and then
\[
d_c(x_n, x_{n+1}) \leq \lambda d_c(x_{n-1}, x_n) \leq \lambda^2 d_c(x_{n-2}, x_{n-1}) \leq \cdots \leq \lambda^n d_c(x_0, x_1) \tag{2.21}
\]

As already elaborated in the proof of Theorem 2.4, the classical procedure leads to the existence of a fixed-point \(x^* \in X \). Now, we prove the uniqueness of \(x^* \). Let \(y^* \) be another fixed point of \(F \) in \(X \), then \(Fy^* = y^* \). Now, by (2.3), we have
\[
d_c(x^*, y^*) = d_c(Fx^*, Fy^*) \\
\leq \lambda (d_c(x^*, y^*))^\alpha (d_c(x^*, x^*))^\beta (d_c(y^*, y^*))^\gamma = 0 \tag{2.22}
\]

This yields that \(x^* = y^* \). This completes the proof.

Authors’ Contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Acknowledgments

Authors are grateful to referee for their careful review and valuable comments, and remarks to improve this manuscript mathematically as well as graphically.

Conflict of Interests

The authors declare that there is no conflict of interests.
REFERENCES

