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Abstract: In this paper, we prove the generalizations of the Bianchini contraction and the Cirić-Reich-Rus con-

traction mappings fixed point results using the concept of convergence criteria for semi-interior points in E-metric

spaces with non-solid and non-normal set of positive elements E+ of real normed space E (positive cone). Addi-

tionally, many examples are included to illustrate the existence of semi-interior points of E+ with empty interior.

In addition, we present some applications in the field of applied mathematics that support our main findings.
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1. INTRODUCTION

Fixed point theory (FPT ) in ordered normed spaces has played an important role in com-

puter science, economics, optimization theory, astronomy, dynamical systems, decision theory,

parameter estimation, and many other subjects over a period of several decades. Large scale

problems requiring fixed point theory are highly esteemed for their lightning-fast solutions.

As a result, in recent years, many scholars have focused on developing FPT approaches and

have provided various useful techniques for discovering FP in complex issues. Poincare [20],
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a French mathematician, developed the concept of FPT by utilising operators in an abstract

topological form while studying nonlinear equations in the early 1800’s. Initially, Liouville

[23] created the sequential approximation method in 1837, and Picard introduced its logical

technique in 1890. The father of FPT , mathematician Brouwer [6], proposed FP theorems

for continuous mappings on finite dimensional spaces. In 1922, Banach [4] established and

confirmed the renowned Banach contraction principle. Later, several authors used the Banach

contraction principle (BCP) in numerous ways and presented numerous FP results [see, [8],

[26], [27], [29], [31], [32], [33] & [34]]. The author Kurepa [17], explained the notions of K-

metric spaces by replacing the set of all real numbers R by a Banach space to define the vector

valued metric space. This concept was further generalized in 1980 by Rzepecki [22] and a FP

theorem of Maia’s type was proved.

Originally, the concept of cone metric space, in which convergent and Cauchy sequences

were defined in terms of interior points in the ordered Banach space, was studied by Huang

and Zhang [13]. In particular, they proved FP theorems for the Banach type, the Kannan

type, and the Chatterjea type contractions and their related consequences. Also, they redefined

and proposed the concept of K-metric spaces and convergence in an ordered Banach space E

with normal solid cone P. After that, Hamlbarani [21] extended these results and showed the

theorems without the assumptions of normality on cone P of the Banach space E. Following

that, a high proportion of FP outcomes in cone metric spaces was seen. Further, in [1], the

authors define E-metric spaces and characterized the cone metric spaces in more general way by

defining ordered normed spaces. The notions of tvs-valued cone Banach spaces were introduced

in 2014 by Mehmood et al. [18]. In all above results, the Banach space E were considered with

defined order with respect to the positive solid cone E+ of E, which means, by considering

that the interior of E+ is non-empty. Only few results could be found in which the non-solid

cones were considered [[15], [16]]. In 2019, Mehmood et al. [24] proved some FP results in

the frame of E-metric spaces by inserting non-solid cones, (also, refer to [25]). Subsequently,

in [16], the quasi-interior points of P were considered instead of interior points in the case of

non-solid cones.
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Recently in 2017, the concept of semi-interior points was defined by Polyrakis et al. in [5].

According to Proposition 3.2 of [5], any semi-interior point of E+ is also an interior point of

E+ with respect to the norm ||.|| of E which coincides with the initial norm ||.|| of E in E+.

So E+ is ||.||-normal if and only if E+ is ||.||-normal. So all the main results of this paper,

can followed automatically by using the new norm ||.|| of E, but a systematic way to prove the

fixed point results is defined in the main results. The class of cones with semi-interior point and

empty interior is a class of cones larger than the one with nonempty interior as the examples of

[5]. It is worth noting that fixed points results for ordered normed spaces can also proved for

this larger class of cones with semi-interior points. For more relevant results, see also [2], [3],

[7], [9], [10], [11], and [12].

On the other hand, the first researchers to investigate a generalization of the Banach fixed

point theorem while simultaneously using a contraction condition of the rational type were

Dass and Gupta [28]. Jaggi [30], used a contraction condition of the rational type to prove a

fixed point theorems in complete metric spaces. Moreover, rational contraction conditions have

been heavily employed in both the FP and common FP locations.

The remaining parts of this manuscript are displayed as follows: In Section 2, we recall the

notations, basic notions, and essential definitions needed throughout the paper. In Section 3,

we prove the main concept related to fixed point results using the B-contraction, the Bianchini

contraction, and some rational type contraction mappings in the setting of E metric spaces with

non-solid and possibly non-normal cones. In Section 4, we present some applications in the

field of applied mathematics related to the main findings of this paper. Finally, in Section 5, we

reach a conclusion.

2. PRELIMINARIES

In this section, some notations, basic notions, essential definitions and lemmas from earlier

works are recalled. Throughout in this article, let E be an ordered normed space with norm ‖.‖,

which is ordered by its positive cone E+, such that for all p,q ∈ E, p ≤ q iff q− p ∈ E+. Let

E∗ be the dual space of E. The following are the basics of ordered normed spaces and E-metric

spaces.
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Definition 2.1. [24] An ordered space E is a vector space over the real numbers, with a partial

order relation � such that

(N1) for all p,q and r ∈ E, p� q implies p+ r � q+ r;

(N2) for all a ∈ R+ and p ∈ E with p� 0E ,ap� 0E .

Moreover if E is equipped with norm ‖.‖, then E is called normed ordered space.

Definition 2.2. [24] [7]The positive cone E+ of a normed ordered space X is called;

(D1) normal, if there exist a constant M � 0 such that for all p,q ∈ E where 0� p� q implies

‖p‖ �M‖q‖.

(D2) solid, if E+ has non-empty interior,

(D3) reflexive, iff E+∩U is weakly compact, where U is the unit ball in X,

(D4) strongly reflexive, iff E+∩U is compact.

Definition 2.3. [24] Let T be a non-empty set and let E be an ordered space, over the real

scalars. An ordered E-metric on T is an E-valued mapping d : T × T → E such that for all

p,q,r ∈ T , the following hold:

(CM1) d(p,q)� 0 and d(p,q) = 0 if and only if p = q;

(CM2) d(p,q) = d(q, p);

(CM3) d(p,q)� d(p,r)+d(r,q).

Then the pair (T,d) is called E-metric space.

Let us assume that int(E+) is non-empty. Now, we recall the the definitions of convergent

and Cauchy sequence in an E-metric space.

Definition 2.4. [24] Let E be a normed ordered space and (T,d) be an E-metric space, then

the sequence {tn} in T is called convergent to a point t ∈ T if for all c ∈ int(E+), there exists a

natural number N such that

d(tn, t)� c,

for all n≥ N and we write

lim
n→∞

tn = t,
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or simply tn → t. The sequence {tn} is a Cauchy, if for all c ∈ int(E+), there exist a natural

number N1 such that

d(tn, tm)� c,

for all n,m≤ N1.

Next, we present the the notion of semi-interior points of the positive cone E+ of an ordered

space E and we define new convergence criteria. Further, we provide non-trivial examples from

literature to ensure the applications of our presented notions.

Remark 2.5. Let E be an ordered normed space ordered by the positive cone E+, we shall

denote by 0E the zero of E,

U = {p ∈ E : ‖.‖ ≤ 1}

be the closed unit ball of E, and by U+ mean the positive part of unit ball defined by the set

U+ =U ∩E+.

Definition 2.6. [24] The point p0 ∈ E+ is a semi-interior point of E+ if there exists a real

number µ > 0 such that

p0−µU+ ⊆ E+.

Clearly any interior point of E+ is semi-interior point.

Note that the set of all semi-interior points of E+ is denoted by (E+)	, and for p,q ∈ E+,

p≪ q if and only if q− p ∈ (E+)	. Moreover, the following example from [5] insure the

existence of semi-interior points of cones having empty interior, these spaces are useful for

linear and nonlinear optimization problems and operator analysis.

Example 2.7. [24] This example clearly shown that a strong reflexive cone E+ of L1([0,1])

exist which generate a dense subspace T of L1([0,1]) i.e.,

L1([0,1]) = E+−E−

and

L1([0,1]) = T̄ .
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Let V = co((B+(0,1))∪ (−B+(0,1))) and E+
1 be a set of positive elements of L1([0,1]) gen-

erated by the set ω = 3q+V , where q = ∑
∞
k=1 β k−1ek for β ∈ (0,1), where {ei} is the set of

standard normalized basis. It has been shown in [5], that the cone E+ has the empty interior

but has semi-interior points.

For more examples related to the positive cone with semi-interior points but empty interior

point, we refer the readers to [5]. Also, it is clear that, if int(E+) is nonempty then every

interior point of the cone E+ is the semi-interior point. The following lemma is the converse in

complete, ordered normed spaces.

Lemma 2.8. [24] If E is the complete ordered normed space with generating and closed cone

E+, then any semi-interior point of E+ is an interior point of E+.

Now we define the e-convergence and e-Cauchy convergence criteria in the ordered normed

space E, with non-solid cone E+.

Definition 2.9. [24] Let E be a ordered normed space with assumption that (E+)	 is nonempty

and (T,d) be an E-metric space. Let {pn} be a sequence in T and p ∈ T . Then;

(i) A sequence {pn} is e-convergence to some p whenever for every e≫ 0, there exists a natural

number k such that d(pn, p)≪ e for all n≥ k. We denote this by limn→∞ pn = p or pn→ p.

(ii) A sequence {pn} is e-Cauchy, if for every e ∈ E with 0≪ e there is natural number N such

that for all m,n > N,d(pn, pm)≪ e.

(iii) (T,d) is said to be e-complete if every e-Cauchy sequence is e-convergent.

3. MAIN RESULTS

In this section, we prove some FP by using various contraction mappings such as the Bian-

chini contraction and the Cirić-Reich-Rus contraction and their related consequences on E-

metric spaces. For that, assume (K,d) be a e-complete e-metric space. Firstly, we consider the

Bianchini contraction mapping to prove our main FP theorem.

Theorem 3.1. Let (K,d) be an e-complete e-metric space with closed positive cone E+ such

that (E+)	 6= φ . Let T : K → K be a mapping satisfying the Bianchini contraction condition,
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i.e.,

d(T p,T q)≤ ed(p,q),

where d(p,q) = max{d(p,T p),d(q,T q)}, for all p,q ∈ K and e ∈ [0,1). Then T has a unique

FP in K and for each p ∈ K, the iterative sequence {T n p}n≥0 converges to the FP p of T .

Proof. For any p0 ∈ K, let us take the iterative sequence pn+1 = T pn = T n p0 with pn 6= pn+1

for some n ∈ N.

Case 1. Consider d(p,q) = d(p,T p). Then, we have

d(pn, pn+1) = d(T pn−1,T pn)

� ed(pn−1,T pn−1)

� ed(pn−1, pn)

� ed(T pn−2,T pn−1)

� e2d(pn−2,T pn−2)

� e2d(pn−2, pn−1)

� . . .

� end(p0, p1)

Case 2. Consider d(p,q) = d(q,T q). Then, we have

d(pn, pn+1) = d(T pn−1,T pn)

� ed(pn,T pn)

� ed(pn−1, pn)

� ed(pn, pn+1)

which is impossible because e ∈ [0,1). Therefore, Case 2 does not exist. Now, by Case 1

and n� m, we get
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d(pm, pn)� d(pm, pm+1)+d(pm+1, pm+2)+ ...+d(pn−1, pn)

� (µm +µ
m+1 + ...+µ

n−1)d(p0, p1)

= µ
m(1+µ +µ

2 + ....+µ
n−m−1)d(p0, p1)

= µ
m
(

1−µn−m

1−µ

)
d(p0, p1)

Let e≫ 0 be given, choose ν > 0 such that e− νU+ ⊆ E+ and a natural number k1 such

that µm
(

1−µn−m

1−µ

)
d(p0, p1) ∈

µ

2
U+ for any m,n ≥ k1, therefore e− µm

1−µ
d(p0, p1)−

µ

2
⊆

e− νU+ ⊆ E+, hence d(pm, pn) ≤ µm
(

1−µn−m

1−µ

)
d(p0, p1)≪ e, for all m,n ≥ k1 which

implies {pn} is an e-cauchy sequence, since K is e-complete so there exists some p ∈ K such

that pn → p. For a given e≫ 0E , choose k2 ∈ N, such that d(p, pn)≪
e
2

, for all n ≥ k2.

Consider for all n≥ k2,

d(p,T p)≤ d(p, pn)+d(pn,T p)

≤ d(p, pn)+νd(p, pn−1)

≪ e

Since d(p,T p)≪
e
m

for any
e
m
≫ 0E and m∈N, therefore

e
m
−d(p,T p)∈ E+, for all m∈N,

which implies −d(p,T p) ∈ E+, but d(p,T p) ∈ E+, therefore d(p,T p) = 0E . Hence p = T p.

Let q ∈ k be such that p 6= q = T q, then consider

d(p,q) = d(T p,T q)

≤ µd(p,q)

which implies d(p,q) = 0E . This proves the theorem. �

Corollary 3.2. Let (K,d) be an e-complete e-metric space with closed positive cone E+ such

that (E+)	 6= φ . Let T : K→ K be a mapping satisfying the contraction condition, i.e.,

d(T p,T q)≤ ed(p,T p),
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for all p,q ∈ K and e ∈ (0,1). Then T has a unique FP in K and for each p ∈ K, the iterative

sequence {T n p}n≥0 converges to the FP p of T .

Proof. Substituting d(p,q) = d(p,T p) in Theorem 3.1 completes this corollary. �

Secondly, we consider another contraction mapping known as the Cirić-Reich-Rus contrac-

tion to prove our next main FP theorem.

Theorem 3.3. Let (K,d) be an e-complete e-metric space with closed positive cone E+ such

that (E+)	 6= φ . Let T : K→ K be a mapping satisfying the condition

d(T p,T q)≤ e1d(p,q)+ e2(d(p,T p)+d(q,T q)),

for all p,q ∈ K and some e1,e2 ∈ [0,1) with e1 + 2e2 < 1. Then T has a unique FP in K and

for each p ∈ K, the iterative sequence {T n p}n≥0 converges to the FP p of T .

Proof. For any p0 ∈ K, let us take the iterative sequence pn+1 = T pn = T n p0 with pn 6= pn+1

for some n ∈ N. Consider,

d(pn, pn+1) = d(T pn−1,T pn)

� e1d(pn−1, pn)+ e2(d(pn−1,T pn−1)+d(pn,T pn))

� e1d(pn−1, pn)+ e2d(pn−1, pn)+ e2d(pn, pn+1)

= µd(pn−1, pn), where µ =
e1 + e2

1− e2

� µ
2d(pn−2, pn−1)

. . .

� µ
nd(p0, p1)

Now for n� m, consider,

d(pm, pn)� d(pm, pm+1)+d(pm+1, pm+2)+ ...+d(pn−1, pn)

� (µm +µ
m+1 + ...+µ

n−1)d(p0, p1)
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= µ
m(1+µ +µ

2 + ....+µ
n−m−1)d(p0, p1)

= µ
m
(

1−µn−m

1−µ

)
d(p0, p1)

Let e≫ 0 be given, choose ν > 0 such that e− νU+ ⊆ E+ and a natural number k1 such

that µm
(

1−µn

1−µ

)
d(p0, p1) ∈

µ

2
U+ for any m,n ≥ k1, therefore e− µm

1−µ
d(p0, p1)−

µ

2
⊆

e−νU+⊆ E+, hence d(pm, pn)≤ µm
(

1−µn

1−µ

)
d(p0, p1)≪ e, for all m,n≥ k1 which implies

{pn} is an e-cauchy sequence, since K is e-complete so there exists some p ∈ K such that

pn→ p. For a given e≫ 0E , choose k2 ∈ N, such that d(p, pn)≪
e
2

, for all n≥ k2. Consider

for all n≥ k2,

d(p,T p)≤ d(p, pn)+d(pn,T p)

≤ d(p, pn)+νd(p, pn−1)

≪ e

Since d(p,T p)≪
e
m

for any
e
m
≫ 0E and m∈N, therefore

e
m
−d(p,T p)∈ E+, for all m∈N,

which implies −d(p,T p) ∈ E+, but d(p,T p) ∈ E+, therefore d(p,T p) = 0E . Hence p = T p.

Let q ∈ k be such that p 6= q = T q, then consider

d(p,q) = d(T p,T q)

≤ µd(p,q)

which implies d(p,q) = 0E . This proves the theorem. �

Corollary 3.4. Let (K,d) be an e-complete e-metric space with closed positive cone E+ such

that (E+)	 6= φ . Let T : K→ K be a mapping satisfying the condition

d(T p,T q)≤ e1d(p,q),

for all p,q ∈ K and some e1 ∈ (0,1). Then T has a unique FP in K and for each p ∈ K, the

iterative sequence {T n p}n≥0 converges to the FP p of T .

Proof. Substituting e2 = 0 in Theorem 3.2 completes this corollary. �
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Corollary 3.5. Let (K,d) be an e-complete e-metric space with closed positive cone E+ such

that (E+)	 6= φ . Let T : K→ K be a mapping satisfying the condition

d(T p,T q)≤ e2(d(p,T p)+d(q,T q)),

for all p,q ∈ K and some e2 ∈ (0,1). Then T has a unique FP in K and for each p ∈ K, the

iterative sequence {T n p}n≥0 converges to the FP p of T .

Proof. Substituting e1 = 0 in Theorem 3.2 completes this corollary. �

Next, we prove the same kind of result by using rational-type contraction mapping to find the

existence and uniqueness of the FP.

Theorem 3.6. Let (K,d) be an e-complete e-metric space with closed positive cone E+ such

that (E+)	 6= φ . Let T : K→ K be a mapping satisfying the condition

d(T p,T q)≤ e1d(q,T q)[1+d(p,T p)]
1+d(p,q)

+ e2d(p,q),

for all p,q ∈ K and some e1,e2 ∈ [0,1) with 2e1 + e2 < 1. Then T has a unique FP in K and

for each p ∈ K, the iterative sequence {T n p}n≥0 converges to the FP p of T .

Proof. For any p0 ∈ K, let us take the iterative sequence pn+1 = T pn = T n p0 with pn 6= pn+1

for some n ∈ N. Consider,

d(pn, pn+1) = d(T pn−1,T pn)

� e1d(pn,T pn)[1+d(pn−1,T pn−1)]

1+d(pn−1,T pn−1)
+ e2d(pn−1, pn)

� e1d(pn, pn+1)+ e2d(pn−1, pn)

= µd(pn−1, pn), where µ =
e2

1− e1

� µ
2d(pn−2, pn−1)

. . .

� µ
nd(p0, p1)
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Now for n� m, consider,

d(pm, pn)� d(pm, pm+1)+d(pm+1, pm+2)+ ...+d(pn−1, pn)

� (µm +µ
m+1 + ...+µ

n−1)d(p0, p1)

= µ
m(1+µ +µ

2 + ....+µ
n−m−1)d(p0, p1)

= µ
m
(

1−µn−m

1−µ

)
d(p0, p1)

Let e≫ 0 be given, choose ν > 0 such that e− νU+ ⊆ E+ and a natural number k1 such

that µm
(

1−µn−m

1−µ

)
d(p0, p1) ∈

µ

2
U+ for any m,n ≥ k1, therefore e− µm

1−µ
d(p0, p1)−

µ

2
⊆

e− νU+ ⊆ E+, hence d(pm, pn) ≤ µm
(

1−µn−m

1−µ

)
d(p0, p1)≪ e, for all m,n ≥ k1 which

implies {pn} is an e-cauchy sequence, since K is e-complete so there exists some p ∈ K such

that pn → p. For a given e≫ 0E , choose k2 ∈ N, such that d(p, pn)≪
e
2

, for all n ≥ k2.

Consider for all n≥ k2,

d(p,T p)≤ d(p, pn)+d(pn,T p)

≤ d(p, pn)+d(T pn−1,T p)

≤ d(p, pn)+
e1d(p,T p)[1+d(pn−1,T pn−1)]

1+d(pn−1, p)
+ e2d(pn−1, p)

≤ d(p, pn)+
e1d(p,T p)[1+d(pn−1, pn)]

1+d(pn−1, p)
+ e2d(pn−1, p)

≪ e

Since d(p,T p)≪
e
m

for any
e
m
≫ 0E and m∈N, therefore

e
m
−d(p,T p)∈ E+, for all m∈N,

which implies −d(p,T p) ∈ E+, but d(p,T p) ∈ E+, therefore d(p,T p) = 0E . Hence p = T p.

Let q ∈ k be such that p 6= q = T q, then consider

d(p,q) = d(T p,T q)

≤ µ
nd(p,q)

which implies d(p,q) = 0E . This proves the theorem. �
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4. APPLICATIONS

The FP covers a wide range of applications in the field of mathematics, particularly differ-

ential geometry, numerical analysis, and so on. By reading [35] and the references therein, one

can find a variety of applications involving FP results in the field of applied mathematics. The

examples below demonstrate how to apply FP findings in differential equations.

Example 4.1. Let T = C([0,1],R) and T is e-complete e-metric space defined by d(p,q) =

supt∈[0,1] |p−q|2. Also, consider y′′(t) = 3y2(t)/2, 0≤ t ≤ 1 and the initial conditions y(0) = 4,

y(1) = 1. Here, the exact solution is y(t) = 4/(1+ t)2. We have, y0(t) = c1t + c2. By using the

initial conditions, we get y0(t) = 4−3t. Now, define the integral operator,

A(y) = y+
∫ 1

0
G(t,s)[y′′− f (s,y,y′)]ds(4.1)

where

G(t,s) =


s(1− t) 0≤ s≤ t

t(1− s) t ≤ s≤ 1

Then, the equation (4.1) becomes

A(y) = y(t)+
∫ 1

0
G(t,s)y′′(s)ds−

∫ 1

0
G(t,s) f (s,y,y′)ds

= (4−3t)−
∫ 1

0
G(t,s)[−3/2y2(s)]ds

= 4−3t +
3
2

{∫ 1

0
G(t,s)y2(s)ds

}
Consider,

d(Ap,Aq) = sup
t∈[0,1]

|Ap−Aq|2

= sup
t∈[0,1]

∣∣∣∣32
∫ 1

0
G(t,s)p2(s)ds− 3

2

∫ 1

0
G(t,s)q2(s)ds

∣∣∣∣2
≤ 9

4

(∫ 1

0
|G(t,s)|2ds

)(∫ 1

0
|p2(s)−q2(s)|2ds

)
≤ 3

4
t2(1− t)2

3

∫ 1

0

∣∣p2(s)−q2(s)
∣∣2 ds
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≤ 3
4
(
1
4
)(

1
4
)
∫ 1

0

∣∣p2(s)−q2(s)
∣∣2 ds

≤ 3
64

sup
t∈[0,1]

|p(s)−q(s)|2

≤ 3
64

d(p,q)

Then, we have

d(T p,T q)≤ e1d(p,q)+ e2(d(p,T p)+d(q,T q)).

Thus, e1 = 3/64 and e2 = 0 satisfies all the conditions of Theorem3.3. Also, by Theorem3.3, A

has FP in T =C([0,1],R). Therefore, the given bounded value problem has FP in T .

5. CONCLUSION

This paper has introduced some new FP theorems that are applicable to both contraction and

rational contraction operators on E-metric spaces. In particular, going in the same direction

as [24], we provide the results in the setting of contraction mappings, namely the Bianchini

contraction type, Ciric-Reich-Rus contraction type, and their consequences. Additionally, we

provide the FP theorems by using the rational contraction mapping, which were discussed

mostly in [28] and [30]. In order to confirm the presence of the FP theorems, alternative

discoveries presented in the later can be demonstrated in a lower environment.
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[6] L.E.J. Brouwer, Über Abbildung von Mannigfaltigkeiten, Math. Ann. 71 (1911), 97–115. https://doi.org/10

.1007/bf01456931.

[7] E. Casini, E. Miglierina, I.A. Polyrakis, et al. Reflexive cones, Positivity. 17 (2013), 911–933. https://doi.or

g/10.1007/s11117-012-0212-6.

[8] S.K. Chatterjea, Fixed point theorems, C.R. Acad. Bulg. Sci. 25 (1972), 727–730.

[9] K.T. Chau, Theory of differential equations in engineering and mechanics, CRC Press, Boca Raton, 2017.

[10] K. Deimling, Nonlinear functional analysis, Courier Corporation, New York, (2010).

[11] M. Frchet, Sur quelques questions de calcul des variations, Bull. Soc. Math. Fr. 33 (1905), 73–78.

[12] A. Granas, J. Dugundji, Fixed point theory, Springer, New York, 2003. https://doi.org/10.1007/978-0-387-

21593-8.

[13] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal.

Appl. 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087.
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