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1. INTRODUCTION

In recent years, fixed point theory has been a flourishing area of mathematical research be-

cause of its development through different standard metric spaces and many diverse application.

Several scholars, including Czerwik, have expanded on the concept of metric spaces. as Czer-

wik [3], Khamsi and Hussain [5], Mlaiki et al. [6], and so on. Jleli and Samet [4] recently

introduced the idea of F -metric spaces, which is a generalization of the Banach Contraction
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Principle (BCP). By considering a general condition given by an implicit relation, many classi-

cal fixed point theorems have recently been united.

This method was pioneered by Popa’s seminal papers [8, 9]. Implicit functions are useful be-

cause of their unifying capacity as well as their ability to admit new contraction conditions. Jleli

and Samet (2018) proposed the F -metric space as a new metric space. We look at some fixed

points in the notion of implied relation in the context of F -metric spaces in this paper. In the

generalized setting, The researchers present some fixed point results. As a result, corresponding

implicit relation fixed point theorems are derived.

2. PRELIMINARIES

Definition 2.1. Given a set χ and a function d : χ × χ → ℜ, we say that the pair (χ,d) is a

metric space if and only if d(θ ,η) satisfies the following properties:

(1)(Non-negativeness) For all θ ,η ∈ χ,d(θ ,η)≥ 0

(2) (Identification) For all θ ,η ∈ χ we have that d(θ ,η) = 0⇔ θ = η

(3) (Symmetry) For all θ ,η ∈ χ,d(θ ,η) = d(η ,θ)

(4) (Triangular inequality) For all θ ,η ,ν ∈ χ we have that

d(θ ,ν)≤ d(θ ,η)+d(η ,ν)

In this section, we list the following definitions and examples that we will refer to its in our

main results.

Definition 2.2. [4] Suppose F be the set of functions f : (0,+∞) =⇒ R satisfying the condi-

tiones as below:

(F1) f is non-decreasing, i.e. 0 < s < ι =⇒ f (s)≤ f (ι).

(F2) For every sequence ιn ⊂ (0,+∞), there is

lim
n→+∞

ιn = 0⇐⇒ lim
n→+∞

f (ιn) =−∞.

The generalized concept of metric space is as follows:

Definition 2.3. [4] Suppose χ be a non-empty set and let dF : χ × χ −→ [0,+∞) be a given

mapping. Suppose that there exists ( f ,α) ∈F × [0,+∞) such that
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(dF 1) (θ ,η) ∈ χ×χ,dF (θ ,η) = 0⇐⇒ θ = η .

(dF 2) dF (θ ,η) = dF (η ,θ), for all (θ ,η) ∈ χ×χ .

(dF 3) For every (θ ,η) ∈ χ×χ , for every N ∈ N,N ≥ 2, and for every

(µi)
n
i ⊂ χ with (µ1,µN) = (θ ,η), there is

dF (θ ,η)> 0 =⇒ f (dF (θ ,η))≤ f (
N−1

∑
i=1

dF (µi,µi+1))+α.

Then dF is said to be an F -metric space on χ , and the pair (χ,dF ) is said to be an F -metric

space.

Example 2.1. [4] The set of real numbers R is an F -metric space if we define dF by

dF (θ ,η) =


(θ −η)2, if(θ ,η) ∈ [0,4]× [0,4]

|θ −η |, if (θ ,η) /∈ [0,4]× [0,4]

with f (ι) = (ι)and a = ln(4) for all (θ ,η)∈ χ×χ . It can be easily seen that dF satisfies (dF 1)

, (dF 2) and (dF 3).

Definition 2.4. [4] Suppose (χ,dF ) is an F -metric space.

(i) Suppose θn is a sequence in χ . We say that {θn} is F -convergent to θ ∈ χ if {θn} is

convergent to θ in relation to F -metric space dF .

(ii) A sequence θn is F -Cauchy, if

lim
n,m→+∞

D(θn,θm) = 0.

(iii) We assert that (χ,dF ) is F -complete, if every F -Cauchy sequence in χ is F -convergent

to a certain element in χ .

Jleli and Samet [4] was presented the following generalization of Banach contraction princi-

ple (BCP):

Theorem 2.1. [4] Suppose (χ,dF ) is an F -metric space and g : χ −→ χ be a given mapping.

Assume that the following criteria are met:
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(i) (χ,dF ) is F -complete.

(ii) there exists k ∈ (0,1) as

dF (g(θ),g(η))≤ kdF (θ ,η),(θ ,η) ∈ χ×χ.

After that g has a unique fixed point z∗ ∈ χ . Furthermore, for every θ0 ∈ χ , the sequence

{θn} ⊂ χ defined by

θn+1 = g(θn),n ∈ N,

is F -convergent.

In (1997), According to Popa [8,9], several classical fixed point theorems and common fixed

point theorems have been recently unified by considering general contractive conditions ex-

pressed by an implicit condition.

Suppose Φ is the set of all real continuous real functions φ : R6
+→ R, under which the follow-

ing conditions are taken into results:

(φ1a) φ is non-increasing in the fifth variable and

φ(µ,υ ,υ ,µ,µ +υ ,0)≤ 0 forµ,υ ≥ 0 =⇒∃h̄ ∈ [0,1) asµ ≤ h̄υ ;

(φ1b) φ is non-increasing in the fourth variable and

φ(µ,υ ,0,µ +υ ,µ,υ)≤ 0 forµ,υ ≥ 0 =⇒∃h̄ ∈ [0,1) asµ ≤ h̄υ ;

(φ1c) φ is non-increasing in the third variable and

φ(µ,υ ,µ +υ ,0,µ,υ)≤ 0 forµ,υ ≥ 0 =⇒∃h̄ ∈ [0,1) asµ ≤ h̄υ ;

(φ1d) φ is non-increasing in the third variable and

φ(µ,υ ,υ ,µ,µ,0)≤ 0 forµ,υ ≥ 0 =⇒∃h̄ ∈ [0,1) asµ ≤ h̄υ ;

(φ2) φ(µ,µ,0,0,µ,µ)> 0, for µ > 0.

Example 2.2. The function φ ∈Φ, is given by

φ(ι1, ι2, ι3, ι4, ι5, ι6) = ι1−
1
3

ι2,

where 1
3 ∈ [0,1), satisfies (φ2) and (φ1a)− (φ1c), with h̄ = 1

3 .
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3. MAIN RESULTS

We prove some fixed point results concerning implicit condition in this section of F -metric

space.

Theorem 3.1. Suppose (χ,dF ) be an F - complete metric space and τ : χ→ χ is a self mapping

for which there is an existence F fulfilling (F1),as for all θ ,η ∈ χ ,

(1) (χ,dF ) be an F - metric space

(2) as θ ,η ∈ χ

(3.1) φ(dF (τθ ,τη),dF (θ ,η),dF (θ ,τθ),dF (η ,τη),dF (θ ,τη),dF (η ,τθ))≤ 0.

then there is an existence θ̄ ∈ χ such that θ̄ ⊂ τ has a unique fixed point (χ,dF )

Proof. Suppose θ0 is an arbitrary point in χ , and θn+1 = τθn,n = 0,1, ...

If we take θ = θn−1 and η = θn in (3.1) and denote µ = dF (θn,θn+1),υ = dF (θn−1,θn) we

get,

φ(dF (τθn−1,τθn),dF (θn−1,θn),dF (θn−1,τθn−1),dF (θn,τθn),dF (θn−1,τθn),dF (θn,τθn−1))≤ 0.

φ(dF (θn,θn+1),dF (θn−1,θn),dF (θn−1,θn),dF (θn,θn+1),dF (θn−1,θn+1),dF (θn,θn))≤ 0.

φ(dF (θn,θn+1),dF (θn−1,θn),dF (θn−1,θn),dF (θn,θn+1),dF (θn−1,θn+1),0)≤ 0.

φ(µ,υ ,υ ,µ,µ +υ ,0)≤ 0

φ(dF (θn,θn+1),dF (θn−1,θn),dF (θn−1,θn),dF (θn,θn+1)+dF (θn−1,θn),0)≤ 0.

and consequently, in light of the assumption (φ1a), there exists h̄ ∈ [0,1) as µ ≤ h̄υ , that is

dF (θn,θn+1)≤ h̄dF (θn−1,θn)(3.2)

dF (θn−1,θn)≤ h̄dF (θn−2,θn−1)(3.3)

dF (θn,θn+1)≤ h̄dF (θn−1,θn)≤ h̄2dF (θn−2,θn−1)≤ ...≤ h̄ndF (θ0,θ1)

For all n,m ∈ N,

dF (θn,θm)≤dF (θn,θn+1)+dF (θn+1,θn+2)+ ...+dF (θm−1,θm)

≤h̄ndF (θ0,θ1)+ h̄n+1dF (θ0,θ1)+ ...+ h̄m−1dF (θ0,θ1)

≤h̄n[1+ h̄+ ...]dF (θ0,θ1)
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≤ h̄n

1− h̄
dF (θ0,θ1)

For each, n ∈ N. Let ε > 0 is a fixed and ( f ,α) ∈F × [0,+∞) be such as (dF 3) is satisfied by

(φ2), there exists δ > 0 as

(3.4) 0 < ι < δ =⇒ to f (ι)< f (ε)−α.

suppose n(ε) ∈ N such that 0 < ∑
m−1
m≥m(ε)

h̄n

1−h̄dF (θ0,θ1)< δ

Consequently,by (3.4) and (φ1a), there is

(3.5) f (
m−1

∑
(i=n)

h̄n

1− h̄
dF (θ0,θ1))≤ f (

m−1

∑
n≥n(ε)

h̄n

1− h̄
dF (θ0,θ1))< f (ε)−α

where, n > m > m(ε) with dF (θn,θm)> 0 using (dF 3) in addition (3.5)

f (dF (θn,θm))≤ f (
m−1

∑
(i=n)

dF (θi,θi+1)+α ≤ f (
m−1

∑
(i=n)

h̄n

1− h̄
dF (θ0,θ1))+α < f (ε),

which is implied by (F1) that, dF (θn,θm)< ε,m > n > n(ε).

This proves that {θn} is F - Cauchy. since (χ,dF ) is complete suppose , there exists θ1 ∈ χ as

{θn} is F - convergent to θ1.

(3.6) lim
n→∞

dF (θn,θ1) = 0

Now, to prove θ1 is a fixed point of τ , we start with contradiction by supposing dF (τθ1,θ1)> 0,

n ∈ N by (dF 3), there is

(3.7) f (dF (τθ1,θ1))≤ f (dF (τθ1,θn)+dF (θn,θ1))+α

using (3.1) by taking θ = θn,η = θ1

(3.8) φ(dF (τθn,τθ1),dF (θn,θ1),dF (θn,τθn),dF (θ1,τθ1),dF (θn,τθ1),dF (θ1,τθn))≤ 0.

(3.9) φ(dF (θ1,τθ1),0,0,dF (θ1,τθ1),dF (θ1,τθ1),0)≤ 0.

On the other hand, using (φ2) and (3.6),

lim
n→∞

f (dF (τθ1,θn),dF (θn,θ1))+α =−∞

lim
n→∞

f (dF (τθ1,θn),dF (θn,θ1))+α =−∞
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Contraction, dF (θ1,τθ1) = 0, that is τθ1 = θ1.

To prove uniqueness, suppose θ1 6= θ2 are two fixed point of τ

φ(dF (τθ1,τθ2),dF (θ1,θ2),dF (θ1,τθ1),dF (θ2,τθ2),dF (θ1,τθ2),dF (θ2,τθ1))≤ 0

φ(dF (θ1,θ2),dF (θ1,θ2),dF (θ1,θ1),dF (θ2,θ2),dF (θ1,θ2),dF (θ2,θ1))≤ 0

φ(dF (θ1,θ2),dF (θ1,θ2),0,0,dF (θ1,θ2),dF (θ2,θ1))≤ 0

a contraction. Consequently, τ has a unique fixed point in χ . �

Now, We give an example to support the generality of (3.1) over the theorem (5.1) [2].

Example 3.1. Suppose θ = [0,1] is endowed with the metric F defined by dF (θ ,η) = |θ−η |,

It is clear that (χ,dF ) is a complete metric space. Suppose that

φ(ι1, ι2, ι3, ι4, ι5, ι6) = ι1−
3
4

ι5,

for every ι1, ι2, ι3, ι4, ι5, ι6 ∈ [0,+∞) It is obvious that φ ∈Φ Define a mapping τ on χ such that

for all θ ∈ χ,τ(θ) is the characteristic function for 3
4 For each θ ,η ∈ χ

φ(dF (τθ ,τη),dF (θ ,η),dF (θ ,τθ),dF (η ,τη),dF (θ ,τη),dF (η ,τθ))≤ 0.

= dF (τθ ,τη)− 3
4

dF (θ ,τη) =
3
4

dF (θ ,η)− 3
4

dF (θ ,η) = 0

The characteristic function for 0 is the fixed point of τ .

Since τ satisfies the condition in theorem (3.1), and also, the operator τ has a unique common

fixed point, and it can be easily seen that τ does not satisfy the condition in theorem (5.1) [2].

In (2003) [7], Popa introduced a new class of mappings F : R6
+→ R such that the fulfillment

of the inequality of type

(3.10) φ(d(τθ ,τη),d(θ ,η),d(θ ,τη),d(η ,τη),d(η ,τ2
θ),d(η ,τθ))≤ 0.

for θ ,η ∈ χ , ensures the existence and the uniqueness of a fixed point for τ .

Theorem 3.2. Suppose (χ,dF ) is an F - metric space and τ : (χ,dF )→ (χ,dF ) be a mapping

satisfying the inequality 3.10 for every θ ,η ∈ χ , where φ satisfies condition (φ1d). Then τ has

at most one fixed point. every θ ∈ χ .
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Proof. Suppose that τ has two fixed points µ and υ with µ 6= υ . Then by (3.10) there is

successively

φ(dF (τµ,τυ),dF (µ,υ),dF (µ,τµ),dF (υ ,τυ),dF (υ ,τ2
µ),dF (υ ,τµ))≤ 0.

φ(dF (µ,υ),dF (µ,υ),dF (µ,µ),dF (υ ,υ),dF (υ ,µ),dF (υ ,µ))≤ 0.

φ(dF (µ,υ),dF (µ,υ),0,0,dF (υ ,µ),dF (υ ,µ))≤ 0.

φ(µ,µ,0,0,µ,µ)> 0.

Contradiction,τ has fixed points with µ = υ . �

Theorem 3.3. Suppose (χ,dF ) is an F - metric space and τ : (χ,dF )→ (χ,dF ) be a mapping

such that there exists h̄∈ [0,1) with dF (τ2θ ,τθ)≤ hdF (θ ,τθ) for every θ ∈ χ . Then for every

θ ∈ χ the sequence {τnθ} is an F - Cauchy sequence.

Proof. Suppose θ be arbitrary in χ . We shall show that the sequence defined by θn+1 = τnθ ,

there is

φ(dF (τθn,τθn+1),dF (θn,θn+1),dF (θn,τθn),dF (θn+1,τθn+1),dF (θn+1,τ
n
θn+1),dF (θn+1,τθn))≤ 0.

φ(dF (τθn+1,θn+2),dF (θn,θn+1),dF (θn,θn+1),dF (θn+1,θn+2),dF (θn+1,θn+2),0)≤ 0.

φ(dF (τn+1
θ ,τn

θ),dF (θn,θn+1),dF (θn,θn+1),dF (τn+1
θ ,τn

θ),dF (τn+1
θ ,τn

θ),0)≤ 0.

Since, dF (τ2θ ,τθ)≤ h̄dF (θ ,τθ).

By induction, there is dF (τn+1θ ,τnθ)≤ h̄ndF (θ ,τθ)

For each n,m ∈ N,

dF (τn+1
θ ,τm+1

θ)≤h̄ndF (θ ,τθ)+ h̄n+1dF (θ ,τθ)+ ...+ h̄m−1dF (θ ,τθ)

≤h̄n[1+ h̄+ ...]dF (θ ,τθ)

≤ h̄n

1− h̄
dF (θ ,τθ)

For each, n ∈ N. Suppose ε > 0 be a fixed and ( f ,α) ∈ F × [0,+∞) be such that (dF 3) is

satisfied by (φ2), there exists δ > 0

such as

(3.11) 0 < ι < δ =⇒ to f (ι)< f (ε)−α
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suppose n(ε) ∈ N such that 0 < ∑
m−1
m≥m(ε)

h̄n

1−h̄dF (θ ,τθ)< δ

Hence,by (3.11) and (φ1a), there exists

(3.12) f (
m−1

∑
i=n)

h̄n

1− h̄
dF (θ ,τθ))≤ f (

m−1

∑
n≥n(ε)

h̄n

1− h̄
dF (θ ,τθ))< f (ε)−α

where, n > m > m(ε) with dF (τn+1θ ,τm+1θ)> 0 using (dF 3) and (3.12)

f (dF (τn+1
θ ,τm+1

θ))≤ f (
m−1

∑
(i=n)

dF (θi,τθi+1)+α ≤ f (
m−1

∑
(i=n)

h̄n

1− h̄
dF (θ ,τθ))+α < f (ε),

which is implied by (F1) that, dF (τn+1θ ,τm+1θ)< ε,n > m > m(ε).

this proves that {τnθ} is F - Cauchy. since (χ,dF ) is complete. �

Theorem 3.4. Suppose (χ,dF ) is a complete F -metric space and τ : (χ,dF )→ (χ,dF ) a

mapping satisfying the inequality (3.10) for every θ ,η ∈ X where φ ∈ Φ. Then τ has a unique

fixed point

Proof. Suppose θ is arbitrary in χ . From (3.10) for η = τθ ,θn+1 = τθn there is

φ(dF (τθ ,τ2
θ),dF (θ ,τθ),dF (θ ,τ2

θ),dF (τθ ,τ2
θ),dF (τθ ,τ2

θ),dF (τθ ,τθ))≤ 0.

φ(dF (τθ ,τ2
θ),dF (θ ,τθ),dF (θ ,τθ),dF (τθ ,τ2

θ),dF (τθ ,τ2
θ),0)≤ 0.

By (φ1d)

φ(dF (τθ ,τ2
θ),dF (θ ,τθ),dF (θ ,τθ),dF (τθ ,τ2

θ),dF (τθ ,τ2
θ),0)≤ 0.

Suppose, τnθ = θn+1,τ
2θ = τµ

φ(dF (τθn,τµ),dF (θn,µ),dF (θn,τθn),dF (µ,τµ),dF (µ,τ2
θn),dF (µ,τθn))≤ 0.

φ(dF (θn+1,τµ),dF (θn,µ),dF (θn,θn+1),dF (µ,τµ),dF (µ,θn+2),dF (µ,θn+1))≤ 0.

Suppose n→ ∞, there is

φ(dF (µ,τµ),0,0, ,dF (µ,τµ),dF (µ,τµ),0)≤ 0.

which implies by (φ1d) that µ = τµ . By Theorem (3.2) µ is the unique fixed point of τ . �
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Theorem 3.5. If the inequality

φ(dF (τθ ,τη),dF (θ ,η),dF (θ ,τθ),dF (η ,τη),dF (θ ,τ2
η),dF (θ ,τη))≤ 0.

For each θ ,η ∈ χ , where φ ∈Φ, then φ has a unique fixed point.

Proof. The proof is similar to the proof of Theorem (3.2). Suppose Φ be the family of all con-

tinuous mappings φ :R6
+−→R+ satisfying the following properties: (φ1aa) φ is non-increasing

in the 5th coordinate variables, and∫
φ(
∫ µ

0 σ(ς)dς ,
∫

υ

0 σ(ς)dς ,
∫

υ

0 σ(ς)dς ,
∫ µ

0 σ(ς)dς ,
∫ µ+υ

0 σ(ς)dς ,0)

0
ψ(ρ)dρ ≤ 0

there exists h̄ ∈ [0,1) such that for every
∫ µ

0 σ(ς)dς ≤ h̄
∫

υ

0 σ(ς)dς . (φ1bb) φ is non-increasing

in the 4th coordinate variables,and

∫
φ(
∫ µ

0 σ(ς)dς ,
∫

υ

0 σ(ς)dς ,0,
∫ µ+υ

0 σ(ς)dς ,
∫ µ

0 σ(ς)dς ,
∫

υ

0 σ(ς)dς)

0
ψ(ρ)dρ ≤ 0

implies ∫
µ

0
σ(ς)dς ≤ h̄

∫
υ

0
σ(ς)dς .

(φ1cc) φ is non-increasing in the 3rd coordinate variables, and

∫
φ(
∫ µ

0 σ(ς)dς ,
∫

υ

0 σ(ς)dς ,
∫ µ+υ

0 σ(ς)dς ,0,
∫ µ

0 σ(ς)dς ,0,
∫ v

0 σ(ς)dς)

0
ψ(ρ)dρ ≤ 0

implies ∫
µ

0
σ(ς)dς - h̄

∫ v

0
σ(ς)dς .

(φ1d) φ is non-increasing in the 3rd coordinate variables, and

∫
φ(
∫ µ

0 σ(ς)dς ,
∫

υ

0 σ(ς)dς ,
∫

υ

0 σ(ς)dς ,
∫ µ

0 σ(ς)dς ,
∫ u

0 σ(ς)dς ,0)

0
ψ(ρ)dρ ≤ 0

implies ∫
µ

0
σ(ς)dς - h̄

∫
υ

0
σ(ς)dς .

(φ22) ∫
φ(
∫ µ

0 σ(ς)dς ,
∫ µ

0 σ(ς)dς ,0,0,
∫ µ

0 σ(ς)dς ,0,
∫ µ

0 σ(ς)dς)

0
ψ(ρ)dρ > 0∀µ > 0.
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Where ψ,σ : R+ −→R+ is a summable non negative Lebesgue integrable function such as for

each ε ≥ 0,
∫

ε

0 ψ(ρ)dρ ≥ 0 and
∫

ε

0 σ(ς)dς ≥ 0. �

Corollary 3.1. suppose (χ,dF ) be an F - complete metric space and τ : χ → χ be a self

mapping for which there exists F satisfying (F1),such that for all θ ,η ∈ χ ,

(1) (χ,dF ) be an F - metric space

(2) For each θ ,η ∈ χ

∫
φ

0


∫ dF (τθ ,τη)

0 σ(ς)dς ,
∫ dF (θ ,η)

0 σ(ς)dς ,
∫ dF (θ ,τθ)

0 σ(ς)dς ,

∫ dF (η ,τη)
0 σ(ς)dς ,

∫ dF (θ ,τη)
0 σ(ς)dς ,

∫ dF (η ,τθ)
0 σ(ς)dς

ψ(ρ)dρ ≤ 0.(3.13)

then there exists θ ∈ χ such that θ ⊂ τ has a unique fixed point.

Proof. Suppose θ0 be an arbitrary point in χ , and θn+1 = τθn,n = 0,1, ...

If we take θ = θn−1 and η = θn in (3.13) and denote∫
µ

0
σ(ς)dς =

∫ dF (θn,θn+1)

0
σ(ς)dς ,

∫
υυ

0
=
∫ dF (θn−1,θn)

0
σ(ς)dς

we get,

∫
φ

0


∫ dF (τθn−1,τθn)

0 σ(ς)dς ,
∫ dF (θn−1,θn)

0 σ(ς)dς ,
∫ dF (θn−1,τθn−1)

0 σ(ς)dς ,

∫ dF (θn,τθn)
0 σ(ς)dς ,

∫ dF (θn−1,τθn)
0 σ(ς)dς ,

∫ dF (θn,τθn−1)
0 σ(ς)dς

ψ(ρ)dρ ≤ 0.

∫
φ

0


∫ dF (θn,θn+1)

0 σ(ς)dς ,
∫ dF (θn−1,θn)

0 σ(ς)dς ,
∫ dF (θn−1,θn)

0 σ(ς)dς ,

∫ dF (θn,θn+1)
0 σ(ς)dς ,

∫ dF (θn−1,θn+1)
0 σ(ς)dς ,

∫ dF (θn,θn)
0 σ(ς)dς

ψ(ρ)dρ ≤ 0.

∫
φ

0


∫ dF (θn,θn+1)

0 σ(ς)dς ,
∫ dF (θn−1,θn)

0 σ(ς)dς ,
∫ dF (θn−1,θn)

0 σ(ς)dς ,

∫ dF (θn,θn+1)
0 σ(ς)dς ,

∫ dF (θn−1,θn+1)
0 σ(ς)dς ,0

ψ(ρ)dρ ≤ 0.

∫
φ

0


∫ dF (θn,θn+1)

0 σ(ς)dς ,
∫ dF (θn−1,θn)

0 σ(ς)dς ,
∫ dF (θn−1,θn)

0 σ(ς)dς ,

∫ dF (θn,θn+1)+dF (θn−1,θn+1)
0 σ(ς)dς ,0

ψ(ρ)dρ ≤ 0.



12 A. KAMAL, DOAA RIZK, MAHESHWARAN KANTHASAMY, T.C. MUJEEBURAHMAN

∃h̄ ∈ [0,1) :
∫ dF (θn,θn+1)

0
σ(ς)dς ≤ h̄

∫ dF (θn−1,θn)

0
σ(ς)dς

∫ dF (θn−1,θn)

0
σ(ς)dς ≤ h̄

∫ dF (θn−2,θn−1)

0
σ(ς)dς

∫ dF (θn,θn+1)

0
σ(ς)dς ≤ h̄

∫ dF (θn−1,θn)

0
σ(ς)dς ≤ ...≤ h̄n

∫ dF (θ0,θ1)

0
σ(ς)dς

For each n,m ∈ N,

∫ dF (τn+1θ ,τm+1θ)

0
σ(ς)dς ≤h̄n

∫ dF (θ ,τθ)

0
σ(ς)dς + h̄n+1

∫ dF (θ ,τθ)

0
σ(ς)dς + ...+ h̄m−1

∫ dF (θ ,τθ)

0
σ(ς)dς

≤h̄n[1+ h̄+ ...]
∫ dF (θ ,τθ)

0
σ(ς)dς

≤ h̄n

1− h̄

∫ dF (θ ,τθ)

0
σ(ς)dς

For each, n ∈ N. Suppose ε > 0 be a fixed and ( f ,α) ∈F × [0,+∞) be such that (dF 3) is

satisfied by (φ22), there exists δ > 0

such that

(3.14) 0 < ι < δ =⇒ to f (ι)< f (ε)−α

suppose n(ε) ∈ N as

0 <
m−1

∑
m≥m(ε)

h̄n

1− h̄

∫ dF (θ0,θ1)

0
σ(ς)dς < δ

Consequently , by (3.14) and (φ1a), we have suppose n(ε) ∈ N such as

0 <
m−1

∑
m≥m(ε)

h̄n

1− h̄

∫ dF (θ0,θ1)

0
σ(ς)dς < δ

Consequently, by (3.14) and (φ1a), we have

(3.15) f (
m−1

∑
(i=n)

h̄n

1− h̄

∫ dF (θ0,θ1)

0
σ(ς)dς)≤ f (

m−1

∑
n≥n(ε)

h̄n

1− h̄

∫ dF (θ0,θ1)

0
σ(ς)dς)< f (ε)−α

∫ f (dF (xn,xm

0
σ(ς)dς)≤ f (

m−1

∑
(i=n)

∫ dF (xi,xi+1)+α

0
σ(ς)dς)≤ f (

m−1

∑
i=n

h̄n

1− h̄

∫ dF (x0,x1)+α

0
σ(ς)dς)< f (ε),
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which signifies (F1) that,
∫ dF (θn,θm)

0 σ(ς)dς < ε,n > m > m(ε). this proves that {θn} is F -

Cauchy. since (χ,dF ) is complete , there exists θ1 ∈ χ such as {θn} is F - convergent to θ1.

(3.16) lim
n→∞

∫ dF (θn,θ1)

0
σ(ς)dς = 0

Now, to prove θ1 is a fixed point of τ , we start with contradiction by supposing∫ dF (τθ1,θ1)
0 σ(ς)dς > 0, n ∈ N by (dF 3), there is

(3.17)
∫ f (dF (τθ1,θ1))

0
σ(ς)dς ≤

∫ f (dF (τθ1,θn)+dF (θn,θ1))+α

0
σ(ς)dς

using (3.13) by taking θ = θn,η = θ1

(3.18)
∫ φ



∫ dF (τθn,τθ1)
0 σ(ς)dς ,

∫ dF (θn,θ1)
0 σ(ς)dς ,

∫ dF (θn,τθn)
0 σ(ς)dς ,

∫ dF (θ1,τθ1)
0 σ(ς)dς ,

∫ dF (θn,τθ1),dF (θ1,τθn)
0 σ(ς)dς


0

ψ(ρ)dρ ≤ 0

(3.19)
∫

φ

(∫ dF (θ1,τθ1)
0 σ(ς)dς ,0,0,

∫ dF (θ1,τθ1)
0 σ(ς)dς ,

∫ dF (θ1,τθ1)
0 σ(ς)dς ,0.

)
0

ψ(ρ)dρ ≤ 0

On the other hand, using (φ22) and (3.16),

lim
n→∞

∫ f (dF (τθ1,θn),dF (θn,θ1))+α

0
σ(ς)dς =−∞

lim
n→∞

∫ f (dF (τθ1,θn),dF (xn,θ1))+α

0
σ(ς)dς =−∞

Contraction,
∫ dF (θ1,τθ1)

0 σ(ς)dς = 0, that is τθ1 = θ1 to prove uniqueness, suppose θ1 6= θ2 are

two fixed point of τ

∫ φ



∫ dF (τθ1,τθ2)
0 σ(ς)dς ,

∫ dF (θ1,θ2)
0 σ(ς)dς

∫ dF (θ1,τθ1)
0 σ(ς)dς ,

∫ dF (θ2,τθ2)
0 σ(ς)dς ,

∫ dF (θ1,τθ2)
0 σ(ς)dς ,

∫ dF (θ2,τθ1)
0 σ(ς)dς


0

ψ(ρ)dρ ≤ 0

∫ φ



∫ dF (θ1,θ2)
0 σ(ς)dς ,

∫ dF (θ1,θ2)
0 σ(ς)dς ,

∫ dF (θ1,θ1)
0 σ(ς)dς ,

∫ dF (θ2,θ2)σ(ς)dς ,
∫ dF (θ1,θ2)

0 σ(ς)dς ,
∫ dF (θ2,θ1)

0 σ(ς)dς

0


0

ψ(ρ)dρ ≤ 0
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∫
φ

(∫ dF (θ1,θ2)
0 σ(ς)dς ,

∫ dF (θ1,θ2)
0 σ(ς)dς ,0,0,

∫ dF (θ1,θ2)
0 σ(ς)dς ,

∫ dF (θ2,θ1)
0 σ(ς)dς

)
0

ψ(ρ)dρ ≤ 0

a contraction. Hence, τ has a unique fixed point in χ . �

4. CONCLUSION

We have suggested an application in an integral type contractive condition based on fixed

points theorems of F metric space. We have also discussed the existence of fixed points for

implicit relation F metric space as a generalization for some fixed point theorems on metric

space.
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