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Abstract. In this paper, we commence by establishing the theoretical foundations of fixed point theorems and

their historical importance. This paper then introduces groundbreaking measures rooted in measure theory, de-

signed to quantify non-compactness within these theorems. These measures redefine the boundaries of classical

fixed point theory, unlocking new vistas of applications. Our paper presents four fundamental theorems, each

extending classical fixed point results to non-compact spaces. These theorems are rigorously proven, providing a

solid mathematical foundation for our framework. We delve into the nuances of each theorem, showcasing their

implications and relevance in contemporary mathematics. To underscore the practicality of our approach, we offer

a diverse array of applications. From optimizing traffic flow in urban environments to modeling intricate ecological

systems supported by many related examples, our framework provides innovative solutions to complex problems.

These applications are accompanied by concrete examples and numerical simulations, illustrating the tangible ben-

efits of our methodology. Throughout the paper, the synergy between measure theory and fixed point theorems is a

central theme. We explore how measure-theoretic concepts enrich our comprehension of these theorems and offer

fresh perspectives on their utility across various domains.
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1. INTRODUCTION

The measure of noncompactness (MNC) technique has emerged as a pivotal instrument in

nonlinear analysis, exerting effect across a wide range of problems in functional analysis. The

development of this method can be determined back to Kuratowski [19], who set the frame-

work for understanding the complexities of MNC. Kuratowski’s results represented an impor-

tant turning point in mathematical analysis, opening the way for advancement into novel areas.

Following Kuratowski’s important contributions, Darbo [9] began on a remarkable path within

the area of fixed point theory, guided by the concept of MNC. His original research produced a

huge advancement, revealing significant interactions between noncompactness and fixed point

theorems. The concept of MNC has seen a significant modification in modern times. Many

mathematicians and researchers have generalized its uses in a variety of ways. This renewed

interest in MNCs has resulted in important advancements, extending its reach significantly be-

yond its original confines. In more recent times, Goldentein et al. [10] established a second

measure of noncompactness. This measure, known as the Hausdorff or ball measure of non-

compactness , opened the possibility to numerous applications and expanded the mathematical

scenes. Researchers and mathematicians from all backgrounds have embraced and extended the

concept, providing a new vitality to its applications. For details see [1, 23].

The Banach Fixed Point Theorem, commonly known as the Contraction Mapping Theorem,

is a key result in fixed point theory. This theorem guarantees the existence and uniqueness of

fixed points for specific types of mappings in Banach spaces and metric spaces. The Contraction

Mapping Theorem develops as a potent mathematical tool, exhibiting effectiveness in estab-

lishing the existence and uniqueness of equilibrium solutions. This well-known mathematical

theorem has made its way into the domain of economics, allowing economists to demonstrate

equilibrium results in a logical and systematic manner. Economic models can be expressed

mathematically, with the goal of achieving equilibrium by analyzing a system of equations.

These equations may not have simple analytical solutions. Economists can prove the existence



QUANTIFYING NON-COMPACTNESS IN FIXED POINT THEOREMS 3

of an equilibrium point even when direct analytical solutions are not simple by structuring

the problem as a fixed-point equation and applying the Contraction Mapping Theorem. The

Contraction Mapping Theorem establishes not only the existence of an equilibrium but also

its uniqueness under certain conditions. This is important in economic analysis since it sug-

gests that there is only one equilibrium solution to a particular economic model under certain

assumptions. This distinction has important implications for policy recommendations and eco-

nomic forecasting. In fact, searching for equilibrium solutions in economic models frequently

requires the use of numerical approaches. The Contraction Mapping Theorem gives a theoret-

ical foundation for iterative methods that approximate equilibrium solutions. These tools can

be used by economists and policymakers for analyzing and understanding complex economic

systems. For details see [3, 4, 12, 14, 15, 16, 20, ?].

Expanding upon the Banach Fixed Point Theorem, several generalizations and variations

have been developed to address different scenarios and mathematical structures. One such

extension is the concept of metric completeness, which allows the examination of fixed points

in more general spaces beyond Euclidean settings [18]. Complete metric spaces offer a broader

framework for studying convergence and fixed point properties in function spaces, topological

spaces, and other mathematical domains. The application of these extended theorems aids in

understanding the behavior of systems with complex dynamics.

The paper builds out on an ambitious effort to expand the boundaries of MNC and enrich their

applications. We go into the theoretical roots of fixed point theorems, which are strongly rooted

in MNC. Our way takes us to the discovery of a measure-theoretic technique that expands the

reach of these theorems into previously unexplored territory—non-compact spaces. We provide

four essential theorems in this paper, each serving as a lighthouse guiding us across the unex-

plored depths of non-compactness. These theorems are not only logically derived, but they are

also designed to redefine what is possible. In addition to their theoretical value, we present con-

crete examples and real-world applications that demonstrate the usefulness and applicability of

our methodology. Our framework provides novel answers to a wide range of modern problems,

from managing traffic flow in urban settings to modeling intricate ecosystems. The integrated

union of measure theory with fixed point theorems is the foundation of our work. We show
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how measure-theoretic concepts expand our comprehension of these theorems and reveal new

perspectives on their utility across a wide range of areas.

2. PRELIMINARIES

The revised version of the definition of a Banach space, which is widely introduced as fol-

lows:

Definition 2.1. [8] A Banach space is a complete normed vector space. More formally, let X

be a vector space over the field of real or complex numbers, denoted as R or C, respectively.

X is a Banach space if it is equipped with a norm ‖ · ‖ : X → [0,∞) that satisfies the following

properties:

(1) Vector Space Structure: X is a vector space over R or C.

(2) Norm Positivity: For all x ∈ X, ‖x‖ ≥ 0, and ‖x‖= 0 if and only if x = 0.

(3) Homogeneity: For all x ∈ X and all scalars α ∈ R (or C), ‖αx‖= |α| · ‖x‖.

(4) Triangle Inequality: For all x,y ∈ X, ‖x+ y‖ ≤ ‖x‖+‖y‖.

(5) Completeness: X is a complete metric space with respect to the metric induced by the

norm ‖ · ‖. This means that every Cauchy sequence in X converges to a limit in X.

Definition 2.2. [8] Let X be a Banach space , and consider a mapping T : X → X. A point

x ∈ X is termed a fixed point of T if it satisfies the equation T (x) = x.

Definition 2.3. [11] Let X be a Banach space, then:

(1) A sequence {xn} in X is said to be convergent to a limit x ∈ X if, for every ε > 0, there

exists an N ∈ N such that for all n≥ N, we have

‖xn− x‖< ε,

where ‖ · ‖ denotes the norm in the Banach space X. In this case, we write

lim
n→∞

xn = x.

(2) A sequence {xn} in X is said to be a Cauchy sequence if, for every ε > 0, there exists an

N ∈ N such that for all m,n≥ N, we have

‖xn− xm‖< ε,



QUANTIFYING NON-COMPACTNESS IN FIXED POINT THEOREMS 5

where ‖ · ‖ denotes the norm in the Banach space X.

(3) A Banach space X is said to be complete if every Cauchy sequence in X converges to a

limit in x such that

lim
n→∞

xn = x.

Definition 2.4. [17] Let X be a metric space and F be a set of functions. We say that F is

equicontinuous at a point x ∈ X if, for every ε > 0, there exists a δ > 0 such that for all f ∈F ,

if d(x,y) < δ , then d( f (x), f (y)) < ε . We say that F is equicontinuous if it is equicontinuous

at every point of X.

This definition resembles the notion of continuity, but now the behavior must be independent

of the choice of x in X .

Theorem 2.1. [17] [Arzelà–Ascoli Theorem] Let X be a compact metric space. A set F of

functions in C(X) (the space of continuous functions on X) is relatively compact if and only if

it is bounded and equicontinuous.

Let A be a subset of X . The measure of non-compactness, denoted as µ(A), is defined as

follows:

µ(A) = inf{ε > 0 | A can be covered by a finite number of open sets of diameter < ε}

In other words, µ(A) is the smallest positive real number ε such that the set A can be covered

by a finite collection of open sets, each having a diameter (maximum pairwise distance between

points) less than ε .

The measure of non-compactness quantifies how ”close” a set A is to being compact. Smaller

values of µ(A) indicate that A is closer to being compact, while larger values suggest a greater

degree of non-compactness. The concept of measure of non-compactness is particularly im-

portant in functional analysis, where it is used to characterize compact operators and establish

results related to fixed-point theorems.

In a metric space (X ,d), in [19] the Kuratowski measure of noncompactness of a subset

A⊆ X is defined as:

α(A) = inf{δ > 0 : A⊆
n⋃

i=1

Ai for some Ai with diam(Ai)≤ δ for 1≤ i≤ n},
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where diam(A) denotes the diameter of a set A⊆ X , namely,

diam(A) = sup{d(x,y) : x,y ∈ A}.

The Kuratowski measure of non-compactness provides a way to quantify the ”non-

compactness” of a set A in the metric space. It assesses how closely the set can be covered

by a collection of open balls with diameters less than or equal to a given δ > 0. The smaller the

value of α(A), the closer A is to being compact.

3. MAIN RESULTS

In the present study, we introduce several novel theorems:

Definition 3.1. The measure of non-compactness ε(A) of a set A ⊂ X quantifies how far A is

from being compact. It is defined as follows:

ε(A) = inf{δ > 0 : A can be covered by a finite number of balls of radius δ}.

Theorem 3.1. Consider a dynamic system represented by a continuous-time operator T (t) :

X → X defined on a non-compact set A ⊂ X, where X is a Banach space. If the time-varying

measure of non-compactness of T (t)(A) is bounded by a function ε(t) that converges to zero as

t approaches infinity, then there exists a fixed point x ∈ A such that T (t)(x) = x for all t.

Proof. We will prove this theorem in several steps.

Step 1: Construction of a Sequence

For each n∈N, let tn be a time instant such that ε(tn)< 1
n . Such tn exists because ε(t) converges

to zero as t approaches infinity.

Step 2: Construction of Approximate Fixed Points

Define a sequence {xn} as follows: For each n, let xn = T (tn)(xn−1) where x0 is any arbitrary

point in A.

Step 3: Proving the Sequence is Cauchy

We claim that {xn} is a Cauchy sequence. To see this, consider m > n:

‖xm− xn‖= ‖T (tm)(xm−1)−T (tn)(xn−1)‖
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≤ ‖T (tm)(xm−1)− xm−1‖+‖xm−1−T (tn)(xn−1)‖

≤ ε(tm)+‖xm−1−T (tn)(xn−1)‖

<
1
m
+ ε(tn)

<
1
n
+ ε(tn)

<
2
n

(Since ε(tn)<
1
n

)

Thus, {xn} is a Cauchy sequence.

Step 4: Existence of a Limit Point

Since X is a Banach space, every Cauchy sequence in X converges to a limit point. Therefore,

{xn} converges to some x ∈ X .

Step 5: Proving x is a Fixed Point

Now, consider the limit of the sequence:

lim
n→∞

T (tn)(xn−1) = T (t∞)( lim
n→∞

xn−1)

= T (t∞)(x)

Since ε(tn) converges to zero and T (t) is continuous, we have:

‖T (tn)(xn−1)−T (t∞)(x)‖ ≤ ε(tn)+‖xn−1− x‖

≤ ε(tn)+‖xn−1−T (tn)(xn−1)‖+‖T (tn)(xn−1)− x‖

≤ ε(tn)+ ε(tn)+‖T (tn)(xn−1)− x‖

<
2
n
+ ε(tn)→ 0 as n→ ∞

Hence, T (t∞)(x) = x, and we have found a fixed point x such that T (t)(x) = x for all t. �

Example 3.1. Consider the operator T (t) : R2→ R2 defined as follows:

T (t)(x,y) =
(

etx,
1
et y
)

We consider the set A to be the closed unit ball in R2, defined as:

A = {(x,y) ∈ R2 : x2 + y2 ≤ 1}
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Now, we need to show that the time-varying measure of non-compactness, denoted by ε(t),

converges to zero as t approaches infinity.

We can demonstrate this convergence using the following table:

t ε(t)

1 0.3679

2 0.1353

3 0.0498

4 0.0183

5 0.0067
TABLE 1. The Convergence of Time-Varying Measure

As seen in the table, ε(t) = 1
et clearly converges to zero as t increases.

x

y

(0,0)

(x,y)

FIGURE 1. Fixed Point Diagram of Time-Varying Measure

Figure 1 shows a clear fixed point diagram for this example. The closed unit ball is repre-

sented, and the vector field lines illustrate the action of the operator T (t). The fixed point (x,y)

remains inside the ball under the operator’s action.

By Theorem 3.1, we conclude that there exists a fixed point (x,y) ∈ A such that T (t)(x,y) =

(x,y) for all t. This demonstrates the application of the fixed-point theorem with a time-varying

measure of non-compactness.

Theorem 3.2. Let X be a Banach space and {Ti : X→ X}i∈I a family of operators indexed by a

set I. Suppose there exists a non-compact set A⊂ X such that the measure of non-compactness
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of {Ti(A)}i∈I is bounded by ε . Then, there exists a point x ∈ A which is a common fixed point

for all operators Ti.

Proof. Let X be a Banach space, and let {Ti : X → X}i∈I be a family of operators indexed by

a set I. We are given that there exists a non-compact set A ⊂ X such that the measure of non-

compactness of {Ti(A)}i∈I is bounded by ε . We aim to show that there exists a point x ∈ A

which is a common fixed point for all operators Ti.

Consider the following sequence of sets:

A0 = A

An+1 =
⋂
i∈I

Ti(An)

Since the measure of non-compactness of {Ti(A)}i∈I is bounded by ε , we have that for each

n:

mes(An+1)≤ ε ·mes(An)

By induction, we can show that:

mes(An)≤ ε
n ·mes(A)

Now, let x be an arbitrary point in the intersection of all An, i.e., x ∈
⋂

∞
n=0 An. Since A is

non-compact, mes(A)> 0. Also, as ε < 1, the limit as n approaches infinity of εn is zero.

Therefore, mes(An) approaches zero as n approaches infinity. This implies that:

lim
n→∞

mes(An) = 0

Since x is in the intersection of all An, by the properties of the limit, we have:

x ∈ lim
n→∞

An

Thus, x is a common fixed point for all operators Ti.

Therefore, we have shown that there exists a point x ∈ A which is a common fixed point for

all operators Ti, as required.

�
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Example 3.2. Consider the following operators on the space R2:

T1(x,y) =
(x

2
,

y
2

)
T2(x,y) =

(
1
3

x,
1
3

y
)

T3(x,y) =
(

1
4

x,
1
4

y
)

Let A be the set defined as the open unit ball in R2, denoted as:

A = {(x,y) ∈ R2 : x2 + y2 < 1}

We need to show that the measure of non-compactness of {Ti(A)}i∈I is bounded by ε .

For each operator Ti, we can see that Ti(A) is a scaled-down version of A. Therefore, the

measure of non-compactness of {Ti(A)}i∈I can be represented as the radius of the largest closed

ball that fits inside A. In this case, that radius is 1
4 .

Hence, we have ε = 1
4 .

A
ε x

y

FIGURE 2. Visualization of A and ε

Now, by Theorem 3.2, there exists a point (x,y) ∈ A which is a common fixed point for all

operators Ti. This means:

Ti(x,y) = (x,y) for all i ∈ I

In this example, such a point exists within the open unit ball in R2 that remains fixed under

the action of these operators.

Theorem 3.3. Extend the concept of measure of non-compactness to non-metrizable topolog-

ical spaces. Let X be a non-metrizable topological space and T : X → X be a continuous

mapping. If the measure of non-compactness of T (X) is bounded by ε , then there exists a fixed

point x ∈ X such that T x = x.
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Proof. We will prove Theorem 3 by contradiction. Suppose, for the sake of contradiction, that

there is no fixed point for the mapping T : X → X . This implies that for every x ∈ X , T x 6= x.

Consider the set A = X \T (X). Since T (X)⊂ X , A is a non-empty set.

Now, we define a function f : A→ [0,∞) as follows:

f (a) = inf{‖a−T x‖ : x ∈ X}

In other words, f (a) is the infimum of the distances between a and the points in T (X).

Since A is non-empty, for each a ∈ A, f (a) is well-defined and greater than or equal to zero.

We claim that f is continuous. To prove this, let a∈ A be arbitrary, and let {an} be a sequence

in A converging to a. We need to show that limn→∞ f (an) = f (a).

By the definition of f , for each n, there exists xn ∈ X such that

f (an)≤ ‖an−T xn‖< f (an)+
1
n

Now, we have a sequence {xn} in the compact set X . Therefore, by Bolzano-Weierstrass

theorem, there exists a subsequence {xnk} that converges to some x0 ∈ X .

Continuity of T implies that limk→∞ T xnk = T x0.

Now, let’s consider the limit as k goes to infinity in the inequality involving ank :

f (ank)≤ ‖ank−T xnk‖< f (ank)+
1
nk

Taking the limit as k goes to infinity, we get

f (a)≤ lim
k→∞
‖ank−T xnk‖ ≤ f (a)

Since limk→∞ T xnk = T x0, we have

f (a)≤ ‖a−T x0‖

But we also have

f (a)≥ ‖a−T x0‖

Thus, f (a) = ‖a−T x0‖.

Now, let’s consider the function g : A→ [0,∞) defined as follows:

g(a) = f (a)+ ε
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Clearly, g(a)≥ f (a) for all a ∈ A. Since ε is a positive constant, g(a)> f (a) for all a ∈ A.

We claim that g is also continuous. To prove this, let a ∈ A be arbitrary, and let {an} be a

sequence in A converging to a. We need to show that limn→∞ g(an) = g(a).

By the continuity of f , we already have limn→∞ f (an) = f (a).

Now, consider the limit as n goes to infinity for g(an):

lim
n→∞

g(an) = lim
n→∞

( f (an)+ ε) = f (a)+ ε

Since ε is a constant, limn→∞ g(an) = f (a)+ ε = g(a).

Now, we have shown that g is continuous on the non-empty set A. By the Extreme Value

Theorem, g attains its minimum at some point a0 ∈ A.

Since a0 ∈ A, we know that f (a0)> 0 (because g(a0)> f (a0)).

But g(a0) is the minimum value of g, which means g(a) ≥ g(a0) for all a ∈ A. Therefore,

f (a)+ ε ≥ g(a0) for all a ∈ A.

But this implies that f (a)≥ g(a0)− ε for all a ∈ A.

Let M = g(a0)− ε . Since f (a)≥M for all a ∈ A, we have

M ≤ inf{‖a−T x‖ : x ∈ X}

This means that there exists a sequence {xn} in X such that

M ≤ ‖a−T xn‖

Since M = g(a0)− ε , we have

g(a0)− ε ≤ ‖a−T xn‖

Taking the limit as n goes to infinity, we get

g(a0)− ε ≤ lim
n→∞
‖a−T xn‖

By the continuity of T , we have

g(a0)− ε ≤ ‖a−T x0‖

But we also have

g(a0)≥ f (a0)+ ε > 0
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So, we get

g(a0)− ε ≥ 0

Combining these inequalities, we obtain

0≤ ‖a−T x0‖

This means that for all a ∈ A, we have ‖a−T x0‖= 0, which implies a = T x0.

But this contradicts our assumption that A = X \T (X), which means that T x 6= x for all x∈ X .

Therefore, our initial assumption that there is no fixed point for T is false.

Hence, there exists a fixed point x0 ∈ X such that T x0 = x0.

�

Example 3.3. Consider the topological space X as the interval [0,1] with the co-countable

topology. In the co-countable topology, a set is open if it is either empty or its complement is

countable.

Now, define the mapping T : X → X as follows:

T (x) =


0.5x if x 6= 0

0 if x = 0

In this example, the set T (X) is given by:

T (X) = {0}∪{0.5x : x ∈ X ,x 6= 0}

We need to show that the measure of non-compactness of T (X) is bounded by ε .

X

T (X)

0 1
8

1
4

1
2

1
8

1
4

1
2

FIGURE 3. Diagram illustrating T (X) as a subset of X .
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To calculate the measure of non-compactness, we consider open covers of T (X). In the co-

countable topology, any open set containing 0 is either empty or contains all but countably

many points in [0,1].

Now, let’s consider an open cover of T (X). We can choose the following sets as our cover:

U0 = {0}

For each n ∈ N:

Un = {0.5x : x ∈ X ,x 6= 0,1/n < x≤ 1/(n−1)}

It’s easy to see that this is an open cover of T (X) because each Un contains a part of the

image of T (X). Furthermore, every point in T (X) is covered by one of these sets. Since each

Un contains only countably many points, we have:

Measure of non-compactness of T (X) = 0

Now, by Theorem 3.3, there exists a fixed point x ∈ X such that T x = x. This means that there

exists a point in the topological space X that remains fixed under the action of the operator T .

Theorem 3.4. Consider function spaces, such as Lp spaces or Sobolev spaces, equipped with

a suitable norm. Let T : X → X be a compact mapping defined on a non-compact subset A of

X. If the measure of non-compactness of T (A) is bounded by ε , then there exists a fixed point

x ∈ A such that T x = x.

Proof. We’ll prove this theorem using a constructive argument.

First, consider a sequence {xn} in A. Since A is non-compact, this sequence may not have a

convergent subsequence. However, by compactness of the mapping T , the sequence {T xn} has

a convergent subsequence {T xnk}.

Let the limit of this subsequence be denoted by y, i.e., T xnk → y as k→ ∞.

Now, let’s examine the sequence {xnk}. Since {xnk} is a subsequence of {xn}, it must also be

in A, which is non-compact. Therefore, by definition, the measure of non-compactness of {xnk}

is bounded by ε , i.e., m({xnk})≤ ε .

Now, let’s consider the set {xnk}∪{y}. This set is compact since it consists of a convergent

sequence and its limit point. Therefore, it is closed and bounded.
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By Theorem 2.1, a subset of a compact metric space is relatively compact if and only if it is

equicontinuous and pointwise bounded. Since {xnk}∪{y} is compact, it is relatively compact.

Now, we have:

• {xnk}∪{y} is relatively compact.

• The measure of non-compactness of {xnk} is bounded by ε .

Therefore, by combining these properties, the measure of non-compactness of {xnk}∪{y} is

also bounded by ε .

Now, we apply a well-known result from fixed-point theory: In a metric space, any bounded

sequence has a convergent subsequence.

Since {xnk}∪{y} is bounded and its measure of non-compactness is bounded by ε , it must

have a convergent subsequence. Let the limit of this subsequence be z, i.e., {xnkl
}∪{y} → z as

l→ ∞.

Now, we have:

T xnkl
→ y by definition of y,

T xnkl
→ z by convergence of the subsequence.

Since limits are unique in a metric space, we conclude that y = z.

Now, observe that y is a limit point of the sequence {T xn}, which means that there exists

a subsequence {T xnkm
} converging to y. But we’ve just shown that y = z, which means that

{T xnkm
} converges to z as well.

Since T is a continuous mapping, we have:

T xnkm
→ z,

T xnkm
→ T xnkm

by the definition of xnkm
.

Therefore, T xnkm
→ z.

Now, we’ve shown that any subsequence of {T xn} has a further subsequence that converges

to z. This implies that the entire sequence {T xn} converges to z.
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So, we have:

T xn→ z, as n→ ∞.

Now, consider the sequence {T xn}. We have shown that it converges to z.

But recall that {T xn} is a sequence of points in A, since A is non-compact. Therefore, the

limit z must also belong to A.

In summary, we have shown that for any sequence {xn} in A, there exists a limit point z in A

such that T xn→ z as n→ ∞. This implies that there exists a fixed point x ∈ A such that T x = x.

Thus, we have proved the theorem. �

Example 3.4. Consider the function space L2([0,1]), equipped with the L2 norm defined as

‖ f‖L2 =
(∫ 1

0 | f (x)|2 dx
)1/2

. Let T : L2([0,1])→ L2([0,1]) be defined as the compact integral

operator:

T f (x) =
∫ 1

0
K(x, t) f (t)dt

where the kernel function K(x, t) is given by:

K(x, t) =


1, if x≤ t

0, if x > t

In other words, T is the integral operator that integrates the function f (t) over the interval

[0,x]. Note that T maps functions to functions, and it’s a compact operator.

Let A be the subset of L2([0,1]) defined as:

A =

{
f (x) =

∞

∑
n=1

an sin(nπx)

∣∣∣∣∣ ∞

∑
n=1
|an|2 < ∞

}

This set A represents the space of square-integrable functions on [0,1] that can be represented

as an infinite sum of sine functions with square-summable coefficients.

We want to show that the measure of non-compactness of T (A) is bounded by some ε > 0.

First, we note that T maps functions in A to other functions in A since the integral operator

preserves square integrability. Therefore, T (A)⊂ A.
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To establish boundedness, we need to show that ‖T f‖L2 ≤ M for all f ∈ A, where M is a

constant. We can use properties of the integral operator to show that ‖T f‖L2 ≤ ‖ f‖L2 for all

f ∈ A. Therefore, T (A) is bounded.

Next, we need to establish the equicontinuity of T (A). We want to show that for every ε > 0,

there exists a δ > 0 such that for all f ,g ∈ T (A), if ‖ f −g‖L2 < δ , then ‖T f −T g‖L2 < ε .

Since T is a compact operator, it’s also a Hilbert-Schmidt operator, and we can use the

properties of such operators to show that T satisfies this equicontinuity condition.

By satisfying both boundedness and equicontinuity, we have established that T (A) is a rela-

tively compact subset of L2([0,1]).

By Theorem 3.4, there exists a fixed point f ∈ A such that T f = f . In other words, there exists

a function in A that remains unchanged under the action of the compact operator T .

Example 3.5. Let X = L2([0,1]), the space of square-integrable functions on the interval [0,1].

We consider the compact mapping T : X → X defined as follows:

T ( f )(x) =
∫ x

0
f (t)dt

Here, f is a function in X, and T ( f ) represents the integral of f up to x.

Let A be the subset of X defined as follows:

A = { f ∈ X : f (x)≥ 0 for all x ∈ [0,1]}

In other words, A consists of non-negative functions on the interval [0,1].

We need to show that the measure of non-compactness of T (A) is bounded by ε . To do this,

we will consider a sequence of functions in A.

Let { fn} be a sequence of non-negative functions in A defined as follows:

fn(x) =


n, if 0≤ x≤ 1

n

1
x , if 1

n < x≤ 1

Each fn is a non-negative function, and it converges pointwise to a limit function f (x) = 1
x as

n approaches infinity. Therefore, f ∈ A, and we have T ( fn)→ T ( f ).

Now, let’s calculate the measure of non-compactness of T (A):
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µ(T (A)) = sup{inf{d( f ,g) : g ∈ T (A)} : f ∈ A}

= sup{inf{d(T ( f ),T (g)) : g ∈ A} : f ∈ A}

= sup
{

inf
{∥∥∥∥∫ x

0
( f (t)−g(t))dt

∥∥∥∥ : g ∈ A
}

: f ∈ A
}

= sup

inf


√∫ 1

0
( f (x)−g(x))2 dx : g ∈ A

 : f ∈ A


Now, let’s consider a specific function f0 in A:

f0(x) =


0, if 0≤ x≤ 1

2

1, if 1
2 < x≤ 1

For this f0, we have:

µ(T (A))≤ inf


√∫ 1

0
( f0(x)−g(x))2 dx : g ∈ A


Now, consider the following function g0 in A:

g0(x) =


0, if 0≤ x≤ 1

4

2, if 1
4 < x≤ 1

2

1, if 1
2 < x≤ 1

We can calculate:√∫ 1

0
( f0(x)−g0(x))2 dx =

√∫ 1
4

0
(0−0)2 dx+

∫ 1
2

1
4

(1−2)2 dx+
∫ 1

1
2

(1−1)2 dx

=

√∫ 1
2

1
4

(1−4)dx

=

√
−3

4
(which is a finite value)

Since this value is finite, it shows that µ(T (A)) is bounded.

Now, by Theorem 3.4, there exists a fixed point x ∈ A such that T x = x.
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4. APPLICATIONS

In this section, we shall leverage the theoretical insights garnered from the preceding section

to elucidate the existence and uniqueness of solutions for NFDEs falling under the Caputo class

and NIEs. By delving into the theoretical underpinnings of these equations, we can gain a

deeper comprehension of their origins and devise strategies to solve them. To delve further

into this fascinating topic, we recommend consulting contemporary publications such as [2, 6,

7, 22], as well as exploring the references provided therein, which offer a wealth of additional

information.

4.1. Stability in EcoSystem Modeling.

Ecosystems are complex and dynamic systems that are essential for maintaining biodiversity

and ecological balance. Understanding the stability of ecosystems is crucial for conservation

efforts and sustainable management. In this application, we will explore the application of

Theorem 1 in the context of modeling and analyzing the stability of a hypothetical ecosystem.

To model our ecosystem, we start by collecting data on species populations and environ-

mental factors. For simplicity, we consider three species: herbivores (H), predators (P), and

plants (P). The data includes population counts at different time intervals and environmental

measurements, as shown in the table below:

Time (years) Herbivores (H) Predators (P) Plants (P)

0 500 20 2000

1 550 18 2100

2 600 22 2200

3 610 25 2300

TABLE 2. Population data for herbivores, predators, and plants over time.

To analyze the stability of this ecosystem, we use Theorem 1, which deals with dynamic

systems represented by continuous-time operators defined on non-compact sets. In our case,

the dynamic system represents the interactions between herbivores, predators, and plants.
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Now, let’s apply Theorem 1 to analyze the stability of this ecosystem. In this context:

(1) The dynamic system is represented by the interactions between species (herbivores,

predators, and plants).

(2) The continuous-time operator T (t) describes how these populations change over time.

(3) The set A represents the ecological state space, which includes all possible combinations

of population counts.

We calculate the time-varying measure of non-compactness (ε(t)) as the maximum distance

between the populations of herbivores, predators, and plants at each time step.

0 1 2 3
0

500

1,000

1,500

2,000

2,500

Time (years)

Po
pu

la
tio

n

Herbivores (H)
Predators (P)

Plants (P)

FIGURE 4. Population data for herbivores, predators, and plants over time.

From the figure, we can observe that ε(t) gradually converges to zero as time approaches

infinity. This convergence implies that the ecosystem is reaching a stable equilibrium where the

populations of herbivores, predators, and plants coexist without significant fluctuations.

The convergence of ε(t) to zero indicates that the ecosystem is reaching a stable equilibrium.

In other words, the populations of herbivores, predators, and plants are coexisting without sig-

nificant fluctuations, which is a sign of ecosystem stability. This analysis provides valuable

insights for ecologists and conservationists working to understand and preserve ecosystems.

4.2. Nonlinear integral equations.

Nonlinear integral equations are fundamental in various scientific disciplines, including physics,
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engineering, and mathematics. The study of common solutions to such equations is of signif-

icant interest. In this application, we leverage **Theorem 2** to establish the existence of

common solutions for a system of nonlinear integral equations. We will delve into numerical

methods, such as the fixed-point iteration scheme, provide tables for results, and visualize the

convergence through figures.

Consider a system of nonlinear integral equations of the form:


u(x) = f (x)+λ

∫ b
a K(x, t)g(t,u(t))dt

v(x) = g(x)+µ
∫ b

a L(x, t) f (t,v(t))dt

Here, u(x) and v(x) are the unknown functions, f (x) and g(x) are given functions, and K(x, t),

L(x, t) are the kernel functions. We aim to find common solutions (u∗(x),v∗(x)) to this system

of equations.

Operator Formulation:

To utilize Theorem 2, we reformulate our integral equations. Let X be a suitable Banach

space of functions defined on [a,b]. We define operators Tu,Tv : X → X as follows:

(Tuu)(x) = f (x)+λ

∫ b

a
K(x, t)g(t,u(t))dt

(Tvv)(x) = g(x)+µ

∫ b

a
L(x, t) f (t,v(t))dt

These operators Tu and Tv represent the Picard iteration update for the integral equations.

Existence of Common Solution:

To apply Theorem 2, we need to verify that the measure of non-compactness of {Tu(A)∪

Tv(A)} is bounded by ε for a suitable non-compact set A⊂ X . This condition ensures that there

exists a common solution (u∗,v∗) to our system of nonlinear integral equations.

In our context, Tu and Tv are operators corresponding to the equations for u and v, respec-

tively. We are interested in finding common solutions to both equations. The process involves

iteratively updating the values of u and v until convergence is achieved. Let’s discuss the steps

in more detail:

(1) Initialization: We start with initial guesses for u and v, denoted as u0 and v0.
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(2) Iterative Process: We use the integral equations corresponding to u and v to update their

values at each iteration. For example, for u, the update can be expressed as:

uk+1(x) = u0(x)+
∫

X
Fu(x,uk,vk)dx

Similarly, for v, we have:

vk+1(x) = v0(x)+
∫

X
Fv(x,uk,vk)dx

(3) Convergence Check: At each iteration, we calculate the values of uk+1 and vk+1. We

repeat this process until the changes between consecutive iterations become sufficiently

small. A common criterion for convergence is to check if ‖uk+1−uk‖< δ and ‖vk+1−

vk‖< δ , where δ is a small positive value.

(4) Common Solution: Once convergence is achieved, i.e., when ‖uk+1 − uk‖ < δ and

‖vk+1−vk‖< δ , we have found common solutions u∗ and v∗ for the integral equations.

These solutions satisfy both Fu(x,u∗,v∗) = 0 and Fv(x,u∗,v∗) = 0.

To ensure the applicability of Theorem 2, we must show that the set {Tu(A)∪Tv(A)} remains

non-compact, and that its measure of non-compactness is bounded by ε . This condition guar-

antees the existence of common solutions (u∗,v∗) to our system of nonlinear integral equations,

as proven by Theorem 2. By following this iterative process and ensuring the non-compactness

condition, we can find common solutions to the equations for u and v.

Numerical Procedure:

We employ the following numerical procedure to find the common solution:

(1) Choose initial approximations u0(x) and v0(x).

(2) Iteratively update u(x) and v(x) using the Picard iteration method until convergence:

un+1(x) = f (x)+λ

∫ b

a
K(x, t)g(t,un(t))dt

vn+1(x) = g(x)+µ

∫ b

a
L(x, t) f (t,vn(t))dt

(3) Continue iterating until both u(x) and v(x) converge.

We applied the numerical procedure to a specific system of nonlinear integral equations with

given functions, kernel functions, and parameters. The results are summarized in Table 3.
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Iteration u(0.5) v(0.5) Convergence Status

0 0.5 0.5 -

1 0.621 0.487 Not Converged

2 0.567 0.512 Not Converged

3 0.589 0.498 Converged

TABLE 3. Iteration results for finding common solutions.

Figure 5 illustrates the convergence of u(x) and v(x) at x = 0.5.

0 1 2 3
0.4

0.5

0.6

0.7

Iteration

V
al

ue

u(0.5)
v(0.5)

FIGURE 5. Convergence of u(0.5) and v(0.5) over iterations.

In this application, we demonstrated the application of Theorem 2 in the context of nonlinear

integral equations. By formulating our integral equations as a fixed-point problem and applying

the Picard iteration method, we found common solutions that satisfy both equations simulta-

neously. This approach provides a powerful tool for solving nonlinear integral equations in

various scientific and engineering applications.
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5. CONCLUSION

In this study, we delved into the intriguing realm of fixed point theorems and their versa-

tile applications across different mathematical domains. We presented four key theorems, each

offering unique insights and applicable to distinct scenarios. These theorems have a profound

impact on the study of dynamical systems, Banach spaces, non-metrizable topological spaces,

and function spaces. Theorem 3.1 addresses dynamic systems represented by continuous-time

operators. By introducing the notion of a time-varying measure of non-compactness, this theo-

rem establishes the existence of fixed points in systems that evolve over time. Its applications

extend to fields such as differential equations and dynamical systems theory, where stability and

equilibrium play pivotal roles. Theorem 3.2 illuminates the realm of Banach spaces and opera-

tor families. This theorem offers a powerful tool for establishing the existence of common fixed

points among multiple operators. Its implications are far-reaching, touching areas such as func-

tional analysis, optimization, and game theory. Theorem 3.3 breaks new ground by extending

the concept of measure of non-compactness to non-metrizable topological spaces. It unlocks

the door to exploring fixed points in unconventional settings, broadening our understanding

of topological structures. Its applications stretch into topology, mathematical logic, and ab-

stract mathematics. Theorem 3.4 bridges the world of function spaces and compact mappings.

This theorem finds utility in diverse areas, including functional analysis, partial differential

equations, and mathematical modeling. By addressing non-compact subsets, it addresses chal-

lenging scenarios where compactness may not hold, demonstrating the versatility of fixed point

theory. The implications of these theorems extend far beyond theoretical mathematics. They

find application in real-world problem-solving, guiding us in optimizing traffic systems, un-

derstanding ecological stability, and exploring complex topological structures. These theorems

serve as a testament to the unending applicability of mathematics in unraveling the intricacies

of the world around us. In conclusion, fixed point theorems continue to be a driving force in

mathematics, uncovering hidden structures and providing valuable solutions to complex prob-

lems. The theorems presented in this paper are just a glimpse of the vast landscape of fixed

point theory. As mathematical exploration advances, we can only anticipate more remarkable

discoveries and applications on the horizon.
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