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Abstract. The goal in the article is to study the bifurcation and chaotic behavior of the maps ηx(1− x)n over

the real domain in the real parameter space, considering η is a positive real parameter which is continuous and

n is positive integer. The dynamic properties of the proposed family are not only theoretically analyzed, but also

they are analyzed graphically and numerically. The fixed points (real) are simulated theoretically and the periodic

points are computed numerically. Furthermore, we discussed the stability of the fixed points as well as periodic

points. The plot of the bifurcation of the maps are given by altering the parameters. The presence of chaos in the

dynamics of this family is investigated by studying period-doubling phenomena in the bifurcation diagram, and

chaotic behavior is been quantified by finding positive Lyapunov exponents.
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1. INTRODUCTION

For last four decades, advancement in computer graphics uses of technology that helped to

derive new formulation and develop non-linear technique for convoluted systems [4, 3]. As

many physical, socioeconomic, and natural systems are inherently non-linear in nature, hence

this systems shows a large number of various characteristics. At the same time, chaos is not
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only been a center of focus in many various fields of sciences and engineering [5, 6, 11] but

also redesigns many researches; the analysis of chaotic behavior in the dynamical systems is

an interesting field of study of many engineers, scientists, and mathematicians. Multiple disci-

plines, such as stoke market [7], fashion cycle model [8], modeling [9, 10], optimization [16],

photovoltaic plant [12] and many other uses it extensively. The comprehensive dynamical anal-

ysis is described for an H-bridge parallel resonant converter within a zero current switching

control in [19]. The dynamics of DC-AC resonant self-oscillating LC series inverter is explored

in [15]. The analysis has been done in the sense of piecewise smooth dynamical system and the

bifurcation analysis has been done for the parameter space that are one dimensional. A discrete

dynamics approach has been used to see different ruses on using sporadic computing methods

on ontology learning and determine its effectiveness through tests. The recrudescence in non-

autonomous discrete dynamical systems is explored in [22]. Bifurcation analysis of fertility and

gender equality is explained in [18]. In [23] the efficiency-wage competition model introduced

by Hahn (1987) is illustrated, and the chaotic behavior is described in the parameter space as

well.

The word chaos in a system is united appearance of non-linear alliance, determinism, order

and sensitive dependence. Chaos is a wonderful phenomenon in mathematics, physics and

many other fields of sciences. The research in chaos indicate that an elementary system can

show a complicated, uncertain pattern. A chaos can be described in various shapes, as per

circumstances, observations, or application to the object. The chaos, as a mathematical concept

was emerged around 1980.

The idea of chaos is usually connected to the field called dynamical systems in Mathematics.

This can also be classified in the dynamics as the tactful reliance on the preliminary conditions.

The dynamical system is a discussion of the process that vary over the time. The primodial goal

to elaborate a dynamical system and to see the asymptotic behavior of the trajectories which

is related to long-term monitoring. Moreover, one can say that the initial condition has gone

identical long term behavior. A primordial focus in dynamical systems to find out the behavior

of the orbits near fixed points. Fixed points are called stable if the initial disturbance is set to
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be stable over time where is it is unstable if the primary inconsistency tends to grow over long-

term. G. Julia, a French mathematician, looked into the dynamics of quadratic polynomials in

the complex plane and used the Julia set to disclose a well-known fractal example. Benoit B.

Mandelbrot, a French-American mathematician, first introduced the Mandelbrot set concept in

1975 [24]. To study the dynamics of meromorphic maps reader can see ([13], [14]). For local

connectivity of Julia set see ([20], [26], [27]).

The article is arranged as follows. We have defined all the basic terminologies that is been

used in the article in section 2. In section 3, we have discussed the stable and unstable domains

of the function and have used graphs to elaborate the attracting domain in the real line when

the parameter value n = 1. Section 4 gives a more generalized dynamics of the maps for the

parameter value n > 1. Furthermore, we use numerical simulation to dig the details of the

periodic fixed points of higher order in this section. In section 5, we showed how the period

bifurcation occurs for a perturbation of the parameter values and also use the positive Lyapunov

exponents to analyze the chaos in the parameter region. The last section is reserved for giving

details of application of this phenomenon in different fields and it talks about the future scope

of extending this work in a broder sense for higher dimension.

2. PRELIMINARIES

The proposed map in this article is the generalized logistic maps over the real domain with

real parameters defined by gη(x) = ηx(1− x)n where n is defined as the set of positive discrete

values. This family is denoted by D and we will denote any map gη(x) in D by g until unless

we need more detail description of the map for convenience of the reader. A sequence of points

{x, g(x), g◦2(x), g◦3(x), . . .} for x ∈R is called an orbit of x under the iteration of g. A point x0

is said to be a fixed point of the function g if g(x0) = x0, where x0 ∈ R. The following theorem

classifies the points in the Fatou set. We will use the theorem to define the points in Fatou set

(Stable set).

A periodic point p is called attractor if |(gm)
′
(p)|< 1 and the point p is called repellor if

|(gm)
′
(p)|> 1. Suppose x0 is a periodic fixed point of a function g of period p, that is gp(x0) =

x0. We define λ = |(gp)′(x0)|, as the multiplier of the function g at x0. We classify the fixed

point as follows:
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(i) If λ = 0, x0 is called a super-attracting fixed point.

(ii) If |λ |< 1, x0 is called an attracting fixed point.

(iii) If |λ |> 1, x0 is said to be a repelling fixed point.

(iv) If |λ |= 1, x0 is called a neutral fixed point.

If a point q is a m-periodic attracting fixed point of g, then there is a neighborhood V of q so

that all points of V are forward asymptotic to q under gk; that is, we have gmk(s)→ q as k→∞ for

all s in V . Such a set V is called a local stable set of q and is denoted by W t
loc(q). The stable set

of q, denoted by W t(q), as the set of points forward asymptotic to q, or equivalently as the set

of points mapped to W t
loc(q) under iteration of ghm

W t(q) =
∞⋃

k=1

{x|ghm(x) ∈U}

The Fatou set is given as the union of all stable sets. Complement of stable set is said to be

the Julia set or unstable set.

3. STABLE AND UNSTABLE COMPONENTS FOR n = 1

We study the dynamics of the family of maps when n = 1 through the following results. We

are interested to study the real fixed points and real periodic points for a certain range of the

parameter values η as well as study about the connectivity of Julia sets.

Lemma 3.1. Let gη ∈D . If−1<η < 1, x= 0 is a super-attracting fixed point whereas x= η−1
η

is an attracting fixed point for 1 < η < 3.

Proof. g
′
η(x) = η(1− 2x). The fixed points of the equation is given by, x1 = 0, x2 =

η−1
η

. So

|g′η(0)| = |η | < 1 when |η | < 1. Therefore, x = 0 is attracting fixed point for −1 < η < 1

and repelling fixed point for |η | > 1. In other ways, we have |g′η(
η−1

η
)| = |η(1− 2(η−1)

η
)| =

|η(η−2η+2)
η

)| = |2−η | < 1. Thus, −1 < 2−η < 1 and η−1
η

is an attracting fixed point for

1 < η < 3. �

Lemma 3.2. The function gη(x) ∈D has an attracting periodic two cycle for 3 < η < 3.45.
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Proof. If x is an attracting periodic point in a period two cycle of gη(x), then it must satisfy

g2
η(x) = x. That implies, η2x2−ηx(η +1)+(η +1) = 0. Thus we get the two periodic points

as follows.

x1 =
1

2η
{(η +1)+

√
(η−3)(η +1)} and x2 =

1
2η
{(η +1)−

√
(η−3)(η +1)}

The multiplier is given by, |(g2)
′
(x1)|= |(g2)

′
(x2)|= |g

′
(x1)g

′
(x2)|= |1− (η−3)(η +1)|=

|η2−2η−4|. For x1 and x2 to be an attracting periodic cycle we need to have |η2−2η−4|< 1

implies, 3 < η < 3.45. �

Lemma 3.3. For each η ∈ R, there is kη ∈ R such that |gn
η(x)| → ∞,∀ |x|> kη as n→ ∞.

Proof. A function gη(x) is a parabola concave upward or downward according to η > 0 or

η < 0 and gη(x) is monotonic over (−∞,1/2)∪ (1/2,∞,). xη = 1−η

η
is an attracting fixed point

of gη for 2 < η < 3 by (3.1). Take kη = 1−η

η
for η ∈ (−∞,2]∪ [3,∞). Since |g′η(kη)|> 1, ∀η ∈

(−∞,2]∪ [3,∞), kη is a repelling fixed point. Therefore the orbit {gn
η(x)} of x is divergent and

|gn
η(x)| → ∞ ∀ |x|> kη as n→ ∞.

If 2 < η < 3, xη is an attracting periodic fixed point. Let Uxη
be the set of points attracted by

the attracting periodic fixed points. We claim that Uxη
is bounded.

If not, there is a sequence of points xn = g2n(x) such that |xn| → ∞ as n→ ∞. Therefore the

orbit of x has no uniformly convergent sub-sequence. Therefore x is not in Fatou set. Thus Uxη

must be bounded. So there is an M such that |x|< M ∀ x ∈Uxη
. Let kη = Mη∀ η ∈ (2,3). Then

|gn(x)| → ∞ as n→ ∞ ∀ |x|> kη for 2 < η < 3. �

Theorem 3.4. The Julia set has no connected components.

Proof. By Lemma 3.3 we have that for each η ∈ R, there exists a kη so that |x|< kη ∀ x ∈J .

If there is a connected component U of J , then |x| < kη ∀ x ∈ U. So gn
η(x) is uniformly

convergent and forms a normal family. Contradiction. �

Lemma 3.5. The Fatou set is the union of connected components.

Proof. We have F = R \J . By theorem 3.4, J as no connected components in R. Hence

F must be the union of connected components in R. �
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FIGURE 1. Fatou and Julia set for various parameter values

Lemma 3.6. The Fatou set is non-empty.

Proof. Using Lemma 3.4 one can find that for every η ∈ R, ∃ kη ∈ R such that |x| < kη and

J ⊂ [−kη ,kη ]. Therefore x ∈F ∀ |x|> kη . Hence F is non-empty. �

Theorem 3.7. A function gη(x) has finite attracting (or super-attracting) periodic cycle for

−2≤ η ≤ 4.

Proof. Case 1: η > 4. In this case the immediate attracting domain of an attracting periodic

point should contain a critical value. Then it is enough to trace the orbit of the critical value.

gη(1/2) = η

22 ,

Thus we have the gn
η(1/2) as

gn
η(1/2) = ηn (2−1)(22−1)(24−(22−1))(28−(24−(22−1)))(22n−1−(22n−2−(...−(22−1)))

(22)n and
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gn
η(1/2) = ηn (2−1)(22−1)(24−(22−1))(28−(24−(22−1)))(22n−1−(22n−2−(...−(22−1)))

(4)n > (η

4 )
n, ∀ n≥ 2

Therefore (η

4 )
n→ ∞ as n→ ∞ for η > 4, implies gn

η(1/2)→ ∞ as n→ ∞.

Case 2: η < 2. gη(1/2) = η .1
2 .(1−

1
2) = η

(2−1)
22

g2
η(1/2) = η2 (2−1)(22−(2−1))

222

...

gn
η(1/2) = (η

2 )
n (2−1)(22−1)(24−(22−1))(28−(24−(22−1)))(22n−1−(22n−2−(...−(22−1)))

2n

Therefore we have |gn
η(1/2)|> (2−1)(22−1)(24−(22−1))(28−(24−(22−1)))(22n−1−(22n−2−(...−(22−1)))

2n as

|η |> 2. Furthermore, (2−1)(22−1)(24−(22−1))(28−(24−(22−1)))(22n−1−(22n−2−(...−(22−1)))
2n > n!

Thus |gn
η(1/2)| → ∞ as n→ ∞. This concludes that the function gn

η(x) has attracting periodic

fixed points for −2 < η < 4. �

Remark 3.1. x = 3/2 is a repelling periodic point for η = 2 and at η = 4, x = 1 is a repelling

periodic point.

Lemma 3.8. The Julia set is finite.

Proof. By theorem 3.7, a function gη(x) has bounded Fatou components for 2 < η < 4. So

for η ∈ (−∞,2]∪ [4,∞), the Fatou set is given by (−∞,kη)∪ (kη ,∞) for some kη satisfying

|x| > kη . Clearly the Julia set is finite and a singleton set {kη}. On the other hand when

Fatou set has bounded components, the set will be given by the union of countably many open

intervals. So the Julia set is given by the boundary points of these intervals and are the union

of countably many boundary points. Therefore the points in the Julia set is given by an infinite

sequence of points in R. Because the sequence is bounded, it has a convergent subsequence

in R and the limit point will be in the Julia set. Let p be the limit point. Then we can have a

small neighborhood U around p such that U contains at-least one point of the Julia set except

p. In other words there is no open interval around p belonging to the Fatou set. That is a

contradiction! Thus Julia set must be finite. �

Theorem 3.9. Let gη ,n(x) ∈ D . The map gη ,n(x) has a fixed point at 0, for all η , and one

non-zero real fixed point. Furthermore, the non-zero fixed point is negative for η < 1 and

positive for η ∈ (−∞,0)∪ (1,∞).
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Proof. For real fixed point of gη ,n(x) we set gη ,n(x) = x =⇒ ηx(1−x)n = x =⇒ x = 0,η(1−

x)n = 1. Therefore x = 0 and xη ,n = 1− n
√

1
η

are the solution of the equation and gives the fixed

point of gη ,n(x). Further it is easy to see that xη ,n < 0 when η < 1 and xη ,n > 0 for η > 1. �

Remark 3.2. The fixed point xη ,n is always less than 1.

4. DYNAMICS OF THE FAMILY FOR n > 1

This family shows very interesting dynamical properties for n > 1. The following results

pledges with the study of dynamical charecteristic of the proposed map but this study is been

extended into numerical stimulation to get the higher order attracting periodic points.

Proposition 4.1. Suppose that k(x) = 1−nx
1−x , n > 1, x ∈ R. Then function does not attain any

maximum or minimum in R. Moreover, k(x)→ ∞, as x→ 1+ and k(x)→−∞ as x→ 1− and

k(x)→±n as x→±∞.

Theorem 4.2. Suppose gη ,n(x) ∈D . Then the following hold,

a) The real fixed point x = 0 is attracting if |λ | < 1, rationally indiffernt if |λ | = 1, and

repelling when |λ |> 1.

b) The real fixed point xη ,n is attracting for xη ,n ∈ (0, 2
1+n), rationally indifferent for xη ,n =

0, 2
1+n , and repelling otherwise.

Proof. We have that g′η ,n(x) = η(1− x)n−1(1−nx).

a) For x = 0, |g′η ,n(x)|= |η |< 1,= 1, or > 1 conclusion holds accordingly.

b) For the real fixed point xη ,n, when η > 0, g′η ,n(xη ,n) =
(1−nxη ,n)
(1−xη ,n)

. Therefore, |g′η ,n(xη ,n)|<

1 =⇒ | (1−nxη ,n)
(1−xη ,n)

|< 1 =⇒ 0 < xη ,n <
2

1+n . For |g′η ,n(xη ,n)|= 1, we have x = 2
1+n . Furthermore

xη ,n = 0 implies η = 1 which is already considered in (a). Since g′η ,n(xη ,n) is decreasing for

x < 1, and g′η ,n(x =
2

1+n) =−1, therefore |g′η ,n(xη ,n)|> 1 for 1 > x > 2
1+n . This completes the

proof. �

4.1. Numerical iteration of real periodic points of period > 1. To see the higher periodic

points of period larger than one is quite cumbersome. We need to use mathematical simulation

to calculate the periodic points greater than one. When 0 < η < 1, x = 0 is the only attracting
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fixed point and xη ,n < 0, so it is not an attracting fixed point.

For a fixed n, ∃ ηn > 1 such that xη ,n is attracting periodic point of period one.

The numerical stimulation is been done for n= 2,3,4,8 and choose η > η∗ such that gη ,n has

periodic points of period greater than 1. For n = 2, the periodic points of period two starts from

η ≈ 4.1. Clearly these periodic points will be the roots of the equation gk
η ,n(x) = ηgk−1

η ,n (x)(1−

gk−1
η ,n (x))

n = x.

4.2. Periodic doubling of logistic maps.

• We calculate the periodic cycle of period 2,4,8 for values of n = 2,3,4, and 5, where

the other parameter value η is taken as η = 4.1,5.1,5.25. For n = 2, the periodic points

of period 2,4,8 are calculated for η = 4.1,4.9 and 5.2.

• For η = 4.1 the 2-periodic cycle points p1 and p2 of gη ,n are as following,

p1 ≈ 0.5781 and p2 ≈ 0.4219. gη ,n(p1) =−0.2702 and gη ,n(p2) = 0.3702.

Then |g′η ,n(p1).g′η ,n(p2)| ≈ 0.1000 < 1 and p1 and p2 are 2-cycle attracting periodic

points.

• If η = 5.1, the 4− periodic cycle points p1, p2, p3, p4 are as following,

p1 ≈ 0.6961, p2 ≈ 0.3279, p3 ≈ 0.7554, p4 ≈ 0.2305, Then g′η ,n(p1) =

−0.6079, g′η ,n(p2) =−0.6079, g′η ,n(p3) =−0.6372, g′η ,n(p4) = 2.1153.

mη ,n = ∏
4
i=1 |g′η ,n(pi)|= 0.9666 < 1. Therefore p1, p2, p3 & p4 are 4− cycle attract-

ing periodic points.

• For η = 5.25, the 8− periodic cycle points p1, p2, . . . p8 of gη ,n(x) are as follows:

p1 ≈ 0.2019, p2 =≈ 0.6752, p3 ≈ 0.3739, p4 ≈ 0.7695, p5 ≈ 0.2147, p6 ≈

0.6951, p7 ≈ 0.3393, p8 ≈ 0.7776. Thus, g′η ,n(p1) = 0.4267, g′η ,n(p2) =

−0.5804, g′η ,n(p3) = 0.8053, g′η ,n(p4) = −0.6336, g′η ,n(p5) = 0.2853, g′η ,n(p6) =

−0.6058, g′η ,n(p7) = 1.0830, g′η ,n(p8) =−0.6297.

mη ,n = ∏
8
i=1 |g′η ,n(pi)|= 0.6797 < 1. Hence {pi}8

i=1 are 8− cycle attracting periodic

points.

• When n = 3, we calculate the periodic points of period 2, for η = 4.8. If η = 4.8, the

2− periodic cycle points p1,&p2 of g′η ,n(x) are as follows.
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p1 ≈ 0.4819, p2 ≈ 0.0771 and mη ,n = ∏
2
i=1 |g′η ,n(pi)|= 0.0443 < 1. So, p1&p2 are

2-cycle attracting periodic points.

• When n = 4, we calculate the periodic point of period 2, for η = 5.5, of gη ,n(x) as

follows:

p1 = 0.4427, p2 = 0.2348 and gη ,n(p1) =−0.7338, gη ,n(p2) = 0.1498. Thus, mη ,n =

∏
2
i=1 |g′η ,n(pi)|= 0.1099 < 1 and {pi}2

i=1 are 2− cycle attracting periodic points.

For n = 5, we conclude the periodic points of period 2 for η = 5.8. The periodic

points are as below,

p1 = 0.3781 & p2 = 0.2040 and g′η ,n(p1) ≈ −1.0123, g′η ,n(p2) ≈ −0.0618 implies

mη ,n = ∏
2
i=1 |g′η ,n(pi)| = 0.0618 < 1. Hence, {pi}2

i=1 are 2− cycle attracting periodic

points.

• If n = 3, and η = 6.5, the periodic points are as following: p1 ≈ 0.1309, p2 ≈

0.5768, p3 ≈ 0.2842, p4 ≈ 0.6775, p5 ≈ 0.1477, p6 ≈ 0.5944, p7 ≈ 0.2578, p8 ≈

0.6851. Furthermore, g′η ,n(p1) ≈ 2.1395, g′η ,n(p2) ≈ −1.5218, g′η ,n(p3) ≈

−0.4556, g′η ,n(p4) ≈ −1.1560, g′η ,n(p5) ≈ 1.9321, g′η ,n(p6) ≈ −1.4731, g′η ,n(p7) ≈

−0.1117, g′η ,n(p8)≈−1.1218.

The multiplier mη ,n = ∏
8
i=1 |g′η ,n(pi)| ≈ 0.6116 < 1. Therefore there is a 8− periodic

attracting cycle.

For η = 6.4, the periodic points are as given, p1 ≈ 0.1495, p2 ≈ 0.5887, p3 ≈

0.2622, p4 ≈ 0.6739, g′η ,n(p1) ≈ 1.8610, g′η ,n(p2) ≈ −1.4668, g′η ,n(p3) ≈

−0.1700, g′η ,n(p4)≈−1.540.

mη ,n ≈ ∏
4
i=1 |g′η ,n(pi)| = 0.5356 < 1. Hence, gη ,n(x) has an attracting periodic

4−cycle.

• If n = 4, and η = 7.1, the periodic points are given below;

p1 ≈ 0.1906, p2 ≈ 0.5808, p3 ≈ 0.1273, p4 ≈ 0.5243 and g′η ,n(p1) ≈

0.1769, g′η ,n(p2) ≈ −0.9958, g′η ,n(p3) ≈ 1.7154, g′η ,n(p4) ≈ −1.2393. Hence,

mη ,n ≈∏
4
i=1 |g′η ,n(pi)| = 0.3746 < 1. Therefore, gη ,n(x) has an attracting periodic 4−

cycle.
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For η = 7.5, the periodic points are given as:

p1 ≈ 0.1989, p2 ≈, 0.6144, p3 ≈ 0.1019, p4 ≈ 0.4972, p5 ≈ 0.2384, p6 ≈

0.6016, p7 ≈ 0.1137, p8 ≈ 0.5262. Furthermore, we have g′η ,n(p1) ≈

0.0212, g′η ,n(p2) ≈ −0.8910, g′η ,n(p3) ≈ 2.6649, g′η ,n(p4) ≈ −1.4167, g′η ,n(p5) ≈

−0.6361, g′η ,n(p6) ≈ −0.9523, g′η ,n(p7) ≈ 2.2531, g′η ,n(p8) ≈ −1.3011. The multi-

plier value is given by, mη ,n ≈ ∏
8
i=1 |g′η ,n(pi)| ≈ 0.1267 < 1. Hence, gη ,n(x) has an

attracting periodic cycle of period 8.

• For n = 5, η = 8.2 the periodic points are as follows:

p1 ≈ 0.1913, p2 ≈ 0.5426, p3 ≈ 0.0891, p4 ≈ 0.4582, p5 ≈ 0.1754, p6 ≈

0.5484, p7 ≈ 0.0845, p8 ≈ 0.4456, and the value of the corresponding multiplier map

is given by g′η ,n(p1)≈−0.5184, g′η ,n(p2)≈−0.8096, g′η ,n(p3)≈ 2.6274, g′η ,n(p4)≈

−1.2360, g′η ,n(p5) ≈ 0.1987, g′η ,n(p6) ≈ −0.7812, g′η ,n(p7) ≈ 2.8398, g′η ,n(p8) ≈

−1.2965.

mη ,n≈∏
8
i=1 |g′η ,n(pi)| ≈ 0.7787< 1. Therefore, gη ,n(x) has an attracting 8− periodic

cycle.

For η = 7.58, the periodic points are as following:

p1 ≈ 0.9432, p2 ≈ −0.9873, p3 ≈ 1.0604, p4 ≈ −1.0057, the value of the first or-

der derivative of the map at those points are given as g′η ,n(p1) ≈ 0.9432, g′η ,n(p2) ≈

−0.9873, g′η ,n(p3)≈ 1.0604, g′η ,n(p4)≈−1.0057.

mη ,n ≈ ∏
4
i=1 |g′η ,n(pi)| ≈ 0.9930 < 1. Hence, gη ,n(x) has an attracting 4− periodic

cycle.

5. PERIOD DOUBLING BIFURCATION

We studied the bifurcation properties of this family of maps based on our earlier analysis.

We emphasized the period doubling bifurcation of the maps in the family in Figure 3. Since the

critical value of the map is always attracted by an attracting periodic cycle wherever attracting

cycle exists, we used this phenomena to find the period doubling bifurcation. The critical value

of a map gη is given by x = η/4.

Here we discuss the bifurcation of the periodic points when η and n varies. We have plotted

the bifurcation diagram for n = 2,3,4 & 5. It is clear from the Figure 2 that as η increases the
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periodic cycle bifurcates into a higher order cycle. However, the bifurcation does not maintain

the attracting behavior of the cycle.

(A) Period doubling bifurcation for η ∈

(2,3.5)

(B) Period doubling bifurcation for η ∈

(2.5,3.58)

(C) Period doubling bifurcation for η ∈

(−1.58,−0.5)

(D) Period doubling bifurcation for η ∈

(−2,−1.5)

FIGURE 2. Period doubling bifurcation

In other words, for n = 3,4,5, the attracting 2− cycle bifurcates into an attracting 4− cycle,

an attracting 8− cycle and so on, however for n = 2, an attracting 2− cycle bifurcates into a 4−

cycle, 8− cycle and so on. The period-doubling phenomenon in the bifurcation diagrams steers

the way to chaos of the gη ,n ∈F in real dynamics.



BIFURCATION AND CHAOTIC BEHAVIOR OF GENERALIZED LOGISTIC MAPS 13

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

Parameter(r)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

L
y
a

p
u

n
o

v
 E

x
p

o
n

e
n

t(
L

)

Lyapunov Exponent for n=2

(A) n = 2, 5 < η < 3.5

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

Parameter(r)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

L
y
a

p
u

n
o

v
 E

x
p

o
n

e
n

t(
L

)

Lyapunov Exponent for n=3

(B) n = 3, 6 < η < 8
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(C) n = 4, 7.5 < η < 9
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(D) n = 5, 8 < η < 10

FIGURE 3. Value of Lyapunov Exponent for various parameter values

5.1. Lyapunov exponents. The Lyapunov exponent of the map gη ,n ∈F is to be calculated.

This is another key to know the chaotic systems for those η , which are responsible for the period

doubling phenomenon in the bifurcation diagrams.

Using the formula, we have the Lyapunov exponent for the family of maps as

L = lim
k→∞

1
k

k−1

∑
i=0

ln |η(1− (k+1)x(i))(1− x(i))k−1|, n = 2,3

For our calculation, we choose x0 = 0.33, x0 = 0.20, (n = 4,5) and k = 500. The calculated

value of the Lyapunov exponents are explained in the following figure for n = 2,3,4,5 with

5≤ η ≤ 7, 6≤ η ≤ 8, 7.5≤ η ≤ 9, & 8≤ η ≤ 10 respectively. This is clearly seen from these

figures that, the Lyapunov Exponents are negative for same values of the parameter η , and it

shows tactful dependence on the preliminary conditions. Therefore, chaotic behavior exists in

the real dynamics of gη ,n ∈F .
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The bifurcation diagrams (in bifurcation diagram figure) and the corresponding Lyapunov

exponents are discussed here in the last diagram for intervals of parameters η . For positive

Lyapunov exponents, the bifurcation diagram has dense blue region which shows chaotic be-

havior in the real dynamics of gη ,n(x) for some fixed ranges of parameter values. Furthermore,

for other values the Lyapunov exponents that are negative, the bifurcation diagrams have white

regions; it indicates that the chaotic regions breaks up into non-chaotic initially and then goes

back to being chaotic.

We have iterated the critical value when the parameter value is varying over the real line. The

length of the attracting periodic cycle will be determined by the attracting periodic points where

the critical value lands after a large number of iterations complete. The following diagrams are

given when parameter values range over the positive and negative real number in the range of

(−2,3.58).

6. CONCLUSIVE REMARKS

The article discusses the dynamics of a freshly introduced family of real maps with two pa-

rameters including the logistic function in one-dimensional settings. The fixed points (real)

with their properties are theoretically investigated however, numerical simulation is being ap-

plied to see the periodic points. The period doubling along with period-three window is being

investigated through bifurcation diagrams, the existence of chaotic behavior is studied. The

chaos is being determined by calculating the positive Lyapunov exponents. The fractal struc-

tures that are generated for the stable and unstable components are topologically rich enough to

investigate. Moreover, there are some questions in terms of the combinatorial structures of the

fractals, that are not addressed in this article but would be something interesting to investigate

in some future work. One can be interested to study the dynamics along the negative real axis

and analyze the stable and unstable domains. What will be the dynamics of the maps when the

multiplier is one. In other words, one can see the dynamics of the map when the function has

neutral fixed point. However, such results can be elaborated with the family of maps with three

or more parameters values, furthermore, for a family of functions whose dimension are equal to

two.
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It will be fascinating to extend these work for complex polynomials generated fractals which

are often used to encode information of various objects and are very useful in various branches

of science and engineering. Moreover, it is being noticed that as we enlarge the edges of the

petals of the Mandelbrot set, we come across the Julia set for complex polynomial generated

fractals. In other word, each point of the Mandelbrot set carries a large scale of image data of

a Julia set. We plan to provide some fascinating features to compare with the existing one and

elaborate the significance of the outcomes such as some of the fractals resemble the traditional

Kachhi Thread Works found in the Kutch district of Gujarat (India) which are useful in the

textile industry.
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