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Abstract: The concept of JS-quasi-contraction is introduced in this work as a step in the construction of a bipolar

metric space, along with frequently certain fixed point theorems for these mappings in complete bipolar metric

spaces under the presumption that the involved function is nondecreasing and continuous. In addition, we of-

fer applications to homotopy and integral equations and offer an explanation that shows the significance of the

discovered results.
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1. INTRODUCTION

The study of non-linear phenomena benefits greatly from the use of fixed point theory. It is an

interdisciplinary area of mathematics that has applications in many different areas of mathemat-

ics as well as in other disciplines, such as biology, chemistry, physics, engineering, game theory,

mathematical economics, optimisation issues, approximation theory, initial and boundary value

issues in ordinary and partial differential equations, and variational inequalities. The most im-

portant finding in fixed point theory, attributed to the Polish mathematician Stefan Banach in
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1922 and cited as [1], had a significant impact on a number of studies. In fact, he established

a theory that ensures that any contraction mapping in all of metric space has a singular fixed

point. The Banach fixed point theorem or Banach contraction principle are two names for this

conclusion. Additionally, an intriguing constructive proof of the Banach fixed point theorem is

one that results in an iterative approach for determining a fixed point. Scholars in mathematics

are constantly interested in learning about new discoveries in space and their characteristics,

therefore many scholars have made generalisations in different directions (see [2]-[16]). For

example, the concepts of Ćirić contraction [2], quasi-contraction [3], JS-contraction [4], JS-

Ćirić contraction [5], and JS-quasi contraction [6] have been introduced, and many interesting

generalizations of the Banach contraction principle are obtained.

By modifying the domain of the function so that they took into account the distance between

points of two separate sets instead of only one, Mutlu et al. [7] recently generalised the metric

space structure. The theory is known as a bipolar metric space, and it extends a number of

fixed point theorems, such as the Banach contraction principle, to the situations in which it is

used (see [7]-[20] and references therein). Furthermore, Mutlu et al. ([7], [8]) demonstrated the

coupled fixed point results and principle of locally and weakly contractive mappings in bipolar

metric spaces, while Kishore et al. [9] proved certain common fixed point theorems in a bipolar

metric space with significant applications. Hence, fixed point theory of bipolar metric space is

an active research area and it is capturing a lot of attention for further work.

This article’s goal is to put forth a general fixed point theorem for covariant JS-quasi contrac-

tion mappings in regard to bipolar metric spaces. Additionally, applications to homotopy and

integral equations are given with suitable and pertinent examples.

What follows is in our subsequent conversations, we compile a few suitable definitions.

2. PRELIMINARIES

Definition 2.1:([7]) The mapping d : S ×T → [0,∞) is said to be a Bipolar-metric on pair

of non empty sets (S ,T ).If

(B1) d(µ,ν) = 0 implies that µ = ν ;

(B2) µ = ν implies that d(µ,ν) = 0;
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(B3) if µ,ν ∈S ∩T , then d(µ,ν) = d(ν ,µ);

(B4) d(µ1,ν2)≤ d(µ1,ν1)+d(µ2,ν1)+d(µ2,ν2),

for all µ,µ1,µ2 ∈ S and ν ,ν1,ν2 ∈ T , and the triple (S ,T ,d) is called a Bipolar-metric

space.

Definition 2.2:([7]) Let Ω : S1 ∪T1 → S2 ∪T2 be a function defined on two pairs of sets

(S1,T1) and (S2,T2) is said to be

(i) covariant if Ω(S1)⊆S2 and Ω(T1)⊆T2. This is denoted as Ω : (S1,T1)⇒ (S2,T2);

(ii) contravariant if Ω(S1)⊆T2 and Ω(T1)⊆S2. It is denoted as

Ω : (S1,T1)� (S2,T2).

Particularly, if d1 is bipolar metrics on (S1,T1) and d2 is bipolar metrics on (S2,T2), we often

write Ω : (S1,T1,d1)⇒ (S2,T2,d2) and Ω : (S1,T1,d1)� (S2,T2,d2) respectively.

Definition 2.3:([7]) In a bipolar metric space (S ,T ,d) for any ξ ∈S ∪T is left point if

ξ ∈S , is right point if ξ ∈ T and is central point if ξ ∈S ∩T . Also, {αi} in S and {βi}

in T are left and right sequence respectively. In a bipolar metric space, we call a sequence,

a left or a right one. A sequence {ξi} is said to be convergent to ξ iff either {ξi} is a left

sequence, ξ is a right point and lim
i→∞

d(ξi,ξ ) = 0, or {ξi} is a right sequence, ξ is a left point

and lim
i→∞

d(ξ ,ξi) = 0. The bi-sequence ({αi},{βi}) on (S ,T ,d) is a sequence on S ×T . In

the case where {αi} and {βi} are both convergent, then ({αi},{βi}) is convergent.

The bi-sequence ({αi},{βi}) is a Cauchy bi-sequence if lim
i, j→∞

d(αi,β j) = 0.

Note that every convergent Cauchy bi-sequence is bi-convergent. The bipolar metric space is

complete, if each Cauchy bi-sequence is convergent (and so it is biconvergent).

Definition 2.4:([9]) Let (S1,T1,d1) and (S2,T2,d2) be bipolar metric spaces.

(a) A map Γ : (S1,T1,d1)⇒ (S2,T2,d2) is called left-continuous at a point ξ0 ∈S1, if for

every ε > 0, there exists a δ > 0 such that d1(ξ0,℘) < δ implies d2(Γ(ξ0),Γ(℘)) < ε

for all ℘∈T1.

(b) A map Γ : (S1,T1,d1)⇒ (S2,T2,d2) is called right-continuous at a point ℘0 ∈ T1, if

for every ε > 0, ∃ δ > 0 such that d1(ξ ,℘0) < δ implies d2(Γ(ξ ),Γ(℘0)) < ε for all

ξ ∈S1.
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(c) A map Γ is called continuous, if it is left-continuous at each point ξ ∈ S1 and right-

continuous at each point ℘∈T1.

(c) A contravariant map Γ : (S1,T1,d1) � (S2,T2,d2) is continuous if and only if it is

continuous as a covariant map Γ : (S1,T1,d1)⇒ (S2,T2,d2)

It can be seen from the Definition 2.4 that a covariant or a contravariant map Γ from (S1,T1,d1)

to (S2,T2,d2) is continuous if and only if (un)→ v on (S1,T1,d1) implies (Γ(un))→ Γ(v) on

(S2,T2,d2).

Definition 2.5:([9]) Let (S ,T ,d) be a bipolar metric space and Γ,Λ : (S ,T )⇒ (S ,T ) be

two covariant mappings. A pair (Γ,Λ) is called a compatible if and only if

lim
i→∞

d(ΓΛαi,ΛΓβi) = lim
i→∞

d(ΛΓαi,ΓΛβi) = 0 whenever, ({αi} ,{βi}) is a sequence in (S ,T )

such that lim
i→∞

Γαi = lim
i→∞

Γβi = lim
i→∞

Λαi = lim
i→∞

Λβi =℘ for some ℘∈S ∩T .

Now we prove our main result.

3. MAIN RESULTS

In this section, two covariant mappings that meet new type contractive criteria in bipolar metric

spaces are given some common fixed point theorems.

Definition 3.1: Let (S ,T ,d) be a bipolar metric space. Suppose Γ,Λ : (S ,T ) ⇒ (S ,T )

are called a JS-quasi contraction covariant mappings if there exist a mapping

ψ? : (0,+∞)→ (1,+∞) and ` ∈ (0,1) such that ∀ u ∈S , p ∈T with Γu 6= Γp

ψ? (d(Γu,Γp)≤ ψ? (d(Λu,Λp))`(1)

For convenience, we set: Ω = {ψ?/ψ? : (0,+∞)→ (1,+∞)} be a family of functions that

satisfy the following properties;

(i) ψ? is a continuously nondecreasing map;

(ii) ψ?(t) is subadditive, ψ?(p+q)≤ ψ?(p)+ψ?(q).

Theorem 3.2: Let (S ,T ,d) be a complete bipolar metric space. Suppose that Γ,Λ :

(S ,T )⇒ (S ,T ) be two covariant mappings satisfies JS-quasi contraction with ψ? ∈Ω

(i0) Γ(S ∪T )⊆ Λ(S ∪T ) ,

(i1) pair (Γ,Λ) is compatible,
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(i2) Λ is continuous.

Then there is a unique common fixed point of Γ and Λ in S ∪T .

Proof Let u0 ∈ S and p0 ∈ T be arbitrary, and from (i0), we construct the bisequences

({ακ} ,{ζκ}) in (S ,T ) as

Γuκ = Λuκ+1 = ακ , Γpκ = Λpκ+1 = ζκ where κ = 0,1,2, . . . .

Then from (1), we can get

ψ? (d(ακ ,ζκ+1)) = ψ? (d(Γuκ ,Γpκ+1)

≤ ψ? (d(Λuκ ,Λpκ+1)
`

≤ ψ? (d(ακ−1,ζκ))
`

< ψ? (d(ακ−1,ζκ)) .

By the property of ψ?, we get that

d(ακ ,ζκ+1) < d(ακ−1,ζκ).(2)

On the other hand, we have

ψ? (d(ακ+1,ζκ)) = ψ? (d(Γuκ+1,Γpκ)

≤ ψ? (d(Λuκ+1,Λpκ)
`

≤ ψ? (d(ακ ,ζκ−1))
`

< ψ? (d(ακ ,ζκ−1)) .

By the property of ψ?, we get that

d(ακ+1,ζκ) < d(ακ ,ζκ−1).(3)

Moreover,

ψ? (d(ακ ,ζκ)) = ψ? (d(Γuκ ,Γpκ)

≤ ψ? (d(Λuκ ,Λpκ)
`

≤ ψ? (d(ακ−1,ζκ−1))
`
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< ψ? (d(ακ−1,ζκ−1)) .

By the property of ψ?, we get that

d(ακ ,ζκ) < d(ακ−1,ζκ−1).(4)

Thus, from (2), (3) and (4) one shows that the bisequence {d(ακ ,ζκ)} are nonincreasing bise-

quences of non-negative real numbers. So there exist ı≥ 0 such that lim
κ→∞

d(ακ ,ζκ) = ı and

d(ακ ,ζκ)≥ ı.(5)

Suppose that ı > 0. By (2), (3) and (4) and (5), since ψ? is nondecreasing, we get

1 < ψ?(ı)≤ ψ?(d(ακ ,ζκ))≤ ψ?(d(ακ−1,ζκ−1))
` ≤ ·· · ≤ ψ?(d(α0,ζ0))

`κ

,∀ κ

Letting κ → ∞ in this inequality, we get ψ?(ı) = 1 which contradicts the assumption that

ψ?(s)> 1 for each s > 0. Consequently, we have ı = 0, that is,

lim
κ→∞

d(ακ ,ζκ) = 0

Similarly, we have lim
κ→∞

d(ακ+1,ζκ) = 0 and lim
κ→∞

d(ακ ,ζκ+1) = 0.(6)

Now we show that lim
κ,λ→∞

d(ακ ,ζλ ) = 0 and lim
κ,λ→∞

d(αλ ,ζκ) = 0.

Otherwise, there exist ε > 0 and two bi-subsequences (
{

ακp

}
,
{

ζλp

}
) and (

{
αλp

}
,
{

ζκp

}
) of

({ακ} ,{ζκ}) such that λp is the smallest index with λp > κp > p for which

d
(

ακp,ζλp

)
≥ ε, d

(
αλp,ζκp

)
≥ ε(7)

which indicates that

d
(

ακp ,ζλp−1

)
< ε, d

(
αλp,ζκp−1

)
< ε(8)

By (7), (8), and the triangle inequality we get

ε ≤ d
(

ακp,ζλp

)
≤ d

(
ακp,ζλp−1

)
+d
(

αλp,ζλp−1

)
+d
(

αλp ,ζλp

)
< ε +d

(
αλp,ζλp−1

)
+d
(

αλp,ζλp

)
,∀ λp > κp > p.
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Letting p→ ∞ in this inequality, by (6) we obtain

lim
p→∞

d
(

ακp,ζλp

)
= ε

Similarly, we have lim
p→∞

d
(

αλp,ζκp

)
= ε.(9)

Also by the triangle inequality we get

ε ≤ d
(

ακp,ζλp

)
−d
(
ακp,ζκp+1

)
−d
(
ακp+1,ζκp+1

)
−d
(

αλp,ζλp+1

)
−d
(

αλp,ζλp

)
≤ d

(
ακp+1,ζλp+1

)
≤ d

(
ακp+1,ζκp

)
+d
(

αλp,ζκp

)
+d
(

αλp ,ζλp+1

)
.

Letting p→ ∞ in this inequality, by (6) and (9) we obtain

lim
p→∞

d
(

ακp+1,ζλp+1

)
= ε

Similarly, we have lim
p→∞

d
(

αλp+1,ζκp+1

)
= ε.(10)

In analogy to (10), by (6) and (9) we can prove that

lim
p→∞

d
(

αλp+1,ζκp

)
= lim

p→∞
d
(

αλp,ζκp+1

)
= ε.

Note that (10) and (9) implies that there exists a positive integer p0 such that

d
(

ακp+1,ζλp+1

)
> 0,d

(
αλp+1,ζκp+1

)
> 0 and d

(
ακp,ζλp

)
> 0,d

(
αλp,ζκp

)
> 0

also d
(

αλp+1,ζκp

)
> 0,d

(
αλp ,ζκp+1

)
> 0 ∀ p≥ p0.

Thus, by (1) we get

ψ?

(
d
(

ακp+1,ζλp+1

))
= ψ?

(
d
(

Γuκp+1,Γpλp+1

))
≤ ψ?

(
d
(

Λuκp+1,Λpλp+1

))`
≤ ψ?

(
d
(

ακp,ζλp

))`
, ∀ λp > κp > p≥ p0.

Letting p→ ∞ in this inequality, by (9), (10), and the continuity of ψ? we obtain

ψ?(ε) = lim
p→∞

ψ?

(
d
(

ακp+1,ζλp+1

))
≤ lim

p→∞
ψ?

(
d
(

ακp,ζλp

))`
= ψ?(ε)

` < ψ?(ε)
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a contradiction. Consequently, d(ακ ,ζλ )→ 0 as κ,λ → ∞ holds. Similarly, we can prove

d(αλ ,ζκ) → 0 as κ,λ → ∞, that is,the bisequences ({ακ} ,{ζκ}) is a Cauchy sequence in

(S ,T ). Since (S ,T ,d) is complete, ({ακ} ,{ζκ}) converges and thus it biconverges to a

point ℘∈S ∩T such that

lim
κ→∞

ακ =℘= lim
κ→∞

ζκ .(11)

That is

lim
κ→∞

Γuκ = lim
κ→∞

Λuκ+1 = lim
κ→∞

Γpκ = lim
κ→∞

Λpκ+1 =℘.

Since Λ is continuous function, we have

lim
κ→∞

ΛΓuκ = Λ℘ lim
κ→∞

Λ
2uκ+1 = Λ℘

lim
κ→∞

ΛΓpκ = Λ℘ lim
κ→∞

Λ
2 pκ+1 = Λ℘.(12)

Since the pair {Γ,Λ} is compatible, we have

lim
κ→∞

d(ΓΛuκ+1,ΛΓpκ) = lim
κ→∞

d(ΛΓuκ ,ΓΛpκ+1) = 0.

Therefore,

lim
κ→∞

ΛΓpκ = lim
κ→∞

ΓΛuκ+1 = Λ℘ lim
κ→∞

ΛΓuκ = lim
κ→∞

ΓΛpκ+1 = Λ℘.(13)

Taking u = Λuκ+1 and p = pκ in (1), we get

ψ? (d(ΓΛuκ+1,Γpκ))≤ ψ?

(
d(Λ2uκ+1,Λpκ)

)`
.

Letting κ → ∞ in this inequality, by (11), (12),(13) and the continuity of ψ? we obtain

ψ? (d(Λ℘,℘))≤ ψ? (d(Λ℘,℘))` < ψ? (d(Λ℘,℘))

a contradiction. Consequently, d(Λ℘,℘) = 0. That is Λ℘=℘.

By using the condition (1) and (B4), we obtain

ψ? (d(Γ℘,℘)) ≤ ψ? (d(Γ℘,ζκ+1))+ψ? (d(ακ+1,ζκ+1))+ψ? (d(ακ+1,℘))

≤ ψ? (d(Γ℘,Γpκ+1))+ψ? (d(ακ+1,ζκ+1))+ψ? (d(ακ+1,℘))

≤ ψ? (d(Λ℘,Λpκ+1))
`+ψ? (d(ακ+1,ζκ+1))+ψ? (d(ακ+1,℘))

≤ ψ? (d(Λ℘,ζκ))
`+ψ? (d(ακ+1,ζκ+1))+ψ? (d(ακ+1,℘))
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→ 0 as κ → ∞.

Thus Γ℘=℘. Hence Γ℘= Λ℘=℘. Now we prove the uniqueness; we begin by taking ℵ to

be another fixed point of covariant maps Γ and Λ. Then Γℵ = Λℵ = ℵ implies ℵ ∈S ∩T

and we have

ψ? (d(℘,ℵ)) = ψ? (d(Γ℘,Γℵ))≤ ψ? (d(Λ℘,Λℵ))` < ψ? (d(℘,ℵ))

a contradiction. Consequently, we have ℘= ℵ. This shows that ℘ is the unique fixed point of

Γ and Λ. The proof is completed.

Corollary 3.3: Let (S ,T ,d) be a complete bipolar metric space. Suppose that

Γ : (S ,T )⇒ (S ,T ) be a covariant mapping satisfy JS-quasi contraction with ψ? ∈Ω. Then

Γ has a unique fixed point in S ∪T .

Corollary 3.4: Let (S ,T ,d) be a complete bipolar metric space. Suppose that

Γ : (S ,T ,d)� (S ,T ,d) be a contravariant mapping satisfy

ψ? (d(Γp,Γu))≤ ψ? (d(u, p))`

for all u ∈ S , p ∈ T and ψ? ∈ Ω with ` ∈ (0,1) Then there is a unique fixed point of Γ in

S ∪T .

Example 3.5: Let S = R2 and T = R×{0}. Define d : S ×T → [0,∞) as

d ((p,q),(r,0)) =
√
(p− r)2 +q2 for all p,q,r ∈ R. Then obviously (S ,T ,d) is a com-

plete bipolar-metric space. And define Γ,Λ : (S ,T ,d) ⇒ (S ,T ,d) as Γ(x,y) = (x+5
6 , y

6)

and Λ(x,y) = (x+1
2 , y

2) and also define ψ? : (0,+∞) → (1,+∞) as ψ?(t) = et . Then ob-

viously, Γ(S ∪T ) ⊆ Λ(S ∪T ) and observe that the pairs (Γ,Λ) is a compatible. Let

((ακ ,βκ),(γκ ,0κ)) be a bisequence in (S ,T ) such that, for some (℘,0) ∈S ∩T ,

lim
κ→∞

d (Λ(ακ ,βκ),(℘,0)) = 0, lim
κ→∞

d ((℘,0),Λ(γκ ,0κ)) = 0,

lim
κ→∞

d (Γ(ακ ,βκ),(℘,0)) = 0, lim
κ→∞

d ((℘,0),Γ(γκ ,0κ)) = 0.

Since Γ and Λ are continuous, we have

lim
κ→∞

d(ΛΓ(ακ ,βκ),ΓΛ(γκ ,0κ)) = d( lim
κ→∞

ΛΓ(ακ ,βκ), lim
κ→∞

ΓΛ(γκ ,0κ))

= d (Λ(℘,0),Γ(℘,0))
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= d
(
(
℘+1

2
,0),(

℘+5
6

,0)
)

=
℘−1

3
.

But ℘−1
3 = 0⇔℘= 1. Similarly, we prove lim

κ→∞
d(ΓΛ(ακ ,βκ),ΛΓ(γκ ,0κ)) = 0.

In fact, we have for any elements (p,q) ∈S , (r,0) ∈T

ψ? (d(Γ(p,q),Γ(r,0))) = ed(Γ(p,q),Γ(r,0))

= ed
(
( p+5

6 , q
6 ),(

r+5
6 ,0)

)

= e
1
6

√
(p−r)2+q2

≤ (e
1
2

√
(p−r)2+q2

)
1
2

≤ ψ? (d(Λ(p,q),Λ(r,0)))` .

Hence all the conditions of the Theorem (3.2) are satisfied and ` ∈ (0,1). So, Γ and Λ must

have unique common fixed point. In fact (1, 0) is the unique common fixed point of Γ and Λ.

3.1. Application to Integral Equations.

We will apply Corollary 3.3 to resolve the integral equation

η(x) = f (x)+
∫

G1∪G2

Ω(x,y)∆(y,η(y))dy, x ∈ G1∪G2.(14)

where G1∪G2 is a Lebesgue measurable set.

Let S = L∞(G1),T = L∞(G2) be two normed linear spaces, where G1,G2 are Lebesgue mea-

surable sets with m(G1 ∪G2) < ∞. Define d : S ×T → R+ as d(`,σ) = ||`−σ ||∞ for all

` ∈S ,σ ∈T . Obviously, (S ,T ,d) is a complete bipolar metric space.

Define Γ : L∞(E1)∪L∞(E2)→ L∞(E1)∪L∞(E2) by

Γη(x) = f (x)+
∫

G1∪G2

Ω(x,y)∆(y,η(y))dy x ∈ G1∪G2.

Then Γ is a covariant mapping.

Theorem 3.1.1: Assume that the following conditions are fulfilled
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(i) Ω : G2
1∪G2

2→ R+, ∆ : (G1∪G2)× [0,∞)→ R+ and f : G1∪G2→ R+ are continuous

functions. Let ψ? : (0,+∞)→ (1,+∞) as ψ?(t) = et .

(ii) There exists a continuous function χ : G1∪G2→ R+ such that for all η ∈S ,ζ ∈ T ,

and y ∈ G1∪G2, we get that

|∆(y,η(y))−∆(y,ζ (y))| ≤ |χ(ζ )||η(y)−ζ (y)|` where ` ∈ (0,1)

(iii) ||
∫

G1∪G2

Ω(x,y)χ(ζ )dy|| ≤ 1.

Then the integral equation (14) has a solution in L∞(G1)∪L∞(G2).

Proof The existence of a solution of Eq.(14) is equivalent to the existence of a unique solution

of Γ. Using the inequalities, (i), (ii) and (iii), we have

|Γη(x)−Γζ (x)| = |
∫

G1∪G2

Ω(x,y) [∆(y,η(y))−∆(y,ζ (y))]dy|

≤
∫

G1∪G2

Ω(x,y)|∆(y,η(y))−∆(y,ζ (y))|dy

≤
∫

G1∪G2

Ω(x,y)|χ(ζ (y))||η(y)−ζ (y)|`dy

≤
∫

G1∪G2

Ω(x,y)|χ(ζ (y))|||η−ζ ||`∞dy

≤ ||η−ζ ||`∞

 ∫
G1∪G2

Ω(x,y)|χ(ζ (y))|dy


Then

||Γη−Γζ ||∞ ≤ ||η−ζ ||`∞||
∫

G1∪G2

Ω(x,y)|χ(ζ (y))|dy||∞

≤ ||η−ζ ||`∞

Choose ψ?(t) = et . Then Consequently, for all η ∈S ,ζ ∈T , we deduce that

ψ? (d(Γη ,Γζ )≤ ψ? (d(η ,ζ ))`

Hence, all the conditions of Corollary (3.3) hold, we conclude that Γ has a unique solution in

S ∪T to the integral equation (14)..
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3.2. Applications to Homotopy.

In this section, we study the existence of an unique solution to Homotopy theory.

Theorem 3.2.1: Let (S ,T ,d) be complete bipolar metric space, (P,Q) and (P,Q) be an

open and closed subset of (S ,T ) such that (P,Q)⊆ (P,Q). Suppose

H :
(
P ∪Q

)
× [0,1]→S ∪T be an operator with following conditions are satisfying,

i)℘ 6= H (℘,s) for each ℘∈ ∂P ∪∂Q and s ∈ [0,1] (here ∂P ∪∂Q is boundary of P ∪Q

in S ∪T );

ii) for all ℘∈P, ı ∈Q, s ∈ [0,1] and ψ? ∈Ω and ` ∈ (0,1) such that

ψ? (d (H (℘,s),H (ı,s)))≤ ψ? (d(℘, ı))`

iii) ∃M ≥ 0 3 d(H (℘,s),H (ı, t))≤M|s− t| for every ℘∈P , ı ∈Q and s, t ∈ [0,1].

Then H (.,0) has a fixed point ⇐⇒ H (.,1) has a fixed point.

Proof Let the sets

Θ =
{

s ∈ [0,1] : H (℘,s) =℘ for some ℘∈P
}
.

ϒ =
{

t ∈ [0,1] : H (κ, t) = κ for some κ ∈Q
}
.

Suppose that H (.,0) has a fixed point in P ∪Q, we have that 0 ∈ Θ∩ϒ. So that Θ∩ϒ 6= φ .

Now we show that Θ∩ϒ is both closed and open in [0,1] and hence by the connectedness

Θ = ϒ = [0,1]. As a result, H (.,0) has a fixed point in Θ∩ϒ. First we show that Θ∩ϒ

closed in [0,1]. To see this, Let (
{

ap

}∞

p=1 ,
{

xp

}∞

p=1)⊆ (Θ,ϒ) with (ap,xp)→ (α,α) ∈ [0,1] as

p→∞. We must show that α ∈Θ∩ϒ. Since (ap,xp) ∈ (Θ,ϒ) for p = 0,1,2,3, · · · , there exists

sequences
({

℘p
}
,
{
κp
})

with ℘p+1 = H (℘p,ap), κp+1 = H (κp,xp)

Consider

ψ?

(
d(℘p,κp+1)

)
= ψ?

(
d
(
H (℘p−1,ap−1),H (κp,bp)

))
≤ ψ?

(
d
(
H (℘p−1,ap−1),H (κp,ap−1)

))
+ψ?

(
d
(
H (℘p,bp−1),H (κp,ap−1)

))
+ψ?

(
d
(
H (℘p,bp−1),H (κp,bp)

))
≤ ψ?

(
d
(
℘p−1,κp

))`
+M|bp−1−ap−1|+M|bp−1−bp|
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< ψ?

(
d
(
℘p−1,κp

))
(15)

By using property of ψ?, we have

d(℘p,κp+1) < d
(
℘p−1,κp

)
(16)

Similar lines we can prove that

d(℘p+1,κp) < d
(
℘p,κp−1

)
(17)

and

d(℘p,κp) < d
(
℘p−1,κp−1

)
(18)

The inequalities (16), (17) and (18) yield that the bisequence

{dn := d(℘p,κp)} is non-increasing, so it converges to δ ≥ 0. Assume that δ > 0. Taking

p→ ∞ in equations (15), we get a contradiction. Therefore,

lim
p→∞

d(℘p,κp) = 0(19)

We will prove ({℘p},{κp}) is a Cauchy bisequence. Assume there are ε > 0 and {qk},{pk}

so that for pk > qk > k,

d(℘pk ,κqk)≥ ε, d(℘pk−1,κqk)< ε(20)

and

d(℘qk ,κpk)≥ ε, d(℘qk ,κpk−1)< ε(21)

By view of (20) and triangle inequality, we get

ε ≤ d(℘pk ,κqk)

≤ d(℘pk ,κpk−1)+d(℘pk−1,κpk−1)+d(℘pk−1,κqk)

< d(℘pk ,κpk−1)+d
(
H (℘p−2,ap−2),H (κp−2,xp−2)

)
+ ε

< d(℘pk ,κpk−1)+M|ap−2− xp−2|+ ε.

Letting k→ ∞, and using (19), we obtain

lim
p→∞

d(℘pk ,κqk) = ε(22)
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Using (21), one can prove

lim
p→∞

d(℘qk ,κpk) = ε(23)

For all k ∈ N, by (ii) we have

ψ?

(
d(℘pk+1,κqk+1)

)
< ψ?

(
d(℘pk ,κqk)

)
and

ψ?

(
d(℘qk+1,κpk+1)

)
< ψ?

(
d(℘qk ,κpk)

)
.

Applying (22) and (23), we get at the limit, ψ?(ε)< ψ?(ε). That is ε = 0 which is a contradic-

tion. Hence ({℘p},{κp}) is a Cauchy bi-sequences in (P,Q). By completeness, there exist

τ ∈P ∩Q with

lim
p→∞

℘p+1 = τ = lim
p→∞

κp+1(24)

we have

ψ?

(
d
(
H (τ,α),κp+1

))
= ψ? (d (H (τ,α),H (κp,xp)))

≤ ψ? (d (τ,κp))
`

< ψ? (d (τ,κp)) .

By taking the limsup on both sides and ψ? is continuous and non-decreasing, we have

d (H (τ,α),τ) = 0 implies that H (τ,α) = τ . Therefore, α ∈ Θ∩ϒ. Clearly, Θ∩ϒ closed

in [0,1]. Let (a0,x0) ∈ Θ× ϒ, there exists bisequences (℘0,κ0) with ℘0 = H (℘0,a0),

κ0 = H (κ0,x0). Since P ∪Q is open, then there exist δ > 0 such that Bd(℘0,δ ) ⊆P ∪Q

and Bd(δ ,κ0)⊆P ∪Q.

Choose a ∈ (a0−ε,a0 +ε), x ∈ (x0−ε,x0 +ε) such that |a−x0| ≤ 1
Mp <

ε

2 , |x−a0| ≤ 1
Mp <

ε

2

and |a0− x0| ≤ 1
Mp <

ε

2 .

Then for, κ ∈ BP∪Q(℘0,δ ) = {κ,κ0 ∈Q/d(℘0,κ)≤ d(℘0,κ0)+δ},

℘∈ BP∪Q(δ ,κ0) = {℘,℘0 ∈P/d(℘,κ0)≤ d(℘0,κ0)+δ}

d (H (℘,a),κ0) = d (H (℘,a),H (κ0,x0))

≤ d (H (℘,a),H (κ,x0))+d (H (℘0,a),H (κ,x0))
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+d (H (℘0,a),H (κ0,x0))

≤ 2M|a− x0|+d (H (℘0,a),H (κ,x0))

≤ 2
Mp−1 +d (H (℘0,a),H (κ,x0)) .

Letting p→ ∞ and using ψ? property, then we have

ψ? (d (H (℘,a),κ0)) ≤ ψ? (d (H (℘0,a),H (κ,x0)))

≤ ψ? (d (℘0,κ))`

< ψ? (d (℘0,κ))

Using the property of ψ?, we get

d (H (℘,a),κ0) < d (℘0,κ)

≤ d(℘0,κ0)+δ

Similarly we can prove

d (℘,H (κ,x)) < d (℘,κ0)

≤ d(℘0,κ0)+δ

On the other hand,

d(℘0,κ0) = d (H (℘0,a0),H (κ0,x0))≤M|a0− x0|<
1

Mp−1 → 0 as p→ ∞.

So ℘0 = κ0 and hence a = x. Thus for each fixed a ∈ (a0− ε,a0 + ε),

H (.,a) : BΘ∪ϒ(℘0,δ )→ BΘ∪ϒ(℘0,δ ). Thus, we conclude that H (.,a) has a fixed point in

P ∩Q. But this must be in P ∪Q. Therefore, a ∈Θ∩ϒ for

a ∈ (a0− ε,a0 + ε).Hence, (a0− ε,a0 + ε) ⊆ Θ∩ϒ. Clearly, Θ∩ϒ is open in [0,1]. For the

reverse implication, we use the same strategy.

Theorem 3.2.2: Let (S ,T ,d) be complete bipolar metric space, (P,Q) and (P,Q) be an

open and closed subset of (S ,T ) such that (P,Q)⊆ (P,Q). Suppose

H :
(
P,Q,d

)
× [0,1]
 (S ,T ,d) be an contravariant operator with following conditions are

satisfying,

i)℘ 6= H (℘,s) for each ℘∈ ∂P ∪∂Q and s ∈ [0,1] (here ∂P ∪∂Q is boundary of P ∪Q
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in S ∪T );

ii) for all ℘∈P, ı ∈Q, s ∈ [0,1] and ψ? ∈Ω and ` ∈ (0,1) such that

ψ? (d (H (ı,s),H (℘,s)))≤ ψ? (d(℘, ı))`

iii) ∃M ≥ 0 3 d(H (ı,s),H (℘, t))�M|s− t| for every ℘∈P , ı ∈Q and s, t ∈ [0,1].

Then H (.,0) has a fixed point ⇐⇒ H (.,1) has a fixed point.

4. CONCLUSIONS

By utilising JS-quasi contractive conditions that are defined on complete bipolar metric

spaces and appropriate examples that corroborate the main findings, this study presents some

fixed point conclusions. Applications to integral equations and Homotopy theory are also given.
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