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Abstract. Our main objective in this paper is to prove the existence of a unique solution (fixed point) of a con-

strained problem of a state-dependent functional equation constrained by its conjugate. The continuous dependence

of the solution will be proved. The Hyres-Ulam stability of our problem will be studied.
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1. INTRODUCTION

Functional equations arise in many fields of mathematics, such as mechanics, geometry, sta-

tistics, measure theory ,algebraic geometry, group theory. Functional equations have many

interesting applications in characterization problems of probability theory, which have been

studied in several papers and monographs (see for example [1, 2, 3, 7, 9]).

Usually differential and integral equations with deviating arguments that appear in many

literature have deviation of the argument involves only the time itself, However, another case,

in which the deviating arguments depend on both the state variable x and the time t, is of
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importance in theory and practice. Several papers have appeared recently that are devoted to

such kind of differential equations (see [1, 2, 4, 7, 8, 9, 10, 11, 12, 13, 15, 16, 19] ).

In [14], the authors studied the existence of a unique solution for some functional equations

with state-dependent deviated arguments

x(t) = f (t,x(φ(x(t)))), t ∈ [0,b],

x(t) = f (t,x(g(t,x(t)))), t ∈ [0,b],

x(t) = f (t,x(x(φ(t))),x(g(t,x(t)))), t ∈ [0,b].

Several coupled systems of integral and differential equations have been studied in many pa-

pers,(see [6, 17, 18, 21, 22, 23]).

In this article, we are concerning with the constrained problem of a state-dependent functional

equation

(1) x(t) = f1(t,y(φ1(y(t)))), t ∈ [0,T ]

constrained by

(2) y(t) = f2(t,x(φ2(x(t)))), t ∈ [0,T ].

The continuous dependence of the unique solution x ∈C[0,T ] on the functions φi and fi will be

analyzed. Also the continuous dependence of x on y and of y on x will be studied. Moreover,

the Hyers-Ulam stability of our problem will be established.

Let C[0,T ] be the class of all continuous functions define on [0,T ] and X =C[0,T ]×C[0,T ] be

the Banach space with the norm

‖(u,v)‖X = ‖u‖C +‖v‖C,

where

‖u‖C = sup
t∈[0,T ]

|u(t)|.

2. EXISTENCE THEOREM

Consider the problem (1)-(2) under the following assumptions:

(i) fi : [0,T ]× [0,T ]→ [0,T ] are continuous and there exist positive constants Ki such that
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| fi(t,x)− fi(s,y)| ≤ Ki(|t− s|+ |x− y|), i = 1,2.

(ii) φi : [0,T ]→ [0,T ] satisfies φi(0) = 0 and

|φi(t)−φi(s)| ≤ |t− s|, ∀ t,s ∈ [0,T ].

(iii) There exists a real positive root L ∈ (0,1) of the algebraic equation KL2− L +K =

0, where K = max{K1,K2}.

And define the subset SL

SL = {(x,y) ∈ X : |x(t)− x(s)| ≤ L|t− s|, |y(t)− y(s)| ≤ L|t− s| ∀ t,s ∈ [0,T ]}

and the operator F by

F(x,y) = (F1y,F2x).

Where

F1y(t) = f1(t,y(φ1(y(t)))),

F2x(t) = f2(t,x(φ2(x(t)))).

Theorem 1. Let the assumptions (i)-(iii) be satisfied, if KL+K < 1, then the problem (1)-(2)

has a unique solution x ∈C[0,T ].

Let (x,y) ∈ X , t1, t2 ∈ [0,T ], we have

|F1y(t2)−F1y(t1)| = | f1(t2,y(φ1(y(t2))))− f1(t1,y(φ1(y(t1))))|

≤ K1|t2− t1|+K1|y(φ1(y(t2)))− y(φ1(y(t1)))|

≤ K1|t2− t1|+K1L|φ1(y(t2))−φ1(y(t1))|

≤ K1|t2− t1|+K1L|y(t2)− y(t1)|

≤ K|t2− t1|+KL2|t2− t1|

≤ (K +KL2)|t2− t1|

≤ L|t2− t1|.
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Then

F1 : SL→ SL.

Similarly,

|F2x(t2)−F2x(t1)| ≤ | f2(t2,x(φ2(x(t1))))− f2(t1,x(φ2(x(t2))))|

≤ L|t2− t1|.

This prove that F2 : SL→ SL and we deduce that

F(x,y) = (F1y,F2x) : SL→ SL.

Now, let u = (x,y) ∈ X , v = (x̄, ȳ) ∈ X , then

F(x,y) = (F1y,F2x), F(x̄, ȳ) = (F1ȳ,F2x̄)

and

|F1y(t)−F1ȳ(t)| = | f1(t,y(φ1(y(t))))− f1(t, ȳ(φ1(ȳ(t))))|

= | f1(t,y(φ1(y(t))))− f1(t,y(φ1(ȳ(t))))+ f1(t,y(φ1(ȳ(t))))− f1(t, ȳ(φ1(ȳ(t))))|

≤ | f1(t,y(φ1(y(t))))− f1(t,y(φ1(ȳ(t))))|+ | f1(t,y(φ1(ȳ(t))))− f1(t, ȳ(φ1(ȳ(t))))|

≤ K1L|φ1(y(t))−φ1(ȳ(t))|+K1|y(φ1(ȳ(t)))− ȳ(φ1(ȳ(t)))|

≤ KL|y(t)− ȳ(t)|+K‖y− ȳ‖

≤ KL‖y− ȳ‖+K‖y− ȳ‖

and

‖F1y−F1ȳ‖ ≤ (KL+K)‖y− ȳ‖.

Similarly, we can prove that

‖F2x−F2x̄‖ ≤ (KL+K)‖x− x̄‖.

Hence

‖F(x,y)−F(x̄, ȳ)‖X = ‖(F1y,F2x)− (F1ȳ,F2x̄)‖X

= ‖(F1y−F1ȳ,F2x−F2x̄)‖
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= ‖F1y−F1ȳ‖+‖F2x−F2x̄‖

≤ (KL+K)(‖y− ȳ‖+‖x− x̄‖)

≤ (KL+K)‖((x− x̄),(y− ȳ))‖

≤ (KL+K)‖(x,y)− (x̄, ȳ)‖.

Then F is a contraction mapping and by Banach fixed point Theorem [20], F has a unique fixed

point. Consequently the problem (1)− (2) has a unique solution x ∈C[0,T ].

3. CONTINUOUS DEPENDENCE

Here we shall study the continuous dependence of solution of the problem (1)− (2) on some

functions.

Definition 1. The solution x ∈C[0,T ] of (1)-(2) depends continuously on the functions fi and

φi if ∀ ε > 0 ∃ δ > 0 such that

max{| fi− f ∗i |, |φi−φ
∗
i |}< δ ⇒‖x− x∗‖< ε,

where

(3) x∗(t) = f ∗1 (t,y
∗(φ∗1 (y

∗(t)))),

(4) y∗(t) = f ∗2 (t,x
∗(φ∗2 (x

∗(t)))).

Theorem 2. Let the assumptions of Theorem 1 be satisfied, then x ∈C[0,T ] depends continu-

ously on fi and φi .

Proof. Let x and x∗ be two solutions of the problems (1)-(2) and (5)-(6) respectively, then

|x(t)− x∗(t)|

= | f1(t,y(φ1(y(t))))− f ∗1 (t,y
∗(φ∗1 (y

∗(t))))|

= | f1(t,y(φ1(y(t))))− f ∗1 (t,y
∗(φ∗1 (y

∗(t))))+ f1(t,y∗(φ∗1 (y
∗(t))))− f1(t,y∗(φ∗1 (y

∗(t))))|

≤ | f1(t,y(φ1(y(t))))− f1(t,y∗(φ∗1 (y
∗(t))))|+ | f1(t,y∗(φ∗1 (y

∗(t))))− f ∗1 (t,y
∗(φ∗1 (y

∗(t))))|
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≤ K1|y(φ1(y(t)))− y∗(φ∗1 (y
∗(t)))|+δ

≤ K1|y(φ1(y(t)))− y(φ∗1 (y
∗(t)))+ y(φ∗1 (y

∗(t)))− y∗(φ∗1 (y
∗(t)))|+δ

≤ K1|y(φ1(y(t)))− y(φ∗1 (y
∗(t)))|+K1|y(φ∗1 (y∗(t)))− y∗(φ∗1 (y

∗(t)))|+δ

≤ K1L|φ1(y(t))−φ
∗
1 (y
∗(t))|+K1‖y− y∗‖+δ

≤ K1L|φ1(y(t))−φ1(y∗(t))+φ1(y∗(t))−φ
∗
1 (y
∗(t))|+K1‖y− y∗‖+δ

≤ K1L|φ1(y(t))−φ1(y∗(t))|+K1L|φ1(y∗(t))−φ
∗
1 (y
∗(t))|+K1‖y− y∗‖+δ

≤ KL‖y− y∗‖+KLδ +K‖y− y∗‖+δ

≤ (KL+K)‖y− y∗‖+KLδ +δ .

Then

(5) ‖x− x∗‖ ≤ (KL+K)‖y− y∗‖+(KL+1)δ .

Similarly,

(6) ‖y− y∗‖ ≤ (KL+K)‖x− x∗‖+(KL+1)δ .

By addition (5) and (6), we get

‖x− x∗‖+‖y− y∗‖ ≤ (KL+K)(‖x− x∗‖+‖y− y∗‖)+2(KL+1)δ .

Then

(1− (KL+K))(‖x− x∗‖+‖y− y∗‖)≤ 2(KL+1)δ .

Hence

‖x− x∗‖+‖y− y∗‖ ≤ 2(KL+1)
1− (KL+K)

δ = ε.

Now

‖(x,y)− (x∗,y∗)‖X = ‖(x− x∗),(y− y∗)‖X

= ‖(x− x∗)‖C +‖(y− y∗)‖C ≤ ε.

Then

‖(x,y)− (x∗,y∗)‖X < ε.

�
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Definition 2. The solution of the functional equation (1) depends continuously on y if ∀ ε >

0 ∃ δ > 0 such that

|y− y∗|< δ ⇒ |x− x∗|< ε,

where

x∗(t) = f1(t,y∗(φ1(y∗(t)))),

y∗(t) = f2(t,x∗(φ1(x∗(t)))).

Theorem 3. Let the assumptions of Theorem 1 be satisfied, then x ∈C[0,T ] depends continu-

ously on y .

Proof. Let x and x∗ be two solutions of (1), then

|x(t)− x∗(t)| = | f1(t,y(φ1(y(t))))− f1(t,y∗(φ1(y∗(t))))|

≤ K1|y(φ1(y(t)))− y∗(φ1(y∗(t)))|

≤ K1|y(φ1(y(t)))− y(φ1(y∗(t)))+ y(φ1(y∗(t)))− y∗(φ1(y∗(t)))|

≤ K1|y(φ1(y(t)))− y(φ1(y∗(t)))|+K1|y(φ1(y∗(t)))− y∗(φ1(y∗(t)))|

≤ K1L|φ1(y(t))−φ1(y∗(t))|+K1‖y− y∗‖

≤ KL‖y− y∗‖+K‖y− y∗‖

≤ (KL+K)δ = ε.

Then

‖x− x∗‖ ≤ ε.

�

By the same way we can prove that the solution y of (2) depends continuously on x

4. HYRES-ULAM STABILITY

Definition 3. [5] Let the solution x ∈C[0,T ] of the problem (1)-(2) be exists, then the problem

(1)-(2) is Hyers-Ulam stable if ∀ε > 0 ∃ δ (ε) > 0 such that for any δ -approximate solution

xs ∈C[0,T of (1)-(2) satisfies
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max{|xs(t)− f1(t,ys(φ1(ys(t))))|, |ys(t)− f2(t,xs(φ2(xs(t))))|}< δ .

Then

‖x− xs‖< ε.

Theorem 4. Let the assumptions of Theorem 1 be satisfied, then the problem (1)-(2) is Hyers-

Ulam stable.

Proof. Let

max{|xs(t)− f1(t,ys(φ1(ys(t))))|, |ys(t)− f2(t,xs(φ2(xs(t))))|}< δ ,

Then

|x(t)− xs(t)| = | f1(t,y(φ1(y(t))))− xs(t)|

= | f1(t,y(φ1(y(t))))− xs(t)+ f1(t,ys(φ1(ys(t))))− f1(t,ys(φ1(ys(t))))|

≤ | f1(t,ys(φ1(ys(t))))− xs(t)|+ | f1(t,y(φ1(y(t))))− f1(t,ys(φ1(ys(t))))|

≤ δ +K1|y(φ1(y(t)))− ys(φ1(ys(t)))|

≤ δ +K1|y(φ1(y(t)))− y(φ1(ys(t)))+ y(φ1(ys(t)))− ys(φ1(ys(t)))|

≤ δ +K1L|φ1(y(t))−φ1(ys(t))|+K1‖y− ys‖

≤ δ +KL|y(t)− ys(t)|+K‖y− ys‖

≤ δ +KL‖y− ys‖+K‖y− ys‖,

and

(7) ‖x− xs‖ ≤ δ +(KL+K)‖y− ys‖.

Similarly,

(8) ‖y− ys‖ ≤ δ +(KL+K)‖x− xs‖.

By addition (7) and (8), we get

(‖x− xs‖+‖y− ys‖)≤ 2δ +(KL+K)(‖y− ys‖+‖x− xs‖),
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and

(1− (KL+K))(‖y− ys‖+‖x− xs‖)≤ 2δ .

Hence

(‖y− ys‖+‖x− xs‖)≤
2

1− (KL+K)
δ = ε.

Since

‖(x,y)− (xs,ys)‖X = ‖(x− xs),(y− ys)‖X

= ‖(x− xs)‖C +‖(y− ys)‖C ≤ ε,

and

‖(x,y)− (xs,ys)‖X < ε.

Then

‖x− xs‖< ε.

�

Example 1. Consider the problem

(9) x(t) =
2
7

ln(1+ t)+
1
8

y(γ1y(t)), t ∈ [0,
1
5
]

constrained by

(10) y(t) =
1

10
t + e−t x(γ2x(t))

6
, t ∈ [0,

1
5
].

Where φ1(t) = γ1t,φ2(t) = γ2t and γ1, γ2 ∈ (0,1). Set

f1(t,y) =
2
7

ln(1+ t)+
1
8

y(γ1y(t)),

f2(t,x) =
1

10
t + e−t x(γ2x(t))

6
.

Thus

| f1(t,u)− f1(s,v)| = |2
7
(ln(1+ t)− ln(1+ s))|+ 1

8
|u− v|

≤ 2
7
|t− s|+ 1

8
|u− v|

≤ 2
7
(|t− s|+ |u− v|),
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and

| f2(t,u)− f2(s,v)| = | t
10

+ e−t u
6
− s

10
− e−s v

6
|

≤ 1
10
|t− s|+ 1

6
|e−tu− e−tv+ e−tv− e−sv|

≤ 1
10
|t− s|+ 1

6
|e−tu− e−tv|+ 1

6
|e−tv− e−sv|

≤ 1
10
|t− s|+ 1

6
|u− v|+ e−s

30
|t− s|

≤ 2
15
|t− s|+ 1

6
|u− v|

≤ 1
6
(|t− s|+ |u− v|).

Where K1 =
2
7 , K2 =

1
6 , K = max{2

7 ,
1
6} =

2
7 . Thus we have L = 1∓

√
1−4K2

2K = 0.3138 < 1 and

K+KL = 0.37537 < 1. It is clear that all assumptions of Theorem (1) are satisfied. Hence there

exist unique solution (x,y) ∈ X of the problem 9-10.
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