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1. INTRODUCTION

Fixed point theory is one of the extremely significant topics in expansion of nonlinear and math-

ematical analysis in global. Also, fixed point theory has been completely used in many other

category of science such as biology, physics, chemistry, economics, computer science, all engi-

neering territory, and so on. In 1922, Banach [2] introduced a well-known fixed point result, now

called Banach contraction principle, which is one of the crucial results in nonlinear analysis. Due

to its importance and beneficial applications, various authors have procure many interesting exten-

sions and generalizations of the Banach contraction principle in various direction (see, e.g., [5],
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[14]). These generalizations are attained either by using contractive conditions or by levid some

additional conditions on the context spaces. For example, one of the significant and precise gen-

eralizations is due to Meir and Keeler [9]. The class of Meir-Keeler contractions consists of the

class of Banach contractions and many other classes of nonlinear contractions (see, for example,

[5], [14]). Meir and Keeler’s theorem was the inventor of further investigation in metric fixed point

theory. Later on, Meir-Keeler contraction mapping has been generalized by various authors in

various ways. On the other hand, the idea of a b-metric space was presented by Bakhtin [1] and

Czerwik [4] as a generalization of metric spaces. Since then, several papers have been published

on the fixed point theory in such spaces which are interesting extensions and generalizations of

the Banach contraction principle. For further works in the setting of b-metric spaces and their

generalization. In 2020, Karapinar et al. [6] intensional fixed point results for the Meir-Keeler

contraction via simulation function in the setting of metric spaces. Inspired and motivated by the

work of Karapinar et al. [7], introduce the notion of generalized (α,φ)-Meir-Keeler hybrid con-

tractive mappings of type I and II via simulation function and establish fixed point theorems for

the introduced mappings in the setting of b-metric spaces.

Most recently Mustefa and Kidane [10] introduce the notion of generalized (α,φ) Meir- Keeler

hybrid contractive mappings of type I and II via simulation function and establish fixed point the-

orems for such mappings in the setting of complete b-metric spaces.

2. PRELIMINARIES

We recall basic definitions and results on the copies which we use in the sequel.

Throughout this paper, we denote R+,R and N respectively by

R+ = [0,∞) - the set of all non-negative real numbers; R - the set of all real numbers; N- the set of

all natural numbers.

Khojasteh et al. [8] introduced the notion of a simulation function as follows.

Definition 2.1. [8] A weak simulation function is a mapping ξ : R+×R+ → R satisfying the

following conditions:

(ξ1) ξ (0,0) = 0;

(ξ2) ξ (t,s)< s− t ∀ t,s > 0.
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Note: Throughout this paper we denote by Zw the family of all simulation functions ξ :R+×R+→

R. Due to the axiom (ξ2), we have ξ (t, t)< 0 ∀ t > 0. Recently, Suzuki [12] presented the following

class of mappings and proved fixed point result to extend the coverage of Meir-Keeler theorem in

the setting of metric spaces. Let (X ,d) be a metric space and T : X → X be a self-mapping. Define

a mapping M : X×X → R+ as follows:

M(x,y) = max
{

d(x,y),d(x,T x),d(y,Ty),
d(x,Ty)+d(y,T x)

2

}
.

And let p : X×X → R+ be a mapping satisfies the following conditions:

(1) (P1
p : M)x 6= y and d(x,T x)≤ d(x,y) =⇒ p(x,y)≤M(x,y);

(2) (P2
p : c) xn 6= y, limn→∞ d(xn,y) = 0, and limn→∞ d(xn,T xn) = 0

=⇒ limsupn→∞ d(xn,y)≤ c d(y,Ty), where c ∈ [0,1).

Theorem 2.2. [13] Let T be a self-mapping on a complete metric space (X ,d). Let p : X×X→R+

be mapping that satisfies the conditions (P1
p : M) and (P2

p : c) defined above.Suppose also that the

following are satisfied:

(1) For any ε > 0, there exists δ (ε)> 0 such that x 6= y and p(x,y)< ε+δ (ε) =⇒ d(T x,Ty)≤ ε;

(2) x 6= y and p(x,y)> 0 =⇒ d(T x,Ty)< p(x,y).

Then T has a unique fixed point z. Moreover, the sequence {T nx} converges to z for all x ∈ X .

Bakhtin [1] and Czerwik [4] defined a b-metric space as follows.

Definition 2.3. ([1],[4]) Let X be a nonempty set and s ≥ 1 be a given real number. A function

d : X ×X → R+ is said to be a b-metric if and only if ∀x,y,z ∈ X , the following conditions are

satisfied:

(1) d(x,y) = 0 i f and only i f x = y;

(2) d(x,y) = d(y,x);

(3) d(x,z)≤ s[d(x,y)+d(y,z)].

The pair (X ,d) is called a b-metric space.

Definition 2.4. [7] Let X be a b-metric space and {xn} a sequence in X . We say that

(1) {xn} is b-convergent to x ∈ X if d(xn,x)→ 0 as n→ ∞.
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(2) {xn} is a b-Cauchy sequence if d(xn,xm)→ 0 as n,m→ ∞.

(3) (X ,d) is b-complete if every b-Cauchy sequence in X is b-convergent.

Definition 2.5. [3] Let (X ,d) be a b-metric space with the coefficient s ≥ 1 and let T : X → X be

a given mapping. We say that T is b-continuous at x0 ∈ X if and only if for every sequence xn ∈ X

such that xn → x0 as n→ ∞, we have T xn → T x0 as n→ ∞. If T is b-continuous at each point

x ∈ X ,then we say that T is b-continuous on X .

Definition 2.6. [11] Let X be a nonempty set and α : X×X→R+ a function. A mapping T : X→X

is said to be α−orbital admissible if, ∀x ∈ X ,α(x,Tx)≥ 1 =⇒ α(T x,T 2x)≥ 1.

Definition 2.7. [11] Let X be a nonempty set, T : X → X , and α : X ×X → R+.We say that T is

triangular α−orbital admissible if:

(1) T is α-orbital admissible;

(2) ∀x,y ∈ X , α(x,y)≥ 1 and α(y,Ty)≥ 1 =⇒ α(x,Ty)≥ 1

In 2020, Karapinar et al. [7] introduced the following class of hybrid contraction mappings of

type I and II and studied fixed point results for such mappings.

Definition 2.8. [7] Let T be a self-mapping on a metric space (X ,d) and ξ ∈ Zw. Suppose that

p : X ×X → R+ is a function that satisfies only (P1 p : M). Then T is called a hybrid contraction

of type I if the following conditions are fulfilled:

(1)For any ε > 0, there exists δ (ε)> 0 such that x 6= y and p(x,y)< ε +δ (ε) =⇒ d(T x,Ty)≤ ε;

(2) x 6= y and p(x,y)> 0 =⇒ ξ (α(x,y)d(T x,Ty), p(x,y))≥ 0.

Let a mapping N : X×X → R+be defined as follows:

N(x,y) = max
{

d(y,Ty),
1+d(x,T x)
1+d(x,y)

}
,

where T is a self-mapping defined on a metric space (X ,d).We notice that, for any x,y ∈ X with

x = y, we have 0 = d(T x,Ty)≤ N(x,y). Moreover, if x 6= y, then N(x,y)> 0.

Definition 2.9. [10] Let T be a self-mapping on a metric space (X ,d) and ξ ∈ Zw. Suppose that

p : X ×X → R+ is a function that satisfies (P1 p : N) and (P2 p : c) ∀c ∈ [0,1). Then T is called a

hybrid contraction of type II if the following conditions are satisfied:
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(1) For any ε > 0 there exists δ (ε)> 0 such that x 6= y and p(x,y)< ε +δ (ε) =⇒ d(T x,Ty)≤ ε;

(2) x 6= y and p(x,y)> 0 =⇒ ξ (α(x,y)d(T x,Ty), p(x,y))≥ 0.

3. MAIN RESULT

In this section, first we coin generalized (α,φ)− Meir-Keeler Gregus quadratic type (MKGq)

hybrid contractive mapping of type I in the setting of b-metric spaces and prove fixed point results

for such mappings.

In this section, we denote the class of mappings ψ by ψ = {φ : R+ → R+ : φ is continuous,

monotone non-decreasing, φ(t) = 0 i f f t = 0}.

Let (X ,d) be a b-metric space with s ≥ 1 and T : X → X be a self-mapping.We define a mapping

Ms : X×X → R+ by

Ms(x,y) = a d2(x,y)+(1−a)max
{

d2(x,y),d(x,T x).d(y,Ty),
d2(x,Ty)+d2(y,T x)

2s

}
.

And let p : X×X → R+ be a mapping satisfies the following conditions:

(1) (P1
p : Ms) x 6= y and d(x,T x)≤ d(x,y) =⇒ p(x,y)≤Ms(x,y);

(2) (P2
p : sc) xn 6= y, limn→∞ d(xn,y) = 0, and limn→∞ d(xn,T xn) = 0

=⇒ limsupn→∞ d(xn,y)≤ c d(y,Ty), where c ∈ [0,1).

Definition 3.1. Let (X ,d) be a b-metric space with s≥ 1, T : X→ X , α : X×X→R+ p : X×X→

R+ satisfy (P1 p : Ms) and φ ∈ ψ. Then the mapping T is said to be a generalized (α,φ)- Meir-

Keeler Gregus quadratic type hybrid contractive mapping of type I if it satisfies, for all x,y ∈ X ,

the following conditions:

(1) For any ε > 0 there exists δ (ε)> 0 such that x 6= y and p(x,y)< ε +δ (ε) =⇒ d(T x,Ty)≤ ε

s ;

(2) x 6= y and p(x,y)> 0 =⇒ ξ (α(x,y)d(T x,Ty), p(x,y))≥ 0.

Remark 3.2. If T is a generalized (α,φ) MKGq type hybrid contractive mapping of type I, then

(3.1) α(x,y)φ(d(T x,Ty))< φ(p(x,y))≤ φ(Ms(x,y)).

Indeed, we have d(x,y) > 0 since x 6= y. If p(x,y) = 0, from (ii), we have φ(d(T x,Ty)) < ε for

any ε > 0. But ε > 0 is arbitrary, thus we obtain T x = Ty. In this case, α(x,y)φ(d(T x,Ty)) = 0≤

φ(p(x,y)). Otherwise, p(x,y)> 0, and if T x 6= Ty, then d(T x,Ty)> 0. If α(x,y) = 0, then (3.1) is
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satisfied. On the other hand, from (ξ2) and we get

0≤ ξ (α(x,y)φ(d(T x,Ty)),φ (p(x,y)))< φ (p(x,y))−α(x,y)φ(d(T x,Ty)), so (3.1) holds.

Now, we present our first main result as follows:

Theorem 3.3. Let (X ,d) be a complete b-metric space with s ≥ 1, T : X → X , α : X ×X → R+

be mappings, and φ ∈ ψ. Suppose the following conditions hold:

(1) T is generalized (α,φ) MKGq type hybrid contractive mapping of type I;

(2) T is a triangular α-orbital admissible mapping;

(3) There exists x0 ∈ X such that α(x0,T x0)≥ 1;

(4) T is b-continuous. Then T has a fixed point z. Moreover, {T nx} converges to z for all x ∈ X .

Proof. By 3 above, there survive x0 ∈ X such that α(x0,T x0)≥ 1..We invent an iterative sequence

{xn} in X by xn = T xn−1 for n∈N. Assume that xn0 = xn0+1for some n0 ∈N. Since T xn0 = xn0+1 =

xn0, the point xn0 is a fixed point of T and this completes the proof. So from now on, we assume that

xn 6= xn+1 for all n∈N∪{0}. Since T is triangular α- orbital admissible, α(x0,T x0) = α(x0,x1)≥

1 =⇒ α(T x0,T x1) = α(x1,x2)≥ 1 =⇒ α(T x1,T x2) = α(x2,x3) ≥ 1. Continuing in this manner,

we get

(3.2) α(xn,xn+1)≥ 1 ∀n≥ 0.

Again, by using the supposition that T is triangular α−orbital admissible, for all n ∈ N ∪{0},

(3.2) yields that α(xn,xn+1)≥ 1 and α(xn+1,xn+2)≥ 1 =⇒ α(xn,xn+1)≥ 1. Recursively, we con-

clude that α(xn,xn+ j) ≥ 1 for all n, j ∈ N. Now we prove that the sequence d(xn,xn+1) is mono-

tone decreasing. Taking x = xn and y = xn+1 in (P1 p : Ms), we get 0 < d(xn,xn+1) = d(xn,T xn)≤

d(xn,xn+1) =⇒ p(xn,xn+1)≤Ms(xn,xn+1), where

Ms(xn,xn+1) = ad2(xn,xn+1)+(1−a)max

d2(xn,xn+1),d(xn,T xn).d(xn+1,T xn+1),

d2(xn,T xn+1)+d2(xn+1,T xn)
2s


= max

{
d2(xn,xn+1),

d2(xn,xn+2)+d2(xn+1,xn+2)

2s

}
= max

{
d2(xn,xn+1),

d2(xn,xn+2)

2s

}
,



(α−φ)-MEIR-KEELER GREGUS QUADRATIC TYPE HYBRID CONTRACTION MAPPINGS 7

and, taking the b-triangle inequality we conclude that

d2(xn,xn+2)

2s
≤ sd2(xn,xn+1)+ sd2(xn+1,xn+2)

2s

=
d2(xn,xn+1)+d2(xn+1,xn+2)

2

≤max
{

d2(xn,xn+1),d2(xn+1,xn+2)
}
,

which gives

Ms(xn,xn+1) = max
{

d2(xn,xn+1),d2(xn+1,xn+2)
}
.

By definition 2.9 (2) we conclude that

0≤ ξ (α(xn,xn+1)φ(d2(T xn,T xn+1)),φ (p(xn,xn+1)))

< φ (p(xn,xn+1)−α(xn,xn+1)φ(d2(T xn,T xn+1)),

which is equivalent to

φ(d2(xn,xn+1)) = φ(d2(T xn,T xn+1))

≤ α(xn,xn+1)φ(d2(T xn,T xn+1))(3.3)

< φ(p(xn,xn+1)

≤ φ(Ms(xn,xn+1)).

If Ms(xn,xn+1) = d2(xn+1,xn+2) then (3.3) surrends a contradiction. Thus, we have

(3.4) Ms(xn,xn+1) = d2(xn+1,xn+2),

Moreover, from (3.3), we get φ(d2(xn+1,xn+2)) < φ(d2(xn,xn+1)), which implies, applying the

monotonicity of φ ,

d2(xn+1,xn+2)< d2(xn,xn+1) ∀ n ∈ N∪{0},

that is, {d2(xn,xn+1)} is a monotone decreasing sequence of non-negative real numbers. Thus,

there is some l ≥ 0 such that limn→∞ d2(xn,xn+1) = l. We need to show l = 0. Suppose, on the

contrary, that l > 0 and set 0 < ε = l. We also record that

(3.5) ε = l < d2(xn,xn+1)∀n ∈ N∪{0}.
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Also, from (3.3) and (3.4), we have p(xn,xn+1)≤ d2(xn,xn+1)< ε +δ (ε) for n sufficiently large.

So, applying definition 2.9(1) we have

(3.6) d2(T xn,T xn+1)≤
ε

s

Merging (3.5) together with (3.6), we obtain

ε < d2(xn+1,xn+2) = d2(T xn,T xn+1)≤
ε

s
,

which is a contradiction.We conclude that ε = 0, that is,

(3.7) lim
n→∞

d2(xn,xn+1) = 0.

Now, we appear that {xn}is a b-Cauchy sequence. Let ε1 > 0 be fixed. From (3.7), we can select

k ∈ N large enough such that

(3.8) d2(xk,xk+1)<
δ1

2s
,

for some δ1 > 0. Without loss of generality, we assume that δ1 = δ1(ε1)< (ε1). By induction, we

prove that

(3.9) d2(xk,xk+m)< ε1 +
δ1

2
∀ k,m ∈ N∪{0}.

Earlier we get (3.9) from (3.8), for m = 1. Assume that (3.9) is satisfied for some m = j. Now, we

show that (3.9) holds for m = j+1. On account of (3.8) and (3.9), we first conclude that

d2(xk,xk+ j+1)+d2(xk+ j,xk+1)

2s
≤

sd2(xk,xk+ j)+ sd2(xk+ j,xk+ j+1)+ sd2(xk+ j,xk)+ sd2(xk,xk+1)

2s

=
d2(xk,xk+ j)+d2(xk+ j,xk+ j+1)+d2(xk+ j,xk)+d2(xk,xk+1)

2

<
1
2
[2ε1 +δ1 +

δ1

ε1
]

≤ 1
2
[2ε1 +2δ1]

= ε1 +δ1.
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Thus, we have

Ms(xk,xk+ j) = ad2(xk,xk+ j +(1−a)max

d2(xk,xk+ j),d(xk,T xk).d(xk+ j,T xk+ j),

d2(xk,T xk+ j)+d2(xk+ j,T xk)
2s


= ad2(xk,xk+ j)+(1−a)max

d2(xk,xk+ j),d(xk,xk+1).d(xk+ j,xk+ j+1),

d2(xk,xk+ j+1)+d2(xk+ j,xk+1)
2s


< max

{
ε1 +

δ1

2
,
δ1

2s
,ε1 +δ1

}
= ε1 +δ1.

From the above inequality, we have p(xk,xk+ j) ≤Ms(xk,xk+ j) = d2(xk,xk+ j) < ε1 + δ1, by Defi-

nition 2.9(1) we conclude that

(3.10) d2(xk,xk+ j+1) = d2(T xk,T xk+ j)≤
ε1

s

Now, applying the b-triangle inequality, as well as (3.8) and (3.10), we have

d2(xk,xk+ j+1)≤ sd2(xk,xk+1)+d2(xk+1,xk+ j+1)

= sd2(xk,xk+1)+ sd2(T xk,T xk+ j)

<
δ1

2
+ ε1.

So, (3.9) holds for m = j+1. Therefore, d2(xk,xk+m)< ε1 ∀ k,m ∈ N∪{0}.

Additionally, for m > n, we have limn,m→∞ d(xn,xm) = 0 and hence the sequence {xn} is a b-

Cauchy sequence. Since, (X ,d) is a complete b-metric space, there continue u∈X such that xn→ u

as n→ ∞. By b-continuity of T, we have

u = lim
n→∞

xn+1 = lim
n→∞

T xn = Tu,

that is, u is a fixed point of T. �

Now, changing continuity of T by continuity of T 2 in Theorem 3.3, we prove the following fixed

point result.

Theorem 3.4. Let (X ,d) be a complete b-metric space with s≥ 1 and let T : X → X be a general-

ized (α,φ)−MKGq type hybrid contractive mapping of type I satisfying the following conditions:
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(1) T is a triangular α-orbital admissible mapping;

(2) There exists x0 ∈ X such that α(x0,T x0)≥ 1;

(3) T 2 is b-continuous.

Then {T nx}is converges to z for all x ∈ X . Moreover, for α(z,T z)≥ 1,z is a fixed point of T , and

T is discontinuous at z if and only if limx→z Ms(x,z) 6= 0.

Proof. Coming the proof of Theorem 3.3, we discern that the sequence {xn} ∈ X defined by xn =

T xn−1∀n∈N is convergent to z∈ X and α(xn,xn+1)≥ 1 for all n∈N∪{0}. Regarding the fact that

any sub-sequence of {xn} converges to z, we get limn→∞ xn+1 = limn→∞ T xn = z and limn→∞ xn+2 =

limn→∞ T 2xn = z. Also, due to the continuity of T 2, T 2z = limn→∞ T 2xn = z. We claim that T z = z.

Suppose, on the contrary, that T z 6= z and p(z,T z)> 0. Then we have

p(z,T z)≤Ms(z,T z)

= a d2(z,T z)+(1−a)max
{

d2(z,T z),d(z,T z).d(T z,T 2z),
d2(z,T 2z)+d2(T z,T z)

2s

}
= d2(z,T z).

Thus, using (3.1) together with the hypothesis α(z,T z)≥ 1, we obtain

0≤ ξ (α(z,T z)φ(d2(T z,T 2z)),φ (p(z,T z))),

and also

0 < φ(d2(T z,z)) = φ(d2(T z,T 2z))

≤ α(z,T z)φ(d2(T z,T 2z))

< φ(P(z,T z))

≤ φ(Ms(z,T z))

= φ(d2(z,T z)),

which is a contradiction. So, z = T z, that is, z is a fixed point of T. �

Definition 3.5. A b-metric space (X ,d) is called regular if for any sequence {xn} in X with

lim
n→∞

d2(xn,z) = 0
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and α(xn,xn+1)≥ 1 for all n ∈N∪{0}, one has α(xn,z)≥ 1 for all n ∈N∪{0}. In the following,

we prove fixed point theorem, without continuity assumption of T and T 2.

Theorem 3.6. Assume (X ,d) be a complete b-metric space with s ≥ 1 and T : X → X be a gen-

eralized (α,φ)- MKGq type hybrid contractive mapping of type I. Suppose that (P2 p : sc) and the

following conditions hold:

(1) T is a triangular α-orbital admissible mapping;

(2) There exists x0 ∈ X such that α(x0,T x0)≥ 1;

(3) (X ,d) is regular.

(4) Then {T nx} is converges to z for all x ∈ X . Moreover, z is a fixed point of T.

Proof. Following the proof of Theorem 3.3, we see that the sequence {xn} ∈ X defined by xn =

T xn−1∀ n ∈ N is convergent to z ∈ X and α(xn,xn+1) ≥ 1 for all n ∈ N∪{0}. We notice also that

all adjacent terms in {xn} are distinct. Moreover, we note T nx 6= z for all n ∈ N∪{0}. Respecting

the limits limn→∞ d2(xn,z) = 0 and limn→∞ d2(xn,xn+1) = 0, we operate from (P2
p : sc) that

(3.11) s lim
n→∞

sup p(xn,z)≤ cd2(z,T z) f or any c ∈ [0,1).

So, by supposition (3), we get α(xn,z)≥ 1. Now, we prove that z is a fixed point of T. Assume, on

the contrary, that T z 6= z. Taking x = xn and y = z in Definition 2.9, (2) we get

0≤ ξ (α(xn,z)φ(d2(T xn,T z),φ (p(xn,z)))

< φ (p(xn,z)))−α(xn,z))φ(d2(T xn,T z)),

which is equivalent to

φ(d2(xn+1,T z)) = φ(d2(T xn,T z))

≤ α(xn,z)φ(d2(T xn,T z))

< φ(p(xn,z)).(3.12)

Since φ is monotone, (3.12) gives

(3.13) d2(xn+1,T z)< p(xn,z).
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Using the b-triangle inequality and using (3.13), we have

d2(z,T z)≤ sd2(z,xn+1)+ sd2(xn+1,T z)

< sd2(z,xn+1)+ sp(xn,z).(3.14)

Taking the limit as n→ ∞ in (3.14) and using (P2
p : sc), we conclude that

d2(z,T z)< s lim
n→∞

sup p(xn,z)

≤ cd2(z,T z) f or any c ∈ [0,1),

which is a contradiction.Therefore, z is a fixed point of T .

�

Condition(U) For all x,y ∈ T , we have α(x,y) ≥ 1, where Fix (T ) denotes the set of all fixed

points of T.

Theorem 3.7. Adding Condition (U) to the hypotheses of Theorem 3.3 (resp. Theorems 3.4 and

3.6), we prove the uniqueness of fixed point of T.

Proof. We discuss by contradiction, that is, suppose there exist z,w ∈ X such that z = T z and w =

Tw with z 6= w. By Condition (U), we have α(z,w)≥ 1. We observe first that the case p(z,w) = 0

is impossible since we have T z = Tw and 0 < d2(z,w) = d2(T z,Tw) = 0, which is a contradiction.

Thus, we conclude that p(z,w)> 0. Since 0= d2(z,T z)≤ d2(z,w), by (P1
p : Ms), we have p(z,w)≤

Ms(z,w), where

Ms(z,w) = a d2(z,w)+(1−a)max
{

d2(z,w),d(z,w).d(w,Tw),
d2(z,Tw)+d2(T z,w)

2s

}
= d2(z,w).

Using Definition 2.9(2) we conclude that

0≤ ξ (α(z,w)φ(d2(T z,Tw)),φ (p(z,w)))

< φ (p(z,w))−α(z,w))φ(d2(T z,Tw)),
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which imply

0 < φ(d2(z,w)) = φ(d2(T z,Tw))

≤ α(z,w)φ(d2(T z,Tw))

< φ(P(z,w))

= φ(d2(z,w)),

which is a contradiction. Hence, d2(z,w) = 0, that is, the fixed point of T is unique. �

Further we introduce generalized (α,φ)- MKGq type hybrid contractive mapping of type II and

study fixed point results for such mappings.

Definition 3.8. Suppose (X ,d) be a b-metric space with s ≥ 1, T : X → X , α : X ×X → R+,

ξ ∈ Zw,φ ∈ ψ , and suppose p : X ×X → R+ is a function that satisfies (P1
p : Ns) and (P2

p : sc).

The mapping T is said to be a generalized (α,φ)-MKGq type hybrid contractive mapping of type

II if it satisfies for all x,y ∈ X the following conditions:

(1) For any ε > 0 there exists δ (ε)> 0 such that x 6= y and p(x,y)< ε +δ (ε) =⇒ d(T x,Ty)≤ ε

s ;

(2) x 6= y and p(x,y)> 0 imply

(3.15) ξ (α(x,y)d(T x,Ty), p(x,y))≥ 0.

We define a mapping Ns : X×X → R+ by

Ns(x,y) = ad2(x,y)+(1−a)max


d2(x,y),d(x,T x).d(y,Ty),

d2(y,Ty)[1+d2(x,T x)]
1+d2(x,y) ,

d2(x,T x)[1+d2(y,Ty)]
1+d2(T x,Ty)

 .

We note that, for any x,y ∈ X with x = y, we have 0 = d2(T x,Ty) ≤ Ns(x,y). Moreover, if x 6= y,

then Ns(x,y)> 0.

Now, we demonstrate the following fixed point theorem.

Theorem 3.9. Let (X ,d) be a complete b-metric space with s≥ 1 and let T : X → X be a general-

ized (α,φ)−MKGq type hybrid contractive mapping of type II satisfying the following conditions:

(1) T is a triangular α-orbital admissible mapping;
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(2)There exists x0 ∈ X such that α(x0,T x0)≥ 1;

(3) either T is continuous;

(4) or T 2is continuous and α(z,T z)≥ 1;

(5) or (X ,d) is a regular.

Then T has a fixed point of z, Moreover, {T nx} is convergent to z for all x ∈ X .

Proof. Similar to the proof of Theorem 3.3, we construct a recursive sequence {xn} as follows:

xn = T xn−1 ∀ n ∈ N. One can conclude that α(xn,xn+1)≥ 1 for all n ∈ N∪{0}, due to conditions

(1) and (2). Throughout the proof, we assume xn 6= xn+1 for all n ∈N∪{0}. Indeed, as it was dis-

cussed in the proof of Theorem 3.3, the other case is superficial and is omited. Now, by assuming

x = xn and y = xn+1 in (P1 p : Ns), we have

d2(xn,T xn)≤ d2(xn,xn+1),

which implies

p(xn,xn+1)≤ Ns(xn,xn+1),

where

Ns(xn,xn+1) = ad2(xn,xn+1)+(1−a)max


d2(xn,xn+1),d(xn,T xn).d(xn+1,T xn+1),

d2(xn+1,T xn+1)[1+d2(xn,T xn)]
1+d2(xn,xn+1)

,

d2(xn,T xn)[1+d2(xn+1,T xn+1)]
[1+d2(T xn,T xn+1)]



= ad2(xn,xn+1)+(1−a)max


d2(xn,xn+1),d(xn,xn+1).d(xn+1,xn+2),

d2(xn+1,xn+2)[1+d2(xn,xn+1)]
1+d2(xn,xn+1)

,

d2(xn,xn+1)[1+d2(xn+1,xn+2)]
[1+d2(xn+1,xn+2)]


= ad2(xn,xn+1)+(1−a)max

{
d2(xn,xn+1),d2(xn+1,xn+2)

}
.

By definition 2.9(2), we have

0≤ ξ (α(xn,xn+1)φ(d2(T xn,T xn+1)),φ (p(xn,xn+1))).

Consequently, the above inequality gives

φ(d2(xn+1,xn+2)) = φ(d2(T xn,T xn+1))
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≤ α(xn,xn+1)φ(d2(T xn,T xn+1))(3.16)

< φ(P(xn,xn+1))

= φ(Ns(xn,xn+1)),

where

Ns(xn,xn+1) = a d2(xn,xn+1)+(1−a)max
{

d2(xn,xn+1),d2(xn+1,xn+2
}

= d2(xn,xn+1).(3.17)

Thus, from (3.16), (3.17) and the mono-tonocity of φ , ∀ n ∈ N∪{0}, we have

d2(xn+1,xn+2)< d2(xn,xn+1),

that is, {d2(xn,xn+1)} is non- increasing sequence of non-negative real numbers. Consequently,

there exists a real number r ≥ 0 such that

d2(xn,xn+1)→ r as n→ ∞.

Assume that r = ε > 0. First, we note that r = ε < d2(xn,xn+1) for all n ∈ N∪{0}. Also from

(3.16), there exists δ > 0 such that

p(xn,xn+1)≤ Ns(xn,xn+1)

= d2(xn,xn+1)

< ε +δ (ε),

for n sufficiently large. Keeping the observations above, definition 2.9(1) gives that

d2(T xn,T xn+1)≤
ε

s
.

Thus, we have

ε < d2(xn+1,xn+2) = d2(T xn,T xn+1)≤
ε

s
,

which is a contradiction. So, we derive that ε = 0, that is, limn→∞ d2(xn,xn+1) = 0. Now, we show

that the sequence {xn} is b-Cauchy. For this direct, let m ∈ N be large enough to satisfy

d2(xm,xm+1)<
δ1

s
.
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Now, we display by induction that

(3.18) d2(xm,xm+1)< ε1 +δ1 ∀ k ∈ N.

Without loss of generality, we assume that δ1 = δ1(ε)< ε. We have already established the claim

for k = 1. Now, we consider the following two cases:

Case(I). If d2(xm+k,xm+k+1)≤ d2(xm,xm+k), then we get

d2(xm+k,xm+k+1)

1+d2(xm,xm+k)
≤ d2(xm+k,xm+k+1)

and
d2(xm+k,xm+k+1).d2(xm,xm+1)

1+d2(xm,xm+k)
< d2(xm,xm+1)

Hence, we have

p(xm,xm+1)≤ Ns(xm,xm+k)

= a d2(xm,xm+k)+(1−a)max


d2(xm,xm+k),d(xm,T xm).d(xm+k,T xm+k),

d2(xm+k,T xm+k)[1+d2(xm,T xm)]
1+d2(xm,xm+k)

,

d2(xm+k,T xm+k)[1+d2(xm,T xm)]
1+d2(T xm,T xm+k)



= a d2(xm,xm+k)+(1−a)max


d2(xm,xm+k),d(xm,xm+1).d(xm+k,xm+k+1),

d2(xm+k,xm+k+1)[1+d2(xm,xm+1)]
1+d2(xm,xm+k)

,

d2(xm+k,xm+k+1)[1+d2(xm,xm+1)]
1+d2(xm+1,xm+k+1)


< max{ε1 +δ1,2δ1,δ1}

= ε1 +δ1,

and so it follows from Definition 2.9(1) that

d2(T xm,T xm+k)≤
ε1

s
.

Thus, by the b-triangle inequality, we have

d2(xm,xm+k+1)≤ sd2(xm,xm+1)+ sd2(xm+1,xm+k+1)

= sd2(xm,xm+1)+ sd2(T xm,T xm+k)

< ε1 +δ1.



(α−φ)-MEIR-KEELER GREGUS QUADRATIC TYPE HYBRID CONTRACTION MAPPINGS 17

Case(II.) If d2(xm+k,xm+k+1)> d2(xm,xm+k) then we get

d2(xm+k,xm+k+1)≤ sd2(xm,xm+k)+ sd2(xm+k,xm+k+1)

< 2sd2(xm+k,xm+k+1)

< 2s
δ1

s

= 2δ1

< ε1 +δ1.

Thus, by induction, (3.18) holds for every k ∈ N. Since ε1 > 0 is arbitrary, we get

lim
k→∞

supd2(xm,xm+k) = 0,

which implies that {xn} is a b-Cauchy sequence in a complete b-metric space (X ,d). Hence, {xn}

b-converges to some z ∈ X . Next, we show that z is a fixed point of T. If T is continuous, then we

have

z = lim
n→∞

xn+1 = lim
n→∞

T xn = T z and lim
n→∞

xn+2 = lim
n→∞

T 2xn = z,

particularly z is a fixed point of T. If T 2 is continuous, since xn→ z, we get that any subsequence

of {xn} converges to the same limit point z, so

lim
n→∞

xn+1 = lim
n→∞

T xn = z and lim
n→∞

xn+2 = lim
n→∞

T 2xn = z.

On the other hand, due to the continuity of T 2,

T 2z = lim
n→∞

T 2xn = z.

We claim that T z = z. Nonetheless, if T z 6= z, then we have p(z,T z)> 0 and

p(z,T z)≤ Ns(z,T z)

= a d2(z,T z)+(1−a)max


d2(z,T z),d(z,T z).d(T z,T 2z),

d2(T z,T z)[1+d2(z,T z)]
1+d2(z,T z) ,

d2(z,T z)[1+d2(T z,T 2z)]
1+d2(T z,T 2z)


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= a d2(z,T z)+(1−a)max


d2(z,T z),d(z,T z).d(T z,T 2z),

d2(T z,T 2z)[1+d2(z,T z)]
1+d2(z,T z) ,

d2(z,T z)[1+d2(T z,T 2z)]
1+d2(T z,T 2z)


= d2(z,T z).

Therefore, together with the auxiliary hypothesis α(z,T z)≥ 1, we have

0≤ ξ (α(z,T z)φ(d2(T z,T 2z)),φ (p(z,T z)))

< φ (p(z,T z))−α(z,T z))φ(d2(T z,T 2z)).

From the above inequality, we obtain

φ(d2(T z,z)) = φ(d2(T z,T 2z))

≤ α(z,T z)φ(d2(T z,T 2z))

< φ(P(z,T z))

≤ φ(Ns(z,T z))

= φ(d2(z,T z)),

which is a contradiction. Hence, z is a fixed point of T. If X is regular, we deduce that d2(z,T z) = 0,

using the same arguments as in the proof of Theorem 3.6 That is, z is a fixed point of T . The

uniqueness of fixed point of T can be deduced as in Theorem 3.7.

�

Example 3.10. Let X = [0,6] and d : X ×X → R+ be defined by d(x,y) = |x− y| for all x,y ∈ X .

Then (X ,d) is a complete b-metric space with s = 4 which is not a metric space. Let T : X → X be

defined by

T (x) =


1 if x ∈ [0,3)

x
3 if x ∈ [3,6].

Also, we define α : X×X → R+, q : X×X → R+, and φ : R+→ R+ as follows:
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α(x,y) =


3 if x,y ∈ [0,3)

2 if x,y ∈ [3,6],

0 otherwise,

q(x,y) = max
{

d2(x,y),
d(x,T x).d(y,Ty)

1+d2(x,y)
,
d(x,T x).d(y,Ty)
1+d2(T x,Ty)

}
and φ(t) = t

3 . First we note that q satisfies the condition (p1
q : Ns) and q(x,y) > 0 for all x 6= y.

Since, for x = 0 we have T 0 = 2 and α(0,T 0) = α(0,1) = 3 > 1, assumption (2) of Theorem 3.9

is satisfied. Also, it is easy to see that T is a triangular α−orbital admissible. Suppose ξ ∈ Zw be

given by ξ (t,s) = 9
16s− t. Now, we consider the following cases:

Case (I). For x,y ∈ [0,3),x 6= y, we have d2(T x,Ty) = 0, so

ξ (α(x,y)φ(d2(T x,Ty)),φ(q(x,y))) =
9φ(q(x,y))

16

=
(q(x,y))2

16

> 0.

Case (II). For x,y ∈ [3,6],x 6= y, we have d(T x,Ty) = |x−y|
3 ,

q(x,y) = max

{
|x− y|2, x/3.y/3

1+ |x− y|2
,

x/3.y/3

1+ |x−y|2
9

}
,

so

ξ (α(x,y)φ(d2(T x,Ty)),φ(q(x,y)) =
9φ(q(x,y))

16
−φ

(
|x− y|

3

)
=

(q(x,y))2

16
−
(
|x− y|2

9

)
≥ 0.

Case (III) For x,y ∈ [0,3), and y ∈ [3,6], we have α(x,y) = 0 and

ξ (α(x,y)φ(d2(T x,Ty)),φ(q(x,y)) =
9φ(q(x,y))

16

=
(q(x,y))2

16

> 0.
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Thus, T satisfies all the conditions of Theorem 3.9 and has unique fixed point x = 1.

Now, we give some corollaries to our main findings.

Corollary 3.11. Suppose (X ,d) be a complete b-metric space with s≥ 1 and suppose T : X → X

be a (α,φ)-MKGq hybrid contractive mapping of type I with p(x,y) = d(x,y). Assume that the

following conditions are satisfied:

(1) T is triangular α-orbital admissible;

(2) there exists x0 ∈ X such that α(x0,T x0)≥ 1;

(3) either T is continuous or T 2 is continuous and α(u,Tu)≥ 1 or (X ,d) is regular.

Then T has a fixed point u. Moreover, {T nx} converges to u for all x ∈ X .

Remark 3.12. Under the conditions of Corollary 3.11, since x 6= y implies d2(x,y)> 0, it is obvi-

ous that from Definition 2.9 is equivalent to the following:

d2(x,y)> 0 =⇒ ξ (α(x,y)φ(d2(T x,Ty)),φ(d2(x,y)))≥ 0.

Proof. It is clear that d satisfies the conditions (P1d : Ms), respectively (P2d : 0), and so all the

Theorems 3.3,3.4,3.7,3.9 are also satisfied. Thus, T has a fixed point. �

Corollary 3.13. Suppose (X ,d) be a complete b-metric space with s≥ 1, and suppose T : X → X

be a (α,φ)-MKGq hybrid contractive mapping of type I. Let ρ : X×X → R+ be defined by

ρ(x,y) = a1d2(x,y)+a2d2(x,T x)+a3d2(y,Ty), where a1,a2,a3 ∈ [0, 1
s ),a1+a2 ≤ 1

2s and a3 ≤ 1
2s

. Assume also that:

(1) T is triangular α-orbital admissible;

(2) there exists x0 ∈ X such that α(x0,T x0)≥ 1;

(3) either T is continuous or T 2 is continuous and α(u,Tu)≥ 1 or (X ,d) is regular.

Then T has a fixed point u. Moreover, {T nx} converges to u for all x ∈ X .

Proof. Suppose x,y ∈ X be such that x 6= y and d(x,T x)≤ d(x,y). Then,

ρ(x,y) = a1d2(x,y)+a2d2(x,T x)+a3d2(y,Ty)

≤ (a1 +a2)d2(x,y)+a3d2(y,Ty)
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≤ d2(x,y)+d2(y,Ty)
2s

≤Ms(x,y),

which shows that (P1ρ : Ms) holds. On the other hand, if xn 6= y, then

lim
n→∞

d2(xn,y) = 0 and lim
n→∞

d2(xn,xn+1) = 0

hold, and then we have

lim
n→∞

supρ(xn,y) = lim
n→∞

supa1d2(xn,y)+a2d2(xn,xn+1)+a3d2(y,Ty)

= a3d2(y,Ty).

Thus, (P2ρ : a3) holds. Hence, T has a fixed point. �

4. CONCLUSION:

In this work, we introduced generalized (α,φ) MKGq type hybrid contractive mappings of type

I and II in the setting of b-metric spaces and proved the existence and uniqueness of fixed points

for such mappings. Finally, we supported the main result of this work by an illustrative example.
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