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Abstract. In our research, we delve into exploring the presence and singular nature of a stable point amidst nearly

orthogonal almost Z -contractions, facilitated by simulation functions within fully developed orthogonal partial

b-metric spaces, employing orthogonal (∝̂, β̂ )-admissibility. Additionally, we provide demonstrative instances to

substantiate the outcomes. Moreover, we offer an application to integro-differential equations, thereby contributing

to the expansion and enhancement of various prior studies in the field.
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1. INTRODUCTION

The exploration of fixed points (f.p.) stands as a cornerstone in mathematical theory, offering

solutions to a broad spectrum of problems. Originating from the renowned Banach contraction

principle [1], the establishment of fixed points in complete metric spaces is a well-explored

territory (also referenced in [2], [3], [4], [5]). Since its inception, numerous scholars have ex-

panded upon this concepts by introducing various types of contractions within traditional metric
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spaces, such as b-metric spaces, partial metric spaces, metric-like spaces, and partial b-metric

spaces (abbreviated as PbMS). In 1989, Bakhtin [6] introduced the concept of b-metric spaces.

In 1994, Matthews (see, [7], [8]) initiated the concept of partial metric spaces, which is the con-

ventional metric is replaced by a partial metric with the intriguing property that the self-distance

of any point in the space may not be zero. Shukla [9] generalized both the concepts of b-metric

and partial metric spaces by introducing PbMS. He proved the Banach contraction principle

as well as the Kannan-type fixed-point theorem in PbMS. Additionally, Shukla provided illus-

trative examples to demonstrate the results obtained in this novel space. Subsequently, Mustafa

and colleagues [10] established several shared fixed-point theorems within the framework of

PbMS. In recent times, various researchers have achieved fixed-point outcomes in PbMS, as

evidenced by publications such as [11], [12], [13], and similar works. In 2012, the concept

of ∝̂-admissible maps was introduced by Samet et al. [14], which has since found application

in various studies, as demonstrated in ( [15], [16]). In 2013, Karapinar et al. [17] extended

this concept to triangular ∝̂-admissible maps. More recently, Chandok [18] proposed the idea

of (∝̂, β̂ )-admissible Geraghty-type contractive maps, establishing sufficient conditions for the

existence of f.p. within this class of generalized nonlinear contractive maps in metric spaces

and providing several f.p. results (also see [19], [20], [21]). Berinde [22, 23] further broadened

the scope by proposed the notion of almost contractions as an extension of contractive maps.

Additionally, Khojasteh et al. [24] introduced the concept of Z -contraction, which involves

a new class of maps known as simulation functions, to establish f.p. results. Isik et al. [25]

demonstrated fixed point theorems for nearly Z -contraction with an application in 2018. Re-

cently, Saluja [27] showcased fixed point results for nearly Z -contractions in partial b-metric

spaces with simulation functions. Gordji and Habibi [28], [29] delve into the concept of orthog-

onality within complete metric spaces. Additionally, Arul Joseph et al. [30], [31] introduce the

notion of orthogonally triangular ∝̂-admissible maps and present some fixed-point results for

self-maps in orthogonal complete metric spaces. Recently, in 2023, Senthil Kumar et al. [32]

enhance the concept of orthogonally modified F-contractions of type-I and type-II, along with

certain fixed-point theorems for self-maps in orthogonal metrics. Subsequently, Mani et al. [33]

concentrate on advancing fixed-point theorems related to orthogonal F-contractive type maps,
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orthogonal Kannan F-contractive type maps, and orthogonal F-expanding type maps. Further-

more, numerous researchers are interested in developing concepts related to orthogonality, as

evidenced by citations [34] and [35].

In this investigation, we explore the existence and uniqueness of f.p. arising from orthogonal

almost Z -contractions, employing simulation functions in the context of extensive orthogonal

PbMS, utilizing orthogonal (∝̂, β̂ )-admissibility. Furthermore, we provide several illustrative

examples to corroborate our findings. Additionally, we apply our results to integro-differential

equations. Our study extends, expands, and enriches various conclusions drawn from the exist-

ing literature.

2. PRELIMINARIES

This section necessitates the inclusion of the following notion to support our primary discov-

eries.

Definition 2.1. [9] A partial b-metric on a non-void set ` is a function dbm : `×`→R+ such

that for all ˘T , Õ,z ∈ `:

(1) ˘T = Õ if and only if dbm( ˘T , ˘T) = dbm( ˘T , Õ) = dbm(Õ, Õ);

(2) dbm( ˘T , ˘T)≤ dbm( ˘T , Õ);

(3) dbm( ˘T , Õ) = dbm(Õ, ˘T);

(4) There exists ℵ≥ 1 such that dbm( ˘T , Õ)≤ℵ[dbm( ˘T ,z)+dbm(z, Õ)]−dbm(z,z).

A PbMS is a pair (`,dbm) such that ` is a non-void set and dbm is a partial b-metric on `. The

real number ℵ is said to be a constant of (`,dbm).

Remark 2.1. Every PbMS is a generalization of the partial metric space and the b-metric

space. However, converse is not true in general.

Definition 2.2. [18] Let ` be a non-void set. Let A : `→ ` and ∝̂, β̂ : `× `→ [0,1) be

given maps. We say that A is an (∝̂, β̂ )-admissible if ∝̂( ˘T , Õ) ≥ 1 and β̂ ( ˘T , Õ) ≥ 1 implies

∝̂(A ˘T ,AÕ)≥ 1 and β̂ (A ˘T ,A ˘T)≥ 1 for all ˘T , Õ ∈ `.
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Definition 2.3. [23] Let (`,dbm) be a metric space. A self-map A : `→ ` is said to be an

almost contraction if there exist λ ∈ (0,1) and ∝̂≥ 0 such that

dbm(A ˘T ,AÕ)≤ λdbm( ˘T , Õ)+ ∝̂dbm(Õ,A ˘T),

for all ˘T , Õ ∈ `.

Khojasteh et al. [24] initiate the simulation function as follows:

Definition 2.4. [24] Let ζ : [0,1)× [0,1)→R be a function, if ζ satisfies the given conditions:

(ζ 1) ζ (0,0) = 0.

(ζ 2) ζ (è,ℵ)< ℵ− è for all è,ℵ > 0.

(ζ 3) If (èß̌) and (ℵß̌) are sequences in (0,1) such that limß̌→∞
èß̌ = limß̌→∞

ℵß̌ > 0, then

limsupß̌→∞
ζ (èß̌,ℵß̌)< 0.

Then ζ is called a simulation function.

Definition 2.5. [25] Let (`,dbm) be a metric space and ζ ∈ Z. We say that A : `→ ` is an

almost Z -contraction if there is a constant ∝̂≥ 0 such that

ζ (∝̂(dbm(A ˘T ,AÕ)),dbm( ˘T , Õ)+ ∝̂N ( ˘T , Õ))≤ 0,

for all ˘T , Õ ∈ `, where N ( ˘T , Õ) = min{dbm( ˘T ,A ˘T),dbm(Õ,AÕ),dbm( ˘T ,AÕ),dbm(Õ,A ˘T)}.

Definition 2.6. [27] Let (`,dbm) be a complete PbMS with constant ℵ ≥ 1, let A : `→ ` be

a map, and ∝̂, β̂ : `×`→ [0,+∞) be given functions. Then A is called a (∝̂, β̂ )-admissible

almost Z -contraction if it fulfills the below constrains:

(1) A is (∝̂, β̂ )-admissible,

(2) there exists a simulation function ζ ∈ Z such that

0≤ζ (∝̂(A( ˘T),A(Õ))β̂ (A( ˘T),A(Õ))dbm(A( ˘T)A(Õ)),dbm( ˘T , Õ))+θfbm
d ( ˘T , Õ),

for all ˘T , Õ ∈ `, where

fbm
d ( ˘T , Õ) = min{dbm( ˘T ,A ˘T),dbm(Õ,AÕ),dbm( ˘T ,AÕ),dbm(Õ,A ˘T)}.

Lemma 2.2. [26]
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(1) A sequence ( ˘T ß̌) is a b-Cauchy sequence in a PbMS (`,dbm) iff it is a b-Cauchy se-

quence in the b-metric space (`,dbm).

(2) A PbMS is complete iff the b-metric space (`,dbm) is b-complete. Moreover,

limß̌→∞
dbm( ˘T , ˘T ß̌) = 0 if and only if

lim
ß̌→∞

dbm( ˘T , ˘T ß̌) = lim
ß̌,x̌→∞

dbm( ˘T ß̌, ˘T x̌) = dbm( ˘T , ˘T).

Definition 2.7. [28] Let ` be a non-void and ⊥⊆ `×` be an binary relation. If ⊥ fulfills the

following condition:

∃ ˘T 0 : (∀ Õ, Õ⊥ r0) or (∀ Õ, ˘T 0 ⊥ Õ),

then (`,⊥) is called an orthogonal set (Oset).

Definition 2.8. [28] Let (`,⊥) be an Oset . A sequence { ˘T ß̌} is called an orthogonal sequence

(briefly, O-sequence) if

(∀ß̌ ∈ N, ˘T ß̌ ⊥ ˘T ß̌+1) or (∀ß̌ ∈ N, ˘T ß̌+1 ⊥ ˘T ß̌).

Definition 2.9. Let (`,⊥,dbm) be an orthogonal PbMS if (`,⊥) is an Oset and (`,dbm) is a

PbMS.

Now, let’s revisit the given concept within orthogonal PbMS.

Definition 2.10. Let (`,⊥,dbm) be an orthogonal PbMS with constant ℵ. Then:

(1) An orthogonal sequence ( ˘T ß̌) in (`,⊥,dbm) is called a convergent with respect to dbm

and converges to a point ˘T ∈ `, if lim
ß̌→∞

dbm( ˘T ß̌, ˘T) = dbm( ˘T , ˘T).

(2) An orthogonal sequence ( ˘T ß̌) is said to be an orthogonal Cauchy sequence in (`,⊥,dbm)

if lim
ß̌,x̌→∞

dbm( ˘T ß̌, ˘T x̌) exists and is finite.

(3) (`,⊥,dbm) is said to be an orthogonal complete PbMS if for every orthogonal Cauchy

sequence ( ˘T ß̌) in ` there exists ˘T ∈ ` such that

lim
ß̌,x̌→∞

dbm( ˘T ß̌, ˘T x̌) = lim
n→∞

dbm( ˘T ß̌, ˘T) = dbm( ˘T , ˘T).

(4) A function A : `→ ` is said to be an O-preserving if A( ˘T)⊥ A(Õ) whenever ˘T ⊥ Õ.
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3. MAIN RESULTS

Definition 3.1. Let ` be a non-void set. Let A : `→ ` and ∝̂, β̂ : `× `→ [0,1) be given

maps. We say that A is an orthogonal (∝̂, β̂ )-admissible if ∝̂( ˘T , Õ)≥ 1 and β̂ ( ˘T , Õ)≥ 1 implies

∝̂(A ˘T ,AÕ)≥ 1 and β̂ (A ˘T ,A ˘T)≥ 1 for all ˘T , Õ ∈ ` with ˘T ⊥ Õ.

Definition 3.2. Let (`,⊥,dbm) be an orthogonal complete PbMS with constant ℵ ≥ 1, let

A : ` → ` be a map, and ∝̂, β̂ : `× ` → [0,+∞) be given functions. We say that A is an

orthogonal (∝̂, β̂ )-admissible almost Z -contraction if it fulfills the below constrains:

(1) A is an orthogonal (∝̂, β̂ )-admissible,

(2) there exists an orthogonal simulation function ζ ∈ Z such that

0≤ ζ (∝̂(A( ˘T),A(Õ))β̂ (A( ˘T),A(Õ))dbm(A( ˘T),A(Õ)),dbm( ˘T , Õ))

+θfbm
d ( ˘T , Õ), ∀ ˘T , Õ ∈ ` with ˘T ⊥ Õ,

(1)

where

fbm
d ( ˘T , Õ) = min{dbm( ˘T ,A ˘T),dbm(Õ,AÕ),dbm( ˘T ,AÕ),dbm(Õ,A ˘T)}.

Lemma 3.1. (1) An orthogonal sequence ( ˘T ß̌) is an orthogonal b-Cauchy sequence in or-

thogonal PbMS if and only if it is an orthogonal b-Cauchy sequence in the orthogonal

b-metric space (`,⊥,dbm).

(2) An orthogonal PbMS is complete iff the orthogonal b-metric space (`,⊥,dbm) is an

orthogonal b-complete. Moreover, limß̌→∞
dbm( ˘T , ˘T ß̌) = 0 if and only if

lim
ß̌→∞

dbm( ˘T , ˘T ß̌) = lim
ß̌,x̌→∞

dbm( ˘T ß̌, ˘T x̌) = dbm( ˘T , ˘T).

Presently, we are prepared to demonstrate our main outcome.

Theorem 3.2. Let (`,⊥,dbm) be an orthogonal complete PbMS with orthogonal element ˘T 0

and a coefficient ℵ ≥ 1, and let a continuous map A : `→ ` be a (∝̂, β̂ ) satisfies following

conditions

(1) A is an O-preserving,

(2) A is an orthogonal (∝̂, β̂ )-admissible almost Z -contraction,

(3) there exists ˘T 0 ∈ ` such that ∝̂( ˘T 0,A ˘T 0)≥ 1 and β̂ ( ˘T 0,A ˘T 0)≥ 1.
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Then A has a unique f.p. of \ ∈ ` such that dbm(\, \) = 0.

Proof. By the Definition of orthogonality, let (`,⊥) is an orthogonal set, there exist

˘T 0 ∈ ` : ∀ ˘T ∈ `, ˘T ⊥ ˘T 0 (or) ∀ ˘T ∈ `, ˘T 0 ⊥ ˘T .

It follows that ˘T 0 ⊥ A ˘T 0 or A ˘T 0 ⊥ ˘T 0. Let

˘T 1 = A ˘T 0, ˘T 2 = A ˘T 1 = A2 ˘T 0 · · · ˘T ß̌+1 = A ˘T ß̌ = Aß̌+1 ˘T 0,

∀ ß̌ ∈ N. For any ˘T 0 ∈ `, set ˘T ß̌ = A ˘T ß̌−1. Now, we consider the following two cases:

(i) If there exists ß̌ ∈N∪{0} such that ˘T ß̌ = ˘T ß̌+1, then we have A ˘T ß̌ = ˘T ß̌. It is easy to see

that ˘T ß̌ is a f.p. of A. Therefore, the proof is finished.

(ii) If ˘T ß̌ 6= ˘T ß̌+1, for any ß̌ ∈ N∪{0}, then we have db( ˘T ß̌+1, ˘T ß̌)> 0, for each ß̌ ∈ N.

Since A is ⊥-preserving, we have

˘T ß̌ ⊥ ˘T ß̌+1 (or) ˘T ß̌+1 ⊥ ˘T ß̌.

This implies that { ˘T ß̌} is an O-sequence.

Since ∝̂( ˘T 0,A ˘T 0) ≥ 1 implies ∝̂( ˘T 0, ˘T 1) ≥ 1 and A is an orthogonal (∝̂, β̂ )-admissible, so

∝̂(A ˘T 0,A ˘T 1)≥ 1 implies β̂ ( ˘T 1, ˘T 2)≥ 1.

Now, continuing in the same manner, we get for all ß̌≥ 0,

∝̂( ˘T ß̌, ˘T ß̌+1)≥ 1.(2)

Likewise, for all ß̌≥ 0, we obtain

β̂ ( ˘T ß̌, ˘T ß̌+1)≥ 1.(3)

By orthogonal simulation function in (1), we obtain

0≤ ζ (∝̂(A( ˘T ß̌−1),A( ˘T ß̌))β̂ (A( ˘T ß̌−1),A( ˘T ß̌))dbm(A( ˘T ß̌−1),A( ˘T ß̌)),dbm( ˘T ß̌−1, ˘T ß̌))

+θfbm
d ( ˘T ß̌−1, ˘T ß̌),

that is,

0≤ ζ (∝̂( ˘T ß̌, ˘T ß̌+1)β̂ ( ˘T ß̌, ˘T ß̌+1)dbm( ˘T ß̌, ˘T ß̌+1),dbm( ˘T ß̌−1 ˘T ß̌))+θfbm
d ( ˘T ß̌−1, ˘T ß̌),(4)
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where

fbm
d ( ˘T ß̌−1, ˘T ß̌) = min{dbm( ˘T ß̌−1,A ˘T ß̌),dbm( ˘T ß̌,A ˘T ß̌),dbm( ˘T ß̌−1,A ˘T ß̌),dbm( ˘T ß̌,A ˘T ß̌−1)}

= min{dbm( ˘T ß̌−1, ˘T ß̌+1),dbm( ˘T ß̌, ˘T ß̌+1),dbm( ˘T ß̌−1, ˘T ß̌+1),dbm( ˘T ß̌, ˘T ß̌)}

= 0.

Therefore, from equations (3) and Definition 2.4 condition (2), we have

0≤ζ (∝̂( ˘T ß̌, ˘T ß̌+1)β̂ ( ˘T ß̌, ˘T ß̌+1)dbm( ˘T ß̌, ˘T ß̌+1),dbm( ˘T ß̌−1, ˘T ß̌))

<dbm( ˘T ß̌−1, ˘T ß̌)− ∝̂( ˘T ß̌, ˘T ß̌+1)β̂ ( ˘T ß̌, ˘T ß̌+1)dbm( ˘T ß̌, ˘T ß̌+1),

that is,

∝̂( ˘T ß̌, ˘T ß̌+1)β̂ ( ˘T ß̌, ˘T ß̌+1)dbm( ˘T ß̌, ˘T ß̌+1)< dbm( ˘T ß̌−1, ˘T ß̌).(5)

Now, we know that

dbm( ˘T ß̌, ˘T ß̌+1)≤ ∝̂( ˘T ß̌, ˘T ß̌+1)β̂ ( ˘T ß̌, ˘T ß̌+1)dbm( ˘T ß̌, ˘T ß̌+1),(6)

since ∝̂( ˘T ß̌, ˘T ß̌+1)≥ 1 and β̂ ( ˘T ß̌, ˘T ß̌+1)≥ 1.

From equations (5) and (6) for all ß̌≥ 0, we have

dbm( ˘T ß̌, ˘T ß̌+1)≤ ∝̂( ˘T ß̌, ˘T ß̌+1)β̂ ( ˘T ß̌, ˘T ß̌+1)dbm( ˘T ß̌, ˘T ß̌+1)

< dbm( ˘T ß̌−1, ˘T ß̌),

that is,

dbm( ˘T ß̌, ˘T ß̌+1)< dbm( ˘T ß̌−1, ˘T ß̌).(7)

The orthogonal sequence (dbm( ˘T ß̌, ˘T ß̌+1)) is non decreasing. So, there exist ∝≥ 0 such that

lim
ß̌→∞

dbm( ˘T ß̌, ˘T ß̌+1) =∝. We clear that dbm( ˘T ß̌, ˘T ß̌+1) = 0.

At this moment, let us consider the opposite scenario where ∝> 0. By (6) we get

lim
ß̌→∞

(∝̂( ˘T ß̌, ˘T ß̌+1)β̂ ( ˘T ß̌, ˘T ß̌+1)dbm( ˘T ß̌, ˘T ß̌+1)) =∝ .(8)

Since ∝> 0, letting

ℵß̌ = ∝̂( ˘T ß̌, ˘T ß̌+1)β̂ ( ˘T ß̌, ˘T ß̌+1)dbm( ˘T ß̌, ˘T ß̌+1) and
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èß̌ = dbm( ˘T ß̌, ˘T ß̌+1),

such that limß̌→∞
ℵß̌ = limß̌→∞

èß̌ =∝, then by Definition 2.4 condition (3), limsup
ß̌→∞

ζ (ℵß̌, èß̌)<

0. Since ζ (ℵß̌, èß̌)≥ 0. So

0≤ limsup
ß̌→∞

ζ (ℵß̌, èß̌)< 0,

which is a contradiction.

Therefore, our assertion that ∝> 0 is incorrect. Hence ∝= 0.

Now, we prove that { ˘T ß̌} is an orthogonal Cauchy sequence in (`,dbm), i.e.,

lim
ß̌,x̌→∞

dbm( ˘T ß̌, ˘T x̌) = 0.(9)

Suppose the contrary, that is, { ˘T ß̌} is not an orthogonal Cauchy sequence. Then there exist

ε > 0 for which we can find two orthogonal sub sequences ( ˘T ß̌(π)
, ˘T x̌(π)) of ( ˘T ß̌) such that x̌(π) is

the smallest index for which

x̌(π)> ß̌(π) > π, dbm( ˘T ß̌(π)
, ˘T x̌(π))≥ ε.(10)

This means that

dbm( ˘T ß̌(π)
, ˘T x̌(π)−1)< ε.(11)

From equation (10) and using the triangular inequality, we obtain

ε ≤ dbm( ˘T ß̌(π)
, ˘T x̌(π))

≤ℵ[dbm( ˘T ß̌(π)
, ˘T x̌(π)−1)+dbm( ˘T x̌(π)−1, ˘T x̌(π))]−dbm( ˘T x̌(π)−1, ˘T x̌(π)−1)

≤ℵ[dbm( ˘T ß̌(π)
, ˘T x̌(π)−1)+dbm( ˘T x̌(π)−1, ˘T x̌(π))].

(12)

Letting the limit as π → ∞ in (12) and using equations (9) and (11), we obtain

ε

ℵ
≤ liminf

π→∞
dbm( ˘T ß̌(π)

, ˘T x̌(π)−1)≤ limsup
π→∞

dbm( ˘T ß̌(π)
, ˘T x̌(π)−1)≤ ε.(13)

Also from (10) and (12), we have

ε ≤ limsup
π→∞

dbm( ˘T ß̌(π)
, ˘T x̌(π))≤ℵε.(14)
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Again, we have

dbm( ˘T ß̌(π)
, ˘T x̌(π)+1)≤ℵdbm( ˘T ß̌(π)

, ˘T x̌(π))+ℵdbm( ˘T x̌(π), ˘T x̌(π)+1),

and hence

limsup
π→∞

dbm( ˘T ß̌(π)
, ˘T x̌(π)+1)≤ℵ

2
ε.(15)

Further,

dbm( ˘T ß̌(π)−1, ˘T x̌(π)+1)≤ℵdbm( ˘T ß̌(π)−1, ˘T x̌(π))+ℵdbm( ˘T x̌(π), ˘T x̌(π)+1),

and hence

limsup
π→∞

dbm( ˘T ß̌(π)−1, ˘T x̌(π)+1)≤ℵε.(16)

Again, we have

dbm( ˘T ß̌(π)−1, ˘T x̌(π)−1)≤ℵdbm( ˘T ß̌(π)−1, ˘T ß̌(π)
)+ℵdbm( ˘T ß̌(π)

, ˘T x̌(π)−1),

and hence

limsup
π→∞

dbm( ˘T ß̌(π)−1, ˘T x̌(π)−1)≤ℵε.(17)

Finally, we have

dbm( ˘T ß̌(π)
, ˘T x̌(π)−1)≤ℵdbm( ˘T ß̌(π)

, ˘T ß̌(π)−1)+ℵdbm( ˘T ß̌(π)−1, ˘T x̌(π)−1),

and hence

limsup
π→∞

dbm( ˘T ß̌(π)
, ˘T x̌(π)−1)≤ℵ

2
ε.(18)

Taking limit as π → 1 in (18) and using equation (9), we obtain

limsup
π→1

dbm( ˘T ß̌(π)−1, ˘T x̌(π)−1)→ 0 as π → 1,(19)

From equations (1) and (19), we have

0≤ limsup
π→1

ζ (α̌( ˘T ß̌(π)
, ˘T x̌(π))β̌ ( ˘T ß̌(π)

, ˘T x̌(π))dbm( ˘T ß̌(π)
, ˘T x̌(π)),

dbm( ˘T ß̌(π)−1, ˘T x̌(π)−1))< 0.

This contradicts our assumption. So, { ˘T ß̌} is an orthogonal b-Cauchy sequence in (`,⊥,dbm).
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Next, we verify that A has a f.p. Since (`,⊥,dbm) is an orthogonal complete PbMS, then by

using Lemma 3.1, such that the orthogonal sequence converges to some \ ∈ `, i.e.,

lim
ß̌→∞

dbm( ˘T ß̌, \) = 0.

Again, from Lemma 3.1, we obtain

lim
ß̌→∞

dbm(\, ˘T ß̌) = lim
ß̌→∞

dbm( ˘T ß̌, ˘T ß̌) = dbm(\, \).(20)

Now, since limß̌→∞
dbm(\, ˘T ß̌) = 0 or ˘T ß̌→ \ as ß̌→ ∞, the continuity of A implies that A ˘T 2ß̌→

A(\).

Since ˘T 2ß̌+1 = A ˘T 2ß̌ and ˘T 2ß̌+1→ \ as ß̌→ ∞, by uniqueness of limit, we have A(\) = \. So, \ is

a f.p. of A.

Next, we will demonstrate the uniqueness of the f.p. \.

Uniqueness : Consider that z, \ ∈ ` are two f.p.s of A such that \ 6= z. Therefore, we have

d(z, \) = d(Az,A\)> 0.

By choice of ˘T∗, we obtain

( ˘T∗ ⊥ \, ˘T∗ ⊥ z) or (\⊥ ˘T∗, z⊥ ˘T∗).

Since A is ⊥-preserving, we have

(Aß̌ ˘T∗ ⊥ Aß̌\, Aß̌ ˘T∗ ⊥ Aß̌z) or (Aß̌\⊥ Aß̌ ˘T∗, Aß̌z⊥ Aß̌ ˘T∗)

for all ß̌ ∈ N.

Since A is an orthogonal (∝̂, β̂ )-admissible almost Z -contraction in (1), and taking ˘T = \ and

Õ= \0, we get

0≤ ζ (∝̂(A(\),A(\0))β̂ (A(\),A(\0))dbm(A(\),A(\0)),dbm(\, \0))+θfbm
d (\, \0)

= ζ (∝̂(A(\),A(\0))β̂ (A(\),A(\0))dbm(\, \0),dbm(\, \0))+θfbm
d (\, \0).

(21)

where

fbm
d = min{dbm(\,A\),dbm(\0,A\0),dbm(\,A\0),dbm(\0,A\)}

= min{dbm(\, \),dbm(\0, \0),dbm(\, \0),dbm(\0, \)}

= 0.

(22)
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By using (21) and (22), we get

0≤ ζ (∝̂(A(\),A(\0))β̂ (A(\),A(\0))dbm(A(\),A(\0)),dbm(\, \0)

≤ dbm(\, \0)− ∝̂(A(\),A(\0))β̂ (A(\),A(\0))dbm(A(\),A(\0))

= dbm(\, \0)− ∝̂(\, \0)β̂ (\, \0)dbm(\0, \)

= dbm(\, \0)[1− ∝̂(\, \0)β̂ (\, \0)]< 0,

which is a contradiction, since ∝̂(\, \0)≥ 1 and β̂ (\, \0)≥ 1.

Hence, we clear that dbm(\, \0) = 0, i.e., \= \0.

Therefore A has a unique f.p. in `. The proof is now concluded. �

As a Corollary of Theorem 3.2, we derive the subsequent result.

Corollary 1. If the orthogonal contractive conditions provided below hold, we reach the same

conclusion as stated in Theorem (3.2).

0≤ ζ (∝̂( ˘T ,A( ˘T))β̂ (Õ,A(Õ))dbm(A( ˘T),A(Õ)),dbm( ˘T , Õ)+θfbm
d ( ˘T , Õ))

0≤ ζ (∝̂( ˘T , Õ)β̂ (A( ˘T),A(Õ))dbm(A( ˘T),A(Õ)),dbm( ˘T , Õ)+θfbm
d ( ˘T , Õ))

0≤ ζ (∝̂( ˘T , Õ)β̂ ( ˘T , Õ)dbm(A( ˘T),A(Õ)),dbm( ˘T , Õ)+θfbm
d ( ˘T , Õ))

0≤ ζ (∝̂(A( ˘T),A(Õ))β̂ ( ˘T , Õ)dbm(A( ˘T),A(Õ)),dbm( ˘T , Õ)+θfbm
d ( ˘T , Õ))

with ˘T ⊥ Õ for all ˘T , Õ ∈ `, where fbm
d ( ˘T , Õ) is as in Theorem 3.2.

The subsequent Corollary is a consequence of the Shukla type [9].

Corollary 2. Let (`,⊥,dbm) be an orthogonal complete PbMS with orthogonal element ˘T 0 and

a constant ℵ≥ 1, and let A : `→ ` be a map. Assume that there exists λ ∈ [0,1) such that

∝̂(A( ˘T),A(Õ))β̂ (A( ˘T),A(Õ))dbm(A( ˘T),A(Õ))≤ λdbm( ˘T , Õ)+θfbm
d ( ˘T , Õ),

with ˘T ⊥ Õ for all ˘T , Õ ∈ `, where fbm
d ( ˘T , Õ) is as in Theorem 3.2. Then A possesses a unique

f.p. \ ∈ ` such that dbm(\, \) = 0.
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Proof. By taking the simulation function

ζ (è,ℵ) = λℵ− è,

for all è,ℵ≥ 0 and λ ∈ [0,1). �

If we take ζ (è,ℵ) =ϕ(ℵ)− è, ∝̂(A( ˘T),A(Õ)) = β̂ (A( ˘T),A(Õ)) = 1 for all ˘T , Õ∈ ` with ˘T ⊥ Õ,

and θ = 0 in Theorem 3.2, the subsequent result is derived.

Corollary 3. Let (`,⊥,dbm) be an orthogonal complete PbMS with orthogonal element ˘T 0 and

a constant ℵ≥ 1, and let A : `→ ` be a given map fulfilling

dbm(A( ˘T),A(Õ))≤ ϕ(dbm( ˘T , Õ)),

for all ˘T , Õ ∈ X with ˘T ⊥ Õ, where ϕ : [0,1)→ [0,1) is an upper semi-continuous function with

ϕ(è)< è, ∀ è > 0 and ϕ(0) = 0. Then, A has a unique f.p. \ ∈ ` such that dbm(\, \) = 0.

Example 3.3. Consider the set ` = [0,+1) and let the binary relation ⊥ on ` by ˘T ⊥ Õ if

˘T , Õ≥ 0, for every ˘T Õ ∈ `. Define dbm : `×`→ R+ by

dbm( ˘T , Õ) = [max{ ˘T , Õ}]2,

for all ˘T , Õ ∈ `. Then (`,⊥,dbm) is an orthogonal complete PbMS with constant ℵ = 4 > 1.

Now, define the map A : `→ ` as follows

A( ˘T) =


˘T
4 , if ˘T ∈ [0,1],

˘T +2, if ˘T > 1, ∀ ˘T ∈ `.

Define two functions ∝̂, β̂ : `×`→ [0,+1) by:

∝̂( ˘T , Õ) = β̂ ( ˘T , Õ) =


1, if ˘T , Õ ∈ [0,1],

0, otherwise,

for all ˘T , Õ ∈ ` with ˘T ⊥ Õ.

Let ζ (è,ℵ) = λℵ− è, ∀ è,ℵ∈ [0,1) and λ ∈ [0,1). Since for all ˘T , Õ∈ ` such that ∝̂( ˘T , Õ)≥ 1
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and β̂ ( ˘T , Õ) ≥ 1. By definition of orthogonal (∝̂, β̂ )-admissible this implies that ˘T , Õ ∈ [0,1].

So,

∝̂(A ˘T ,AÕ) = ∝̂(
˘T
4
,
Õ

4
) = 1.

Likewise

β̂ (A ˘T ,AÕ) = 1.

Now, we verify that the orthogonal contraction condition (1). Let ˘T , Õ ∈ ` and suppose ˘T ≥ Õ

such that ∝̂( ˘T , Õ)≥ 1 and β̂ ( ˘T , Õ)≥ 1. So, ˘T , Õ ∈ [0,1]. In this case, we get

ζ (∝̂(A( ˘T),A(Õ))β̂ (A( ˘T),A(Õ))dbm(A( ˘T),A(Õ)),dbm( ˘T , Õ))+θfdm
d ( ˘T , Õ)

= ζ (
˘T 2

4
, ˘T 2)+θfdm

d ( ˘T , Õ),
(23)

Here θ ≥ 0 and

fdm
d ( ˘T , Õ) = min{dbm( ˘T ,A ˘T),dbm(Õ,AÕ),dbm( ˘T ,AÕ),dbm(Õ,A ˘T)}

= min
{

˘T 2, Õ2, ˘T 2, Õ2}= 0.
(24)

From equations (23) and (24), we have

ζ (∝̂(A( ˘T),A(Õ))β̂ (A( ˘T),A(Õ))dbm(A( ˘T),A(Õ)),dbm( ˘T , Õ))+θfdm
d ( ˘T , Õ)

= ζ (
˘T 2

4
, ˘T 2)

= λ ˘T 2− ˘T 2

4
.

If we take λ = 1
2 , we get

ζ (∝̂(A( ˘T),A(Õ))β̂ (A( ˘T),A(Õ))dbm(A( ˘T),A(Õ)),dbm( ˘T , Õ))+θfdm
d ( ˘T , Õ)

=
˘T 2

2
− ˘T 2

4
≥ 0,

that is

ζ (∝̂(A( ˘T),A(Õ))β̂ (A( ˘T),A(Õ))dbm(A( ˘T),A(Õ)),dbm( ˘T , Õ))+θfdm
d ( ˘T , Õ)≥ 0.

It is easy to see that A is an orthogonal continuous with \= 0.

Therefore, we have confirmed all the hypothesis stated in Theorem 3.2. Hence, \ = 0 is the

unique f.p. of A.
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4. APPLICATIONS

We investigate the presence and uniqueness of solutions to the provided impulsive integro-

differential equation with fractional relaxation, employing Corollary 3 as a guiding framework.


Dτ L C DΩ ˘T(σ)+ℵ1 ˘T(σ) = q((σ), ˘T(σ),I ` ˘T(σ)), σ 6= σz1,σ ∈ (0,℘), ℵ1 ∈ R,

∆ ˘T(σz1) = \z1( ˘T(σ−z1)), z1= 1,2,3, · · · , ς̇ ,

L C DΩ ˘T(0) =L C DΩ ˘T(℘) = 0, ˘T(0) = ψ1
∫℘

0 ˘T(>)d>+ψ2,

(25)

for all ψ1,ψ1 ∈ R, where Dτ be a fractional derivative of Riemann-Liouville of order τ and
L C DΩ be a Liouville-Caputo fractional derivative of order Ω. 1 < τ < 2, 0 < Ω < 1, I `

is fractional integral order ` ∈ (0,1) by Riemann-Liouville, and q : [0,℘]×R×R→ R is a

nonlinear continuous function.

∆ ˘T(σz1) = ˘T(σ+
z1)− ˘T(σ−z1) means the jump of ˘T at σ = σz1, ˘T(σ+

z1) and ˘T(σ−z1) represent the

right and left limits of ˘T(σ) at σ = σz1 respectively, z1= 1,2, · · · , ς̇ .

We will now provide some details and results related to fractional calculus. Consider the

Banach space

PC (Φ,`) = { ˘T : Φ→ `, ˘T ∈ C (σz1,σz1+1),`}, z1= 0,1,2, · · · , ς̇

and there exist ˘T(σ−z1) and ˘T(σ+
z1), z1= 0,1,2, · · · , ς̇ with ˘T(σ−z1) = ˘T(σz1) with the norm

‖ ˘T‖PC = sup{‖ ˘T(σ)‖2 : σ ∈Φ}.

Definition 4.1. A function K : Φ→ R of order Ω > 0 has a fractional integral that is deter-

mined by

I ΩK (σ) =
1

Γ(Ω)

∫
σ

0
(σ −>)Ω−1K (>)dbm>,

provided the integral exists.

Definition 4.2. A function K : Φ→R of order Ω > 0 has a Liouville-Caputo fractional deriv-

ative specified by

L C DΩK (σ) = DΩ

[
K (σ)−

ς̇−1

∑
z1=0

K z1(0)
z!

σ
z1

]
,
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where ς̇ = [Ω]+1 for Ω /∈ N0, ς̇ = Ω for Ω ∈ N0 and DΩ

0+ is a fractional derivative of order Ω

in Riemann-Liouville sense, obtained by

DΩK (σ) = Dς̇I ς̇−ΩK (σ) =
1

Γ(σ −Ω)

dς̇

dς̇

σ

∫
σ

0
(σ −>)ς̇−Ω−1K (>)d>.

For any ˘T belonging to A C ς̇ (Φ), there exists a fractional Liouville-Caputo derivative L C DΩ

0+ .

Here, it is established that

L C DΩK (σ) = I ς̇−Ω ˘T ς̇ (σ) =
1

Γ(ζ −Ω)

∫
σ

0
(σ −>)ς̇−Ω−1K ς̇ (>)d>.

Remark 4.1. When Ω = ς̇ , we obtain L C DΩK (σ) = K ς̇ (σ).

To ensure our findings, a particular lemma is important.

Lemma 4.2. For any K ∈ C (Φ), the following equation
Dτ L C DΩ ˘T(σ)+ℵ1 ˘T(σ) = K (σ), σ 6= σz1,σ ∈ (0,℘), ℵ1 ∈ R,

∆ ˘T(σz1) = \z1( ˘T(σ−z1)), z1= 1,2,3, · · · , ς̇ ,

L C DΩ ˘T(0) =L C DΩ ˘T(℘) = 0, ˘T(0) = ψ1
∫℘

0 ˘T(>)d>+ψ2, ψ1,ψ2 ∈ R,

corresponds to the integral equation

˘T(σ) = I Ω+τK (σ)−ℵ1I
Ω+τ ˘T(σ)− σ τ+Ω−1

℘τ−1Γ(τ +Ω)
(I τK (℘))−ℵ1I

τ ˘T(℘)

+ψ1

∫
℘

0
˘T(>)dbm>+ψ2 +

ς̇

∑
z1=1

\z1( ˘T(σz1)).

The following uses a few f.p. theorems to demonstrate the existence and uniqueness of the

solution to the equation (25). To obtain our results, it is necessary to accept the given conditions:

(A1) There exists σ1,σ2 > 0 such that

|q(σ , ˘T 1, Õ1)−q(σ , ˘T 2, Õ2)| ≤ σ1| ˘T 1− ˘T 2|+σ2|Õ1− Õ2|,

for any σ ∈Φ and each ˘T i, Õi ∈ R, i= 1,2.

(A2) There exists ρ > 0 that says

|\z1( ˘T)− \z1(Õ)| ≤ ρ| ˘T − Õ|, ∀ ˘T , Õ ∈ ` with z1= 1,2, · · · , ς̇ .
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Theorem 4.3. Let (A1) satisfied. If

ϕ =

(
(ς̇ +1)℘Ω+τ

Γ(Ω+ τ +1)
+

℘2τ+Ω−1

τ℘τ−1Γ(Ω+ τ)

)(
σ1 +σ2

℘η

Γ(η +1)
+ |ℵ1|

)
+ |ψ1|℘+ ς̇ρ < 1,

(26)

then, the equation (25) has a unique solution.

Proof. Define the orthogonal relation ⊥ on ` by

˘T ⊥ Õ ⇐⇒ ˘T(σ)Õ(σ)≥ ˘T(σ) or ˘T(σ)Õ(σ)≥ Õ(σ), ∀ σ ∈Φ.

Define a function dbm : `×`→ [0,∞) by

dbm( ˘T , Õ) = || ˘T − Õ||∞ = sup{| ˘T(σ)− Õ(σ)|2}, ∀ ˘T , Õ ∈ `.

Clearly, (`,⊥,dbm) is an O-complete PbMS .

Define a map A : `→ `, as follows

(A ˘T)(σ) =
1

Γ(Ω+ τ) ∑
0<σz1<σ

(∫ σz1

σz1−1
(σz1−>)Ω+τ−1K (>)dbm>

−ℵ1

∫
σz1

σz1−1
(σz1−>)Ω+τ−1 ˘T(>)dbm>

)
+

1
Γ(Ω+ τ)

(∫ σ

σς̇

(σ −>)Ω+τ−1K (>)dbm>−ℵ1

∫
σ

σς̇

(σ −>)Ω+τ−1 ˘T(>)dbm>
)

− σ τ+Ω−1

℘τ−1Γ(τ +Ω)

(∫ ℘

0
(℘−>)τ−1K (>)dbm>−ℵ1

∫
℘

0
(℘−>)τ−1 ˘T(>)dbm>

)
+ψ1

∫
℘

0
˘T(>)dbm>+ψ2 + ∑

0<σz1<σ

\z1( ˘T(σ−z1)).

Now, we prove that A is ⊥-preserving. For every ˘T , Õ ∈ ` with ˘T ⊥ Õ and σ ∈Φ, we get

(A ˘T)(σ) =
1

Γ(Ω+ τ) ∑
0<σz1<σ

(∫ σz1

σz1−1
(σz1−>)Ω+τ−1K (>)dbm>

−ℵ1

∫
σz1

σz1−1
(σz1−>)Ω+τ−1 ˘T(>)dbm>

)
+

1
Γ(Ω+ τ)

(∫ σ

σς̇

(σ −>)Ω+τ−1K (>)dbm>−ℵ1

∫
σ

σς̇

(σ −>)Ω+τ−1 ˘T(>)dbm>
)

− σ τ+Ω−1

℘τ−1Γ(τ +Ω)

(∫ ℘

0
(℘−>)τ−1K (>)dbm>−ℵ1

∫
℘

0
(℘−>)τ−1 ˘T(>)dbm>

)
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+ψ1

∫
℘

0
˘T(>)dbm>+ψ2 + ∑

0<σz1<σ

\z1( ˘T(σ−z1))≥ 1.

It follows that [(A ˘T)(σ)][(AÕ)(σ)]≥ (AÕ)(σ) and so (A ˘T)(σ)⊥ (AÕ)(σ).

Then, A is ⊥-preserving.

Let ˘T , Õ ∈ ` with ˘T ⊥ Õ. Assume that ˘Tσ 6= Õσ , for every ˘T , Õ ∈ ` and σ ∈Φ, we obtain

dbm(A( ˘T),A(Õ)) = |A( ˘T)−A(Õ)|2

≤ 1
Γ(Ω+ τ) ∑

0<σz1<σ

(∫ σz1

σz1−1
(σz1−>)Ω+τ−1

|A(>, ˘T(>),I η ˘T(>))−A(>, Õ(>),I η Õ(>))|2dbm>
)

+
1

Γ(Ω+ τ)

(∫ σ

σς̇

(σ −>)Ω+τ−1|A(>, ˘T(>),I η ˘T(>))−A(>, Õ(>),I η Õ(>))|2dbm>
)

+
|ℵ1|

Γ(Ω+ τ) ∑
0<σz1<σ

∫
σz1

σz1−1
(σz1−>)Ω+τ−1| ˘T(>)− Õ(>)|2dbm>

+
|ℵ1|

Γ(Ω+ τ)

∫
σ

σς̇

(σ −>)Ω+τ−1| ˘T(>)− Õ(>)|2dbm>

+
σ τ+Ω−1

℘τ−1Γ(τ +Ω)

(∫
℘

0
(℘−>)τ−1|A(>, ˘T(>),I η ˘T(>))−A(>, Õ(>),I η Õ(>))|2dbm>

−|ℵ1|
∫

℘

0
(℘−>)τ−1| ˘T(>)− Õ(>)|2dbm>

)
+ψ1

∫
℘

0
| ˘T(>)− Õ(>)|2dbm>

+ ∑
z1=1
|\z1( ˘T(σ−z1))− \z1(Õ(σ

−
z1))|2

≤

[(
(ς̇ +1)℘Ω+τ

Γ(Ω+ τ +1)
+

℘2τ+Ω−1

τ℘τ−1Γ(Ω+ τ)

)(
σ1 +σ2

℘η

Γ(η +1)
+ |ℵ1|

)
+ |ψ1|℘+ ς̇ρ

]
| ˘T − Õ|2.

Thus we obtain

‖A( ˘T)−A(Õ)‖ ≤ ϕ‖ ˘T − Õ‖.(27)

We find that A is a contraction by using (27), we get

dbm(A( ˘T),A(Õ))≤ ϕ(dbm( ˘T , Õ)).

Therefore, all the conditions are fulfilled on Corollary 3. As a result, A is a unique solution to

the equation (25) on Φ. �



SOLVING INTEGRO-DIFFERENTIAL EQUATION IN O-PbMS VIA SIMULATION FUNCTION 19

Example 4.4. Consider the fractional relaxation impulsive integro-differential equation as fol-

lows 
D

3
2 L C D

1
2 ˘T(σ)+ 1

4 ˘T(σ) = q((σ), ˘T(σ),I
1
3 ˘T(σ)), σ 6= σz1,σ ∈ (0,1),

∆ ˘T(σz1) = \z1( ˘T(σ−z1)), z1= 1,2,3, · · · , ς̇ ,

L C D
1
2 ˘T(0) =L C D

1
2 ˘T(1) = 0, ˘T(0) = 1

10
∫ 1

0 ˘T(>)d>+2.

(28)

Here Ω = 1
2 , τ = 3

2 , η = 1
3 , ℵ1 =

1
4 , ψ1 =

1
10 , and ψ2 = 2. Set

A((σ), ˘T(σ),I
1
3 ˘T(σ)) =

sin(σ)

exp(σ2)+7

(
| ˘T(σ)|
| ˘T(σ)|+1

+
|I 1

3 ˘T(σ)|
1+ |I 1

3 ˘T(σ)|

)
.

For ˘T i, Õi ∈ R, i= 1,2 we get

|A(σ , ˘T 1, ˘T 2)−A(σ , Õ1, Õ2)|

=
∣∣∣ sin(σ)

exp(σ2)+7

(( | ˘T 1|
| ˘T 1|+1

− |Õ1|
|Õ1|+1

)
+
( | ˘T 2|
| ˘T 2|+1

− |Õ2|
|Õ2|+1

))∣∣∣
≤ 1

exp(σ2)+7

( | ˘T 1− Õ1|
(| ˘T 1|+1)(|Õ1|+1)

+
| ˘T 2− Õ2|

(| ˘T 2|+1)(|Õ2|+1)

)
≤ 1

8
(| ˘T 1− Õ1|+ | ˘T 2− Õ2|).

Thus the assumption (A1) is satisfied with σ1 = σ2 = 1
8 , ℘= 1, ρ = 1

7 and ς̇ = 1. We will

confirm that (26) is fulfilled. In fact

ϕ =

(
(ς̇ +1)℘Ω+τ

Γ(Ω+ τ +1)
+

℘2τ+Ω−1

τ℘τ−1Γ(Ω+ τ)

)(
σ1 +σ2

℘η

Γ(η +1)
+ |ℵ1|

)
+ |ψ1|℘+ ς̇ρ

=
( 1

Γ(3)
+

2
3Γ(2)

)(1
8
+

1
8

1
Γ(1

3 +1)
+

1
4

)
+

1
10

+
1
7

' 0.842 < 1.

Thus, the problem (28) has a unique solution on [0,1] based on the Theorem 4.3.

5. CONCLUSIONS

In this paper, we investigate the existence and uniqueness of a f.p. of almost Z -contractions

via simulation function in complete PbMS using (∝̂, β̂ )-admissibility. Additionally, we provide
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illustrative examples to corroborate the findings. Furthermore, an application to the integro-

differential domain is presented. Our findings expand and generalize numerous results previ-

ously documented in the literature.
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