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Abstract. This research study aims to analyze the solvability of a differential equation in two ways. The first

approach involves by applying of Darbo’s fixed point Theorem and the measure of noncompactness (MNC) tech-

nique, the second approach by using some fixed point theories within the space BC(R+). Moreover, we establish

the asymptotic stability of the solution and dependency on the initial data and on the some functions. Additionally,

we delve into the study of Hyers-Ulam stability. Finally, some examples are provided to verify our investigation.
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1. INTRODUCTION

The study of differential equations has received much attention over the last 30 years or so.

For papers studying such kind of problems (see [1, 2, 3, 4]) and the references therein.

It is known that the nonlinear initial value problems create an important branch of nonlinear

analysis and have numerous applications in describing of miscellaneous real world problems.
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Such kind of these equations have been considered in numerous papers see [5] and references

therein.

The technique associated with MNC in the Banach space BC(R+) (of all bounded and con-

tinuous functions on R+) have been successfully used by J. Banas (see see [5, 6, 7]) to prove

the existence of asymptotically stable solutions for some functional equation (see [8, 9]).

The authors in [10, 11] extensively investigated its solvability, asymptotic stability and de-

pendency of the solution on some parameters. They utilized the technique of MNC within the

space BC(R+).

M. Benchohra et al. [12, 13] were concerned with the existence of solutions to some problems

of differential equations on an unlimited field, where researchers relied on Schoder’s fixed point

Theorem [14] combined with the diagonalization process. Let us mention that this method was

widely used for differential equations; see for instance [15, 16].

Here we are concerning with the initial value problem of the differential equation,

dx
dt

= f (t,x(t)), t ∈ (0,∞),(1)

with the nonlocal integral condition

x(τ)+
∫

τ

0
g(s,x(s))ds = x0, τ ≥ 0.(2)

Our aim here is to establish the solvability of the solution x ∈ BC(R+) of the problem (1)-(2).

The main tools in our study is applying Darbo’s fixed point Theorem [17] and MNC technique

and using Schauder’s fixed point Theorem [18]. Furthermore, the asymptotic stability and de-

pendency of x ∈ BC(R+) on the initial data x0 has been studied. The Hyers – Ulam stability of

the problem (1)-(2) will be studied. Finally, we give an examples illustrate our results.

The first main tool in our work are the measure of MNC and Darbo fixed point Theorem [17].

Let BC(R+) be the class of all bounded and continuous functions in R+, with the standard norm

‖x‖= sup
t∈R+

|x(t)|.

Now, let x ∈ X ⊆ BC(R+) and ε ≥ 0 be given, denote by ωT (x,ε), T ≥ 0, the modulus of

continuity of the function x on the interval [0,T ]

ω
T (x,ε) = sup [|x(t)− x(s)| : t,s ∈ [0,T ], |t− s| ≤ ε]
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and

ω
T (X ,ε) = sup [ωT (x,ε) : x ∈ X ].

Also

ω
T
0 (X) = lim

ε→0
ω

T (X ,ε), ω0(X) = lim
T→∞

ω
T
0 (X).

and

diam X(t) = sup {|x(t)− y(t)|,x,y ∈ X}

The measure of MNC on BC(R+) is given by

µ(X) = ω0(X)+ lim
t→∞

sup diamX(t).(3)

Finally, we state the Darbo fixed point Theorem [17].

The following Theorem will be needed.

Theorem 1. Let Q be nonempty bounded closed convex subset of the space E and let F : Q→Q

be a continuous operator such that µ(FX) ≤ kµ(X) for any nonempty subset X of Q, where

k ∈ [0,1) is a constant. Then F has a fixed point in the set Q.

The second tool in our work is an application of Schauder’s Theorem [18].

The following Lemma will be needed.

Lemma 1 (9). Let D∈ BC. Then D is relatively compact in BC if the following conditions hold:

(a) D is uniformly bounded in BC.

(b) The functions belonging to D are almost equicontinuous on R+, i.e. equicontinuous on

every compact interval of R+.

(c) The functions from D are equiconvergent, that is, given ε > 0, there corresponds T (ε)>

0 such that |u(t)−u(+∞)|< ε , for any t ≥ T (ε) and u ∈ D.

2. EXISTENCE OF SOLUTION

Consider now the initial value problem (1) and (2) under the following assumptions:

(i) f : R+×R→ R is continuous in t ∈ R+, ∀x ∈ R and satisfies Lipschitz condition,
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| f (t,x)− f (t,y)| ≤ b2(t)|x− y| ∀ t ∈ R+, x,y ∈ R,(4)

where

lim
t→∞

∫ t

0
|b2(s)|ds = 0, sup

t∈R+

∫ t

0
|b2(s)|ds = b∗2 and

∫
τ

0
|b2(s)|ds≤ b2.

(ii) g : R+×R→ R is continuous in t ∈ R+, ∀x ∈ R and satisfies Lipschitz condition,

|g(t,x)−g(t,y)| ≤ b1(t)|x− y| ∀ t ∈ R+, x,y ∈ R,(5)

where ∫
τ

0
|b1(s)|ds≤ b1, τ ≥ 0.

(iii) b1 +b2 +b∗2 < 1.

From equation (11), we have

| f (t,x)|− | f (t,0)| ≤ | f (t,x)− f (t,0)| ≤ b2(t)|x|,

| f (t,x)| ≤ | f (t,0)|+b2(t)|x|

and

| f (t,x)| ≤ |m(t)|+b2(t)|x|,

where

|m(t)|= | f (t,0)| ∈ BC(R+) < ∞, lim
t→∞

∫ t

0
|m(s)|ds = 0,

sup
t∈R+

∫ t

0
|m(s)|ds≤ m∗ and

∫
τ

0
|m(s)|ds≤ m.

Also, from equation (5), we get

|g(t,x)| ≤ |v(t)|+b1(t)|x|,

where ∫
τ

0
|v(s)|ds≤ v, τ ≥ 0.

Now, we have the following lemma.
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Lemma 2. The problem (1) and (2) is equivalent to the functional integral equation

x(t) = x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds, t ≥ 0, τ ≥ 0.(6)

Proof. Let x ∈ BC(R+) be a solution of the problem (1)-(2), then by integrating, we get

x(t) = x(0)+
∫ t

0
f (s,x(s))ds(7)

for t = τ , we get

x(τ) = x(0)+
∫

τ

0
f (s,x(s))ds

x(0) = x(τ)−
∫

τ

0
f (s,x(s))ds,

from (2), we have

x(0) = x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds,(8)

substituting by (8) in (7), we obtain (6).

Conversely, let x ∈ BC(R+) be a solution of (6), then by differentiation, we obtain (1).

If t = τ , we obtain (2).

Now, we have the following existences theorem.

Theorem 2. Let the assumptions (i)− (iii) be satisfied, then the problem (1)-(2) has at least

one solution x ∈ BC(R+).

Proof. Define the set

Qr = {x ∈ BC(R+) : ‖x‖ ≤ r}.

Consider the functional integral equation (6) and define the operator

Fx(t) = x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds.

Now, let x ∈ Qr, then

|Fx(t)| =

∣∣∣∣x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds

∣∣∣∣
≤ |x0|+

∫
τ

0
(|v(s)|+ |b1(s)||x(s)|)ds+

∫
τ

0
(|m(s)|+ |b2(s)||x(s)|)ds
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+
∫ t

0
(|m(s)|+ |b2(s)||x(s)|)ds

≤ |x0|+ v+ r b1 +m+ r b2 +m∗+ r b∗2,

then

‖Fx‖ ≤ |x0|+ v+ r b1 +m+ r b2 +m∗+ r b∗2 = r, r =
|x0|+ v+m+ m∗

1− (b1 +b2 +b∗2)
.

Hence the operator F maps the ball Qr into itself.

Now, let δ > 0 be given take x1,x2 ∈ Qr, such that ‖x2− x1‖ ≤ δ , then

|Fx2(t)−Fx1(t)| =

∣∣∣∣x0−
∫

τ

0
g(s,x2(s))ds−

∫
τ

0
f (s,x2(s))ds+

∫ t

0
f (s,x2(s))ds

− x0 +
∫

τ

0
g(s,x1(s))ds+

∫
τ

0
f (s,x1(s))ds−

∫ t

0
f (s,x1(s))ds

∣∣∣∣
≤

∫
τ

0
|g(s,x2(s))−g(s,x1(s))|ds+

∫
τ

0
| f (s,x2(s))− f (s,x1(s))|ds

+
∫ t

0
| f (s,x2(s))− f (s,x1(s))|ds

≤
∫

τ

0
|b1(s)||x2(s)− x1(s)|ds+

∫
τ

0
|b2(s)||x2(s)− x1(s)|ds

+
∫ t

0
|b2(s)||x2(s)− x1(s)|ds

≤ ‖x2− x1‖
∫

τ

0
|b1(s)|ds+‖x2− x1‖

∫
τ

0
|b2(s)|ds

+
∫ t

0
|b2(s)||x2(s)− x1(s)|ds

≤ δ b1 + δ b2 +
∫ t

0
|b2(s)||x2(s)− x1(s)|ds

(i) Choose T > 0 such that t ≥ T , then we have

‖Fx2−Fx1‖ ≤ δ b1 + δ b2 + b∗2‖x2− x1‖

≤ b∗δ b1 + δ b2 + b∗2δ = ε.

(ii) Also, for T > 0 and t ∈ [0,T ], then

‖Fx2−Fx1‖ ≤ δ b1 + δ b2 + b∗2‖x2− x1‖

≤ b∗δ b1 + δ b2 + b∗2δ = ε.
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Hence the operator F is continuous.

Now, let T > 0 and δ > 0 be given, choose a function x ∈ X and t ∈ [0,T ] such that

|t2− t1|< δ , t1 ≤ t2

|Fx(t2)−Fx(t1)| =

∣∣∣∣x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t2

0
f (s,x(s))ds

− x0 +
∫

τ

0
g(s,x(s))ds+

∫
τ

0
f (s,x(s))ds−

∫ t1

0
f (s,x(s))ds

∣∣∣∣
≤

∫ t2

t1
| f (s,x(s))|ds.

Now, let t1, t2 ∈ [0,T ], |t2− t1|< δ , then we deduce that

ω
T (FX ,ε) ≤

∫ t2

t1
| f (s,x(s))|ds < ε

ω
T
0 (FX) ≤ 0

and as T → ∞

ω0(FX) = 0.(9)

Now, let X ∈ Qr be nonempty, then for any x, y ∈ X and T > 0 such that t ≥ T , then we get

|Fx(t)−Fy(t)|

≤
∫

τ

0
|b1(s)||x(s)− y(s)|ds+

∫
τ

0
|b2(s)||x(s)− y(s)|ds+

∫ t

0
|b2(s)||x(s)− y(s)|ds

≤
∫

τ

0
|b1(s)| sup

x,y∈X
|x(s)− y(s)|ds+

∫
τ

0
|b2(s)| sup

x,y∈X
|x(s)− y(s)|ds

+
∫ t

0
|b2(s)| sup

x,y∈X
|x(s)− y(s)|ds

≤
∫

τ

0
|b1(s)|

(
lim
s→∞

( sup
x,y∈X

|x(s)− y(s)|)+ ε1

)
ds

+
∫

τ

0
|b2(s)|

(
lim
s→∞

( sup
x,y∈X

|x(s)− y(s)|) + ε2

)
ds

+
∫ t

0
|b2(s)|

(
lim
s→∞

( sup
x,y∈X

|x(s)− y(s)|)+ ε3

)
ds

≤ lim
t→∞

(
sup

x,y∈X
|x(t)− y(t)|+ ε1

)
.
∫

τ

0
|b1(s)|ds



8 EL-SAYED, BA-ALI, HAMDALLAH

+ lim
t→∞

(
sup

x,y∈X
|x(t)− y(t)|+ ε2

)
.
∫

τ

0
|b2(s)|ds

+ lim
t→∞

(
sup

x,y∈X
|x(t)− y(t)|+ ε3

)
.
∫ t

0
|b2(s)|ds

≤ lim
t→∞

(
sup

x,y∈X
|x(t)− y(t)|+ ε1

)
.b1 + lim

t→∞

(
sup

x,y∈X
|x(t)− y(t)|+ ε2

)
.b2

+ lim
t→∞

(
sup

x,y∈X
|x(t)− y(t)|+ ε3

)
.b∗2,

then

diam FX(t) ≤ (b1 +b2 +b∗2) lim
t→∞

diamX(t).

Hence

lim
t→∞

sup diamFX(t) ≤ (b1 +b2 +b∗2) lim
t→∞

sup diamX(t).(10)

Now, from (9), (10) and the definition of µ in (3), we get

µ(FX) ≤ (b1 +b2 +b∗2) µ(X).

Since (b1 + b2 + b∗2) < 1, F is a contraction regarding MNC (µ), which implies that x ∈ Qr

is a solution of (6). Consequently there exists at least one solution x ∈ BC(R+) of the problem

(1)-(2).

Now, we will show the existence of solution x ∈ BC(R+) of the problem (1)-(2) by using

Schauder’s fixed point Theorem [18].

Theorem 3. Let the assumptions (i)− (iii) be satisfied, then the problem (1)-(2) has at least

one solution x ∈ BC(R+).

Proof. Define Bρ by

Bρ = {x ∈ BC(R+) : ‖x‖ ≤ ρ}, ρ =
|x0|+ v+m+ m∗

1− (b1 +b2 +b∗2)

and the operator K by

Kx(t) = x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds.
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Now, let x ∈ Bρ , then

|Kx(t)| =

∣∣∣∣x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds

∣∣∣∣
≤ |x0|+

∫
τ

0
(|v(s)|+ |b1(s)||x(s)|)ds+

∫
τ

0
(|m(s)|+ |b2(s)||x(s)|)ds

+
∫ t

0
(|m(s)|+ |b2(s)||x(s)|)ds

≤ |x0|+ v+ρ b1 +m+ρ b2 +m∗+ρ b∗2,

then

‖Kx‖ ≤ |x0|+ v+ r b1 +m+ r b2 +m∗+ r b∗2 = ρ.

This proves that K : Bρ → Bρ and the class of functions {Kx} is uniformly bounded.

Now, let δ > 0 be given take x1,x2 ∈ Bρ , such that ‖x2− x1‖ ≤ δ , then

|Fx2(t)−Fx1(t)|

=

∣∣∣∣x0−
∫

τ

0
g(s,x2(s))ds−

∫
τ

0
f (s,x2(s))ds+

∫ t

0
f (s,x2(s))ds

− x0 +
∫

τ

0
g(s,x1(s))ds+

∫
τ

0
f (s,x1(s))ds−

∫ t

0
f (s,x1(s))ds

∣∣∣∣
≤

∫
τ

0
|g(s,x2(s))−g(s,x1(s))|ds+

∫
τ

0
| f (s,x2(s))− f (s,x1(s))|ds

+
∫ t

0
| f (s,x2(s))− f (s,x1(s))|ds

≤
∫

τ

0
|b1(s)||x2(s)− x1(s)|ds+

∫
τ

0
|b2(s)||x2(s)− x1(s)|ds

+
∫ t

0
|b2(s)||x2(s)− x1(s)|ds

≤ ‖x2− x1‖
∫

τ

0
|b1(s)|ds+‖x2− x1‖

∫
τ

0
|b2(s)|ds+

∫ t

0
|b2(s)||x2(s)− x1(s)|ds

≤ δ b1 + δ b2 +
∫ t

0
|b2(s)||x2(s)− x1(s)|ds

(i) Choose T > 0 such that t ≥ T , then we have

‖Fx2−Fx1‖ ≤ δ b1 + δ b2 + b∗2‖x2− x1‖

≤ b∗δ b1 + δ b2 + b∗2δ = ε.
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(ii) Also, for T > 0 and t ∈ [0,T ], then

‖Fx2−Fx1‖ ≤ δ b1 + δ b2 + b∗2‖x2− x1‖

≤ b∗δ b1 + δ b2 + b∗2δ = ε.

Hence the operator K is continuous.

Now, let x ∈ Bρ and t1, t2 ∈ I such that t2 > t1 and | t1− t2 |≤ δ , then we have

|Kx(t2)−Kx(t1)| =

∣∣∣∣x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t2

0
f (s,x(s))ds

− x0 +
∫

τ

0
g(s,x(s))ds+

∫
τ

0
f (s,x(s))ds−

∫ t1

0
f (s,x(s))ds

∣∣∣∣
≤

∫ t2

t1
| f (s,x(s))|ds.

This means that the class of functions {Kx} is equicontinuous on every compact interval I of

R+. Next, let t ∈ R+ and x ∈ Bρ , then we have

∀ ε > 0, ∃ T (ε) such that t > T (ε) implies∫ t

0
|m(s)−0|ds <

ε

2
and

∫ t

0
|b2(s)−0|ds <

ε

2
,

then

|
∫ t

0
f (s,x(s))ds−0| ≤ |

∫ t

0
m(s)−0 ds+ r

∫ t

0
b2(s)−0ds|

≤ |
∫ t

0
m(s)−0 ds|+ r|

∫ t

0
b2(s)−0|

≤ ε

2
+

ε

2
= ε,

then ∫ t

0
f (s,x(s))ds−→ 0

and

|x(t)− x(+∞)|=
∫ t

0
|m(s)|ds+‖x‖

∫ t

0
|b2(s)|ds→ 0.

Hence

|x(t)− x(+∞)| → 0, as t→+∞.
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Then the class of functions {Kx} is equiconvergent.

Then from Lemma 1, we can conclude that K : Bρ → Bρ is continuous and compact.

Now, by Schauder’s fixed point Theorem [18] there exists at least one fixed point x ∈ Bρ ⊂

BC(R+) of the functional integral equation (6). Consequently there exists at least one solution

x ∈ BC(R+) of the problem (1)-(2).

Corollary 1. Let the assumptions of theorem 2 be satisfied, then the solution of the problem

(1)-(2) is unique.

Proof. Let x1,x2 be two solutions of (6), then

|x2(t)− x1(t)| ≤
∣∣∣∣x0−

∫
τ

0
g(s,x2(s))ds−

∫
τ

0
f (s,x2(s))ds+

∫ t

0
f (s,x2(s))ds

− x0 +
∫

τ

0
g(s,x1(s))ds+

∫
τ

0
f (s,x1(s))ds−

∫ t

0
f (s,x1(s))ds

∣∣∣∣
≤

∫
τ

0
|g(s,x2(s))−g(s,x1(s))|ds+

∫
τ

0
| f (s,x2(s))− f (s,x1(s))|ds

+
∫ t

0
| f (s,x2(s))− f (s,x1(s))|ds

≤
∫

τ

0
|b1(s)||x2(s)− x1(s)|ds+

∫
τ

0
|b2(s)||x2(s)− x1(s)|ds

+
∫ t

0
|b2(s)||x2(s)− x1(s)|ds

≤ ‖x2− x1‖ b1 + ‖x2− x1‖ b2 + ‖x2− x1‖ b∗2,

then

‖x2− x1‖ ≤ (b1 + b2 + b∗2)‖x2− x1‖.

Hence

‖x2− x1‖(1− (b1 + b2 + b∗2)) ≤ 0,

then the problem (1)-(2) is unique.
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3. ASYMPTOTIC STABILITY

Theorem 4. The solution x∈BC(R+) of (6) is asymptotically stable in the sense that for any ε >

0, there exist T (ε)> 0 and r > 0. Moreover, for x, x̄∈Qr any two solutions, then |x(t)− x̄(t)| ≤ ε

for t ≥ T (ε).

Proof. Take x, x̄ ∈Qr any two solutions of (6), then for every ε > 0 there exist T (ε)> 0 such

that t ≥ T (ε), then

|x(t)− x̄(t)| =

∣∣∣∣x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds

− x0 +
∫

τ

0
g(s, x̄(s))ds+

∫
τ

0
f (s, x̄(s))ds−

∫ t

0
f (s, x̄(s))ds

∣∣∣∣
≤

∫
τ

0
|g(s,x(s))−g(s, x̄(s))|ds+

∫
τ

0
| f (s,x(s))− f (s, x̄(s))|ds

+
∫ t

0
| f (s,x(s))− f (s, x̄(s))|ds

≤ ‖x− x̄‖ b1 + ‖x− x̄‖ b2 + 2
∫ t

0
|m(s)|ds+2 r

∫ t

0
|b2(s)|ds

≤ ‖x− x̄‖ b1 + ‖x− x̄‖ b2 +2 ε4 +2 r ε5,

then

‖x− x̄‖ ≤ 2 ε4 +2 r ε5

1− (b1 + b2)
.

That is

|x(t)− x̄(t)| ≤ ‖x− x̄‖ ≤ ε.

Consequently, x ∈ BC(R+) is asymptotically stable of the problem (1)-(2).

4. DEPENDENCY

Consider the following assumption:

(i)∗ f : R+×R→ R is continuous in t ∈ R+, ∀x ∈ R and satisfies,

| f (t,x)− f ∗(t,y)| ≤ b2(t) ∀ t ∈ R+, x,y ∈ R,(11)
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where

lim
t→∞

∫ t

0
|b2(s)|ds = 0, t ≥ 0.

4.1. Dependency on the initial data x0.

Theorem 5. Let the assumptions of Theorems 2 and (i)∗ be satisfies, then the solution of (6)

asymptotically dependency on the initial data x0 if

∀ ε > 0, ∃ δ (ε) such that |x0− x∗0| < δ ⇒ ‖x− x∗‖ < ε, t > T (ε)

where x∗ is the solution of

x∗(t) = x∗0−
∫

τ

0
g(s,x∗(s))ds−

∫
τ

0
f (s,x∗(s))ds+

∫ t

0
f (s,x∗(s))ds.

Proof.

|x(t)− x∗(t)| =

∣∣∣∣x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds

− x∗0−
∫

τ

0
g(s,x∗(s))ds−

∫
τ

0
f (s,x∗(s))ds+

∫ t

0
f (s,x∗(s))ds

∣∣∣∣
≤ |x0− x∗0|+

∫
τ

0
|g(s,x(s))−g(s,x∗(s))|ds+

∫
τ

0
| f (s,x(s))− f (s,x∗(s))|ds

+
∫ t

0
| f (s,x(s))− f (s,x∗(s))|ds

≤ δ +
∫

τ

0
|b1(s)||x(s)− x∗(s)|ds +

∫
τ

0
|b2(s)||x(s)− x∗(s)|ds

+
∫ t

0
|b2(s)||x(s)− x∗(s)|ds.

(i) Choose t ∈ [0, T ], then we get

‖x− x∗‖ ≤ δ +b1‖x− x∗‖+b2‖x− x∗‖+b∗2‖x− x∗‖.

Hence

‖x− x∗‖ ≤ δ

1− (b1 +b2 +b∗2)
= ε.

(ii) Choose t > T (ε) and τ > 0, then we have

‖x− x∗‖ ≤ δ +b1 ‖x− x∗‖+ b2 ‖x− x∗‖+ ‖x− x∗‖
∫ t

0
|b2(s)|ds

≤ δ +b1 ‖x− x∗‖+ b2 ‖x− x∗‖+‖x− x∗‖ ε1
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≤ δ +b1 ‖x− x∗‖+ b2 ‖x− x∗‖+ ε
∗
1 .

Hence

‖x− x∗‖ ≤
δ + ε∗1

1− (b1 +b2)
= ε.

4.2. Dependency on the function g.

Theorem 6. Let the assumptions of Theorems 2 and (i)∗ be satisfies, then the solution of (6)

asymptotically dependency on the function g if

∀ ε > 0, ∃ δ (ε) > 0 and T (ε)> 0 such that∫
τ

0
|g(s,x)−g∗(s,x)|ds < δ , then f or t > T (ε)⇒‖x− x∗‖< ε,

where x∗ is the solution of

x∗(t) = x0−
∫

τ

0
g∗(s,x∗(s))ds−

∫
τ

0
f (s,x∗(s))ds+

∫ t

0
f (s,x∗(s))ds.

Proof.

|x(t)− x∗(t)| =

∣∣∣∣x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds

− x0 +
∫

τ

0
g∗(s,x∗(s))ds+

∫
τ

0
f (s,x∗(s))ds−

∫ t

0
f (s,x∗(s))ds

∣∣∣∣
≤

∫
τ

0

∣∣∣∣g(s,x(s))−g∗(s,x(s))
∣∣∣∣ds+

∫
τ

0

∣∣∣∣g∗(s,x(s))−g∗(s,x∗(s))
∣∣∣∣ds

+
∫

τ

0

∣∣∣∣ f (s,x(s))− f (s,x∗(s))
∣∣∣∣ds+

∫ t

0

∣∣∣∣ f (s,x(s))− f (s,x∗(s))
∣∣∣∣ds.

(i) Choose t ∈ [0, T ], then we get

‖x− x∗‖ ≤ δ +b1‖x− x∗‖+b2‖x− x∗‖+b∗2‖x− x∗‖.

Hence

‖x− x∗‖ ≤ δ

1− (b1 +b2 +b∗2)
= ε.

(ii) Choose t > T (ε) and τ > 0, then we have

‖x− x∗‖ ≤ δ +b1‖x− x∗‖+b2 ‖x− x∗‖+‖x− x∗‖
∫ t

0
|b2(s)|ds

≤ δ +b1‖x− x∗‖+b2 ‖x− x∗‖+‖x− x∗‖ ε1
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≤ δ +b1‖x− x∗‖+b2 ‖x− x∗‖+ ε
∗
1 .

Hence

‖x− x∗‖ ≤
δ + ε∗1

1− (b1 +b2)
= ε.

4.3. Dependency on the function f .

Theorem 7. Let the assumptions of Theorems 2 and (i)∗ be satisfies, then the solution of (6)

asymptotically dependency on the function f if

∀ ε > 0, ∃ δ (ε)> 0 and T (ε)> 0 such that∫ t

0
| f (s,x)− f ∗(s,x)|ds < δ , then f or t > T (ε)⇒‖x− x∗‖< ε,

where x∗ is the solution of

x∗(t) = x0−
∫

τ

0
g(s,x∗(s))ds−

∫
τ

0
f ∗(s,x∗(s))ds+

∫ t

0
f ∗(s,x∗(s))ds.

Proof.

|x(t)− x∗(t)| =

∣∣∣∣x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds

− x0 +
∫

τ

0
g(s,x∗(s))ds+

∫
τ

0
f ∗(s,x∗(s))ds−

∫ t

0
f ∗(s,x∗(s))ds

∣∣∣∣
≤

∫
τ

0

∣∣∣∣g(s,x(s))−g(s,x∗(s))
∣∣∣∣ds +

∫
τ

0

∣∣∣∣ f (s,x(s))− f ∗(s,x∗(s))
∣∣∣∣ds

+
∫ t

0

∣∣∣∣ f (s,x(s))− f ∗(s,x∗(s))
∣∣∣∣ds

≤ b1‖x− x∗‖+
∫

τ

0

∣∣∣∣ f (s,x(s))− f ∗(s,x(s))
∣∣∣∣ds+

∫
τ

0

∣∣∣∣ f ∗(s,x(s))− f ∗(s,x∗(s))

+
∫ t

0

∣∣∣∣ f (s,x(s))− f ∗(s,x(s))
∣∣∣∣ds+

∫ t

0

∣∣∣∣ f ∗(s,x(s))− f ∗(s,x∗(s))
∣∣∣∣ds.

(i) Choose t ∈ [0, T ], then we get

‖x− x∗‖ ≤ b1‖x− x∗‖+δ +b2‖x− x∗‖+δ +b∗2‖x− x∗‖.

Hence

‖x− x∗‖ ≤ 2 δ

1− (b1 +b2 +b∗2)
= ε.
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(ii) Choose t > T (ε) and τ > 0, then we have

‖x− x∗‖ ≤ b1‖x− x∗‖+δ +‖x− x∗‖
∫

τ

0
|b2(s)|ds+δ +‖x− x∗‖

∫ t

0
|b2(s)|ds

≤ b1‖x− x∗‖+δ +‖x− x∗‖ b2 +δ +‖x− x∗‖ ε1

≤ b1‖x− x∗‖+δ +‖x− x∗‖ b2 +δ + ε
∗
1 .

Hence

‖x− x∗‖ ≤
2 δ + ε∗1

1− (b1 +b2)
= ε.

5. HYERS - ULAM STABILITY

Definition 1. [11, 19, 20] The problem (1)-(2) is Hyers - Ulam stable if

∀ ε > 0, ∃ δ (ε)> 0 and T (ε)> 0 such that t > T (ε) and for any δ −approximate solution

xs , satisfies,

(12)
∣∣∣∣ dxs

dt
− f (t,xs(t))

∣∣∣∣< δ a(t) implies ‖x− xs‖< ε, where
∫ t

0
a(s) ds ≤ k, t > T (ε).

Theorem 8. Let the assumptions of Theorem 2 and (i)∗ be satisfied, then the problem (1)-(2) is

Hyers - Ulam stable.

Proof. From (12), we have

−δ a(t) ≤ dxs

dt
− f (t,xs(t))≤ δ a(t)

−δ
∗ = −δ

∫ t

0
a(s)ds≤ xs(t)− xs(0)−

∫ t

0
f (s,xs(s))ds≤ δ

∫ t

0
a(s)ds = δ

∗

−δ
∗ ≤ xs(t)− x0 +

∫
τ

0
g(s,xs(s))ds+

∫
τ

0
f (s,xs(s))ds−

∫ t

0
f (s,xs(s))ds≤ δ

∗

Now,

|x(t)− xs(t)| =

∣∣∣∣x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds− xs(t)

∣∣∣∣
≤

∣∣∣∣x0−
∫

τ

0
g(s,x(s))ds−

∫
τ

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds

− x0 +
∫

τ

0
g(s,xs(s))ds+

∫
τ

0
f (s,xs(s))ds−

∫ t

0
f (s,xs(s))ds

∣∣∣∣
+

∣∣∣∣xs(t)− x0 +
∫

τ

0
g(s,xs(s))ds+

∫
τ

0
f (s,xs(s))ds−

∫ t

0
f (s,xs(s))ds

∣∣∣∣
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≤
∫

τ

0
|g(s,x(s))−g(s,xs(s))|ds+

∫
τ

0
| f (s,x(s))− f (s,xs(s))|ds

+
∫ t

0
| f (s,x(s))− f (s,xs(s))|ds+δ

∗.

(i) Choose t ∈ [0, T ], then we get

‖x− xs‖ ≤ b1‖x− xs‖+b2‖x− xs‖+b∗2‖x− xs‖+δ
∗.

Hence

‖x− xs‖ ≤ δ ∗

1− (b1 +b2 +b∗2)
= ε.

(ii) Choose t > T (ε) and τ > 0, then we have

‖x− xs‖ ≤ b1 ‖x− xs‖+ b2 ‖x− xs‖+ ‖x− xs‖
∫ t

0
|b2(s)|ds+δ

∗

≤ b1 ‖x− xs‖+ b2 ‖x− xs‖+‖x− xs‖ ε1 +δ
∗

≤ b1 ‖x− xs‖+ b2 ‖x− xs‖+ ε
∗
1 +δ

∗.

Hence

‖x− x∗‖ ≤
δ ∗+ ε∗1

1− (b1 +b2)
= ε.

Example.

Taking into account the equation

dx
dt

=
t e−t

3
+

(t e−t− e−t)|x(t)|
8

, t ∈ (0,∞),(13)

with the nonlocal integral condition

x(1)+
∫ 1

0
(e−ln(s+1)+

es|x(s)|
5

)ds = x0(14)

Set

f (t,x) =
t e−t

3
+

(t e−t− e−t)|x(t)|
8

,

g(t,x) = e−ln(t+1)+
et |x(t)|

5
.
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Putting

v = ln(2) = 0.69314718, b1 =
e
5
= 0.5436563657,

b∗2 = b2 =
1
8
, m∗ = m =

1
3
.

we can find that

b1 +b2 +b∗2 = 0.7936563657 < 1.

then the problem (13)-(14) has at least one solution x ∈ BC(R+).

6. CONCLUSIONS

In this investigation, the asymptotic stability and dependency of the solutions for differential

equation have been established on R+. Firstly, we discussed two cases for study investigated

the solvability of the problem (1)-(2): In the first case, we studied the existences of solutions

x ∈ BC(R+) of the problem (1)-(2), by applying the technique associated with the MNC in the

Banach space BC(R+). In the second case, we used Schauder’s fixed point Theorem. Next, we

studied the asymptotic stability and dependency of the solution x ∈ BC(R+) on the initial data

x0 and on the functions f and g. Moreover, we studied the Hyers-Ulam stability. Finally, we

discussed the examples to illustrate our results.
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