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Abstract. This paper proposes an alternating inertial-type extrapolation technique for solving the convex mini-

mization problem. We provide a self-adaptive proximal gradient technique using an inertial step. Under certain

conditions, the strong convergence theorem is established. The numerical results illustrate the performances of our

algorithm.
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1. INTRODUCTION

The approximation gradient approach is one of the most popular approaches for calculat-

ing the minimum value of a non-smooth function. It employs many gradient steps in the first

function before conducting the proximity function in the second. Inertia has long been known

to improve both theoretical and real convergence rates for this method. It is also known as

Neserov’s acceleration [1].

Let H is a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ ·‖ provided B : H→

2H is the maximal monotone operator, and A : H → H Lipschitz approached the problem as
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follows: find v ∈ H, which

(1.1) 0 ∈ (A+B)v.

The solution set of the problem (1.1) is represented by

(1.2) (A+B)−1(0).

The problem (1.1) consists of special cases: Linear inversion problems include convex con-

straints, discrete likelihood problems, minimization problems, fixed point problems, and other

problems. The problem (1.1) involves optimizing the sum of two functions, as shown below:

(1.3) min
v∈H

(g(v)+h(v)),

where H is a real Hilbert space, g,h : H → R∪{+∞} are two proper, lower semi-continuous

and convex and g is differentiable with the Lipschitz continuous gradient denoted by ∇g. It is

known that v∗ is a minimizer of g+h if and only if

(1.4) 0 ∈ (∂h+∇g)(v∗),

where ∂h denotes the subdifferential of h.

The most popular strategy for solving the convex minimization problem is the so-called

forward-backward algorithm, which creates from a starting point v1 ∈ H and

(1.5) vi+1 = proxρh(vi−ρ∇g(vi)), i≥ 1,

where proxh is the proximal operator of h and the step size ρ ∈ (0,2/L), L is the Lipschitz

constant of ∇g.

Tseng [2] proposed the modified forward-backward algorithm described below, which em-

ploys the stepsize with linesearch technique. Given α > 0,γ ∈ (0,1), µ ∈ (0,1), and v1 ∈ H.

Compute

(1.6)
zi = proxρih(vi−ρi∇g(vi)),

vi+1 = proxρih(zi−ρi(∇g(zi)−∇g(vi))), ∀ i≥ 1,

where ρi is the largest ρ ∈ {α,αγ,αγ2, . . .} satisfying

ρ‖∇g(zi)−∇g(vi)‖ ≤ µ‖zi− vi‖.
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Malitsky and Tam [3] proposed the forward-reflected-backward algorithm. Given ρ0, ρ1 >

0,γ ∈ {1,β−1}, β ∈ (0,1), δ ∈ (0,1) and v0, v1 ∈ H. Compute

(1.7) vi+1 = proxρih(vi−ρi∇g(vi)−ρi−1(∇g(vi)−∇g(vi−1))),

where the stepsize ρi = γρi−1β n with n being the smallest nonnegative integer satisfying

ρi‖∇g(vi+1)−∇g(vi)‖ ≤
δ

2
‖vi+1− vi‖.

Very recently, Hieu et al. [4] proposed the modified forward-reflected-backward method with

adaptive stepsize. Given ρ0, ρ1 > 0,µ ∈
(
0, 1

2

)
and v0, v1 ∈ H. Compute

(1.8)
vi+1 = proxρih(vi−ρi∇g(vi)−ρi−1(∇g(vi)−∇g(vi−1))),

ρi+1 = min{µ ‖vi+1− vi‖
‖∇g(vi+1)−∇g(vi)‖

,ρi}.

This stepsize enables the suggested method to solve the problem even without knowledge of the

Lipschitz constant.

Inertial techniques (refer to [5]) were investigated to speed up algorithm convergence.

They were employed in various numerical approaches to address optimization issues in finite-

dimensional and infinite-dimensional spaces; see, for example, [6, 7, 8, 9, 10, 11, 12, 13, 14,

12, 16], and the references therein.

Mu and Peng [17] developed an alternate inertial technique to restore Fejér monotonicity to

the even subsequence associated with the problem’s solution set. Remember that the primary

notion behind the alternated inertial approach is to add inertial effects only at odd iteration steps

rather than even iteration steps, which is where the term ”alternated” comes from. Given a

sequence of nonnegative parameters {γi} and v0, v1 ∈ H. Compute

(1.9)


vi, if i = even,

vi + γi(vi− vi−1), if i = odd.

Inspired and motivated by previous work, we provide an adaptive stepsize-based alternated

inertial proximal gradient approach for convex minimization problems. We establish weak

convergence of our scheme under certain assumptions.
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2. PRELIMINARIES

The symbols→ and ⇀ mean the strong convergence and the weak convergence, respectively.

It is well known that the following equation

(2.1) ‖av+(1−a)z‖2 = a‖v‖2 +(1−a)‖z‖2−a(1−a)‖v− z‖2,

holds for all v,z ∈ H and a ∈ R.

Let h : H → R∪{+∞} be a proper, lower semicontinuous and convex function. We denote

the domain of h by dom(h) = {v ∈ H |h(v)<+∞}. For any v ∈ dom(h), the subdifferential of

h at v is defined by

∂h(v) = {u ∈ H | 〈u,z− v〉 ≤ h(z)−h(v), z ∈ H}.

Recall that the proximal operator proxh : dom(h) → H is defined as proxh(v) = (I +

∂h)−1(y),y ∈ H. It is known that the proximal operator is single-valued. Moreover, we have

(2.2)
y−proxρh(y)

ρ
∈ ∂h(proxρh(y)) for all y ∈ H, ρ > 0.

Definition 2.1. [18] Let Ψ be a nonempty subset of H. A sequence {vi} in H is said to be quasi-

Fejér convergent to Ψ if and only if for all v ∈ Ψ there exists a positive sequence {εi} such

that

Lemma 2.1. [19] If {vi} is quasi-Fejér convergent to Ψ, then we have

(i) {vi} is bounded.

(ii) If all weak accumulation points of {vi} is in Ψ, then {vi} weakly converges to a point in

Ψ.

Lemma 2.2. [20] The subdifferential operator ∂h is maximal monotone. Moreover, the graph

of ∂h,Gph(∂h) = {(v,z) ∈ H×H : z ∈ ∂h(v)} is demiclosed, i.e., if the sequence {(vi,zi)} ⊂

Gph(∂h) satisfies that {vi} converges weakly to v and {zi} converges strongly to z, then (v,z) ∈

Gph(∂h).

Lemma 2.3. [21] Let {ri}, {pi} and {qi} be real positive sequences such that

ri+1 ≤ (1+qi)ri + pi, for all i≥ 1.
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If ∑
∞
i=1 qi <+∞ and ∑

∞
i=1 pi <+∞, then lim

i→+∞
ri exists.

Lemma 2.4. [22] Let {ri} and {γi} be real positive sequences such that

ri+1 ≤ (1+ γi)ri + γiri−1, for all i≥ 1.

Then, ri+1 ≤ K ·∏i
a=1(1+2γa) where K = max{r1,r2}. Moreover, if ∑

∞
i=1 γi <+∞, then {ri} is

bounded.

3. THE MAIN RESULTS

This section assumes that the following requirements are met for our convergence analysis:

(C1) The solution set of the convex minimization problem (1.3) is nonempty, i.e.,

Ω = argmin(h+g) 6= /0.

(C2) Let ρ1 > 0,β ∈ (0,1),γ ∈ (0,1),δ ∈ (0,1), lim
i→∞

δi = 0, and {σi} ⊂ [0,+∞) such that

∑
∞
i=1 σi <+∞.

(C3) g,h : H→ R∪{+∞} are two proper, lower semicontinuous and convex functions.

(C4) g is differentiable on H and ∇g is Lipschitz continuous on H with the Lipschitz constant

L > 0.

Next, we present a new inertial forward-backward approach for solving (1.3).

Algorithm 3.1.

Initialization: Let ρ1,β ,γ,δ ,δi,{σi} such that Conditions (C2) hold. Choose initial points

v0 = v1 ∈ H. Set i := 1.

Step 1. Compute

(3.1) zi =


vi, if i = even,

vi + γ(vi− vi−1), if i = odd.

Step 2. Compute si = proxρih(zi− ρi∇g(zi)). If si = zi then the iteration stops and si is the

solution of (1.3); otherwise, turn to Step 3.

Step 3. Compute wi = si−ρi(∇g(si)−∇g(zi)).
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Step 4. Compute vi+1 = (1−β )zi +βwi. and update the next step size ρi+1 by

(3.2) ρi+1 =


min

{
(δi+δ )‖zi−si‖
‖∇g(zi)−∇g(si)‖ ,ρi +σi

}
, if ‖∇g(zi)−∇g(si)‖ 6= 0,

ρi +σi, otherwise

Set i := i+1 and go to Step 1.

Lemma 3.1. The sequences {ρi} from Algorithm 3.1 is bounded and ρi ∈ [min{δ

L ,ρ1},ρ1+Λ].

Furthermore there exists ρ ∈ [min{δ

L ,ρ1},ρ1 +Λ] such that lim
i→+∞

ρi = ρ, where Λ = ∑
∞
i=1 σi.

Proof. By the definition of ρi, if ‖∇g(zi)−∇g(si)‖ 6= 0, we get

(3.3) ρi ≥
(δi +δ )‖zi− si‖
‖∇g(zi)−∇g(si)‖

≥ δi +δ

L
≥ δ

L
.

From Λ = ∑
∞
i=1 σi, we have

(3.4) ρi+1 ≤ ρi +σi ≤ ρ1 +
∞

∑
i=1

σi = ρ1 +Λ,

which implies that

(3.5)
{

δ

L
,ρ1

}
≤ ρi ≤ ρ1 +Λ.

We have

(3.6) ρi+1−ρi = [ρi+1−ρi]+− [ρi+1−ρi]−,

where

[ρi+1−ρi]+ = max{0,ρi+1−ρi} ,

and

[ρi+1−ρi]− = max{0,−(ρi+1−ρi)} .

Hence,

(3.7) ρi+1−ρi =
i

∑
a=1

[ρa+1−ρa]+−
i

∑
a=1

[ρa+1−ρa]−.

Since {ρi} is bounded and ∑
∞
i=1[ρi+1− ρi]+ ≤ ∑

∞
i=1 σi < +∞, we obtain [ρi+1− ρi]− is con-

vergent. Therefore, there exists ρ ∈ [min
{

δ

L ,ρ1

}
,ρ1 +Λ] such that lim

i→+∞
ρi = ρ. This proof is

completed. �
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Lemma 3.2. Suppose that the sequence {wi} is generated by Algorithm 3.1. Then

‖wi− v∗‖2 ≤ ‖zi− v∗‖2−

{
1− (δi +δ )2ρ2

i

ρ2
i+1

}
‖si− zi‖2, ∀v∗ ∈Ω.

Proof. Let v∗ ∈Ω. Then

‖wi− v∗‖2 = ‖si−ρi(∇g(si)−∇g(zi))−‖

= ‖si−‖2 +ρ
2
i ‖∇g(si)−∇g(zi)‖2

−2ρi〈si− v∗,∇g(si)−∇g(zi)〉

= ‖si− zi + zi−‖2 +ρ
2
i ‖∇g(si)−∇g(zi)‖2

−2ρi〈si− v∗,∇g(si)−∇g(zi)〉

= ‖zi−‖2 +‖si− zi‖2 +2〈zi− v∗,si− zi〉

−2ρi〈si− v∗,∇g(si)−∇g(zi)〉+ρ
2
i ‖∇g(si)−∇g(zi)‖2

= ‖zi−‖2 +‖si− zi‖2 +2〈zi− si + si− v∗,si− zi〉

−2ρi〈si− v∗,∇g(si)−∇g(zi)〉+ρ
2
i ‖∇g(si)−∇g(zi)‖2

= ‖zi−‖2 +‖si− zi‖2−2〈si− zi,si− zi〉

+2〈si− v∗,si− zi〉−2ρi〈si− v∗,∇g(si)−∇g(zi)〉

+ρ
2
i ‖∇g(si)−∇g(zi)‖2

= ‖zi−‖2 +‖si− zi‖2−2〈si− v∗,si− zi〉

−2〈si− v∗,ρi(∇g(si)−∇g(zi))〉+ρ
2
i ‖∇g(si)−∇g(zi)‖2

(3.8)
= ‖zi− v∗‖2−‖si− zi‖2−2〈si− v∗,zi− si +ρi(∇g(si)−∇g(zi))〉

+ρ
2
i ‖∇g(si)−∇g(zi)‖2.

Note that

(3.9) ρi+1 = min
{

(δi +δ )‖zi− si‖
‖∇g(zi)−∇g(si)‖

,ρi +σi

}
≤ (δi +δ )‖zi− si‖
‖∇g(zi)−∇g(si)‖

,

which implies that

(3.10) ‖∇g(zi)−∇g(si)‖ ≤
δi +δ

ρi+1
‖zi− si‖.
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Combining (3.8) and (3.10), we obtain

(3.11)

‖wi− v∗‖2 ≤ ‖zi− v∗‖2−‖si− zi‖2 +
(δi +δ )2ρ2

i

ρ2
i+1

‖si− zi‖2

−2〈si− v∗,zi− si +ρi(∇g(si)−∇g(zi))〉

= ‖zi− v∗‖2−

(
1− (δi +δ )2ρ2

i

ρ2
i+1

)
‖si− zi‖2

−2〈si− v∗,zi− si +ρi(∇g(si)−∇g(zi))〉.

From the definition of si, we have zi−ρi∇g(zi) ∈ (I +ρi∂h)si. Because ∂h is maximal mono-

tone, then there is ui ∈ ∂h(si) such that

(3.12) zi−ρi∇g(zi) = si +ρiui.

This shows that

(3.13) ui =
1
ρi
(zi−ρi∇g(zi)− si).

Because 0 ∈ (∇g+∂h)(v∗) and ∇g(si)+ui ∈ (∇g+∂h)si, we obtain

(3.14) 〈∇g(si)+ui,si− v∗〉 ≥ 0.

Substituting (3.13) into (3.14), we have

(3.15)
1
ρi
〈zi−ρi∇g(zi)+ si +ρi∇g(si),si− v∗〉 ≥ 0,

which implies that 〈zi−ρi∇g(zi)− si +ρi∇g(si),si− v∗〉 ≥ 0. Using (3.11), we obtain

(3.16) ‖wi− v∗‖2 ≤ ‖zi− v∗‖2−

(
1− (δi +δ )2ρ2

i

ρ2
i+1

)
‖si− zi‖2.

�

Lemma 3.3. Let the sequence {vi} be generated by Algorithm 3.1. Then the even subsequence

{v2i} is bounded and it is Fejér monotone with respect to the solution set Ω. Moreover, for all

v∗ ∈Ω, lim
i→+∞

‖v2i− v∗‖2 exists, and lim
i→+∞

‖v2i− s2i‖= 0.
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Proof. It stems from the definition of vi+1 and (2.1) that

(3.17) ‖vi+1− v∗‖2 = (1−β )‖zi− v∗‖2 +β‖wi− v∗‖2−β (1−β )‖zi−wi‖2.

Combining (3.17) and Lemma 3.2, we obtain

(3.18)

‖vi+1− v∗‖2 ≤ (1−β )‖zi− v∗‖2 +β‖zi− v∗‖2−β

(
1− (δi +δ )2ρ2

i

ρ2
i+1

)
‖si− zi‖2

−β (1−β )‖zi−wi‖2

= ‖zi− v∗‖2−β

(
1− (δi +δ )2ρ2

i

ρ2
i+1

)
‖si− zi‖2−β (1−β )‖zi−wi‖2.

Letting i+1 := 2i+2 in (3.18), one sees that

(3.19)
‖v2i+2− v∗‖2 ≤ ‖z2i+1− v∗‖2−β

(
1−

(δ2i+1 +δ )2ρ2
2i+1

ρ2
2i+2

)
‖s2i+1− z2i+1‖2

−β (1−β )‖z2i+1−w2i+1‖2.

Putting i+1 := 2i+1 in (3.18) (noting that z2i = v2i), we observe that

(3.20)

‖v2i+1− v∗‖2 ≤ ‖v2i− v∗‖2−β

(
1−

(δ2i +δ )2ρ2
2i

ρ2
2i+1

)
‖s2i− v2i‖2−β (1−β )‖v2i−w2i‖2.

It follows from the definition of z2i+1 and (2.1) that

(3.21)

‖z2i+1− v∗‖2 = ‖v2i+1 + γ(v2i+1− v2i)− v∗‖2

= ‖(1+ γ)(v2i+1− v∗)− γ(v2i− v∗)‖2

= (1+ γ)‖v2i+1− v∗‖2− γ‖v2i− v∗‖2

+ γ(1+ γ)‖v2i+1− v2i‖2.

Using the definition of v2i+1 and noting that z2i = v2i, one obtains

(3.22) ‖v2i+1− v2i‖2 = β
2‖w2i− v2i‖2.

Substituting (3.20) and (3.22) into (3.21), we have

(3.23)
‖z2i+1− v∗‖2 ≤ (1+ γ)

[
‖v2i− v∗‖2−β

(
1−

(δ2i +δ )2ρ2
2i

ρ2
2i+1

)
‖s2i− v2i‖2

]

− (1+ γ)β (1−β )‖v2i−w2i‖2− γ‖v2i− v∗‖2 + γ(1+ γ)β 2‖w2i− v2i‖2
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= ‖v2i− v∗‖2− (1+ γ)β

(
1−

(δ2i +δ )2ρ2
2i

ρ2
2i+1

)
‖s2i− v2i‖2

− (1+ γ)β (1−β − γβ )‖v2i−w2i‖2.

Combining (3.19) and (3.23), we get

(3.24)

‖v2i+2− v∗‖2 ≤ ‖v2i− v∗‖2− (1+ γ)β

(
1−

(δ2i +δ )2ρ2
2i

ρ2
2i+1

)
‖s2i− v2i‖2

− (1+ γ)β (1−β − γβ )‖v2i−w2i‖2

−β

(
1−

(δ2i+1 +δ )2ρ2
2i+1

ρ2
2i+2

)
‖s2i+1− z2i+1‖2−β (1−β )‖z2i+1−w2i+1‖2.

Since γ ∈ (0,1),β ∈ (0,1),δ ∈ (0,1) and δ2i+1,ρ2i+1,ρ2i+2 > 0, ∀ i≥ N0, we have

(1+ γ)β (1−β − γβ )> 0, ∀ i≥ N0

and

(1+ γ)β

(
1−

(δ2i +δ )2ρ2
2i

ρ2
2i+1

)
> 0, ∀ i≥ N0.

So,

β

(
1−

(δ2i+1 +δ )2ρ2
2i+1

ρ2
2i+2

)
> 0, ∀ i≥ N0.

Thus it follows from (3.24) that

(3.25) ‖v2i+2− v∗‖ ≤ ‖v2i− v∗‖, ∀ i≥ N0.

This implies that {‖v2i− v∗‖} and {v2i} are bounded. Moreover, lim
i→+∞

‖v2i− v∗‖ exists. There-

fore, we conclude from (3.24) that

(3.26) lim
i→+∞

‖s2i− v2i‖= 0 and lim
i→+∞

‖v2i−w2i‖= 0.

In fact that {v2i} is bounded and (3.26), we obtain that {s2i} and {w2i} are also bounded.

By virtue of (3.22) and (3.26), one sees that lim
i→+∞

‖v2i+1− v2i‖ = 0. From ∇g is uniformly

continuous, we obtain

(3.27) lim
i→+∞

‖∇g(z2i)−∇g(si2)‖= 0.

�
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Theorem 3.1. Suppose that the sequence {vi} is generated by Algorithm 3.1. Let v∗ ∈H denote

the weak limit of the subsequence {v2ia} of {v2i}. Then v∗ ∈Ω.

Proof. From {v2i} is bounded, there exists a subsequence {v2ia} of {v2i} such that v2ia ⇀ v∗ ∈

H. By Lemma 3.3, we obtain v2ia+1 ⇀ v∗. We note that

(3.28) s2ia = proxρ2ia h(z2ia−ρ2ia∇g(z2ia)).

From (2.2), we obtain

(3.29)
z2ia−ρ2ia∇g(z2ia)− s2ia

ρ2ia
∈ ∂h(s2ia).

Thus,

(3.30)
z2ia− s2ia

ρ2ia
−∇g(z2ia)+∇g(s2ia) ∈ ∂h(s2ia)+∇g(s2ia).

Because, limi→+∞ ‖s2i− v2i‖ = 0, we also have s2ia ⇀ v∗. Taking a→ +∞ in (3.30) and using

(3.27), by Lemma 2.2 and Lemma 3.1, we get

(3.31) 0 ∈ (∂h+∇g)(v∗).

Therefore, v∗ ∈Ω. From (3.20) we see that {v2i} is a quasi-Fejér sequence. Hence, by Lemma

2.1, we conclude that {v2i} weakly converges to a point in Ω. This completes the proof. �

4. NUMERICAL EXPERIMENTS

In this section, we present various numerical experiments that demonstrate the behavior of

our methods and compare them to existing method. Consider the minimization problem:

min
v∈R3
‖v‖1 +3‖v‖2

2 +(−2,1,4)v+9,

where v = (v1,v2,v3)
T ∈R3. Let g(v) = 3‖v‖2

2+(−2,1,4)v+9 and h(v) = ‖v‖1. Thus we have

∇g(v) = 6v+(−2,1,4)T . It is easy to check that g is a convex and differentiable function and

its gradient ∇g is Lipschitz continuous with L = 6. Moreover, we know that

proxρi‖·‖1
(v) = [proxρi|·|(v1),proxρi|·|(v2),proxρi|·|(v3)]

T ,
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where proxρi|·|(vi) = max{|vi| −ρi,0}sign(vi), and vi denotes the ith element of v, i = 1,2,3.

In this experiments, we compare our Algorithm 3.1 and Algorithm (1.8). The parameters are

chosen as follows:

• Algorithm 3.1: ρ1 =
0.6
L , γ = 0.9, β = 0.9, δ = 0.6, δi =

1
(1000i+2)10 , σi =

99i
100i+1 .

• Algorithm (1.8): ρ1 =
0.6
L , µ = 0.4.

We perform the numerical experiments with four different cases of starting point v1 and use

stopping criterion ‖vi+1− vi‖ ≤ ε = 10−6. The numerical results are reported in Table 1.

TABLE 1. Numerical results

v1 = v0
Number of Iteration Execution Time in Seconds

Algorithm (1.8) Algorithm 3.1 Algorithm (1.8) Algorithm 3.1

(1,3,5)T 113 38 0.058383 0.044992

(1,−6,2)T 107 40 0.121066 0.093168

(−200,200,100)T 138 48 0.073472 0.020173

(−1000,−5000,500)T 151 56 0.057175 0.033351

FIGURE 1. Numerical results for v1 = (1,3,5)T
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FIGURE 2. Numerical results for v1 = (1,−6,2)T

FIGURE 3. Numerical results for v1 = (−200,200,100)T

FIGURE 4. Numerical results for v1 = (−1000,−5000,500)T
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