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Abstract. Based on the concept and properties of C∗-algebras, this article introduces a concept of C∗-algebra-

valued generalized metric space type of Jleli–Samet and give some Chatterjea fixed point theorems for linear

positive mapping. Examples are given to illustrate our results.
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1. INTRODUCTION

Since 1922, the renowned Banach contraction principle, often referred as Banach’s fixed

point theorem [1], has made fixed point theory an appealing area of study for numerous re-

searchers. From then on, extending Banach’s fixed-point theorem has been the subject of exten-

sive research. In 1968, Kannan [2] introduced a new class of contractive mappings yielding a

unique fixed point theorem in a complete metric space. Kannan’s theorem holds significance as

it provides a characterization of metric completeness. Specifically, a metric space is complete

if and only if every Kannan mapping has a fixed point. A mapping T on a metric space (X ;d)

∗Corresponding author

E-mail address: mouadoulabes@gmail.com

Received May 20, 2024
1



2 KARIM CHAIRA, MUSTAPHA KABIL, SAMIH LAZAIZ, MOUAD OULABES

is called Chatterjea if there exists α ∈ [0, 1
2) such that

d(T x,Ty)≤ α(d(x,Ty)+d(y,T x))

for all x,y ∈ X . In 1972, Chatterjea [3] proved that if (X ,d) is complete then T has a unique

fixed point theorem and the orbite of T converges to the fixed point.

In 2015 Jleli and Samet introduced a new concept of generalized metric spaces (also known

as JS-metric spaces) recovering various topological spaces including standard metric spaces,

b-metric spaces, dislocated metric spaces, and modular spaces (see [4, 5]). In this space, Jleli

and Samet gave some generalized versions of metric fixed-point theorems. Recently, in 2019

K.Chaira et al [6] extend some common fixed point theorems of Banach, Chatterjea, and Kannan

contractions in generalized metric space of Samet-Jleli endowed with a graph.

On the other hand, Ma et al. [7], using the positive elements of a C∗-algebra, introduced the

concept of C∗-algebra-valued metric space and yielding some fixed-point results for contractive

and expansive mappings. In 2021, the authors in [8] demonstrated the utility of C∗-algebra-

valued metric space across various application domains, illustrating several applications derived

from the obtained results. Given the significance of exploring fixed point results within the

framework of C∗-algebra-valued metric space, researchers have introduced a plethora of new

generalized spaces beyond metric spaces, for more details see [9, 10, 11, 12, 13, 14, 15, 16].

Motivated by the above ideas, we introduce a new concept of generalized metric spaceswe C∗

algebra-valued generalized metric space. This novel concept of generalized metric spaces en-

compasses various topological spaces, including standard C∗-algebra-valued metric spaces, C∗-

algebra-valued b-metric spaces, C∗-algebra-valued dislocated metric spaces, and C∗-algebra-

valued modular spaces. Furthermore, a new class of Chatterjea-type mappings was introduced,

and several related fixed point theorems were presented.

The paper is organized as follows: we begin by revisit several definitions, lemmas, and theo-

rems relevant to C∗ algebra-valued generalized metric space and explore their associated prop-

erties. We then study some fixed point theorems of Chatterjea-type mappings from which we

deduce several known results as corollaries. Throughout the paper, we provide illustrative ex-

amples.



FIXED POINT THEOREMS IN C∗-ALGEBRA-VALUED GENERALIZED METRIC SPACES 3

The paper is organized as follows: we begin by revisit several definitions, lemmas, and theo-

rems relevant to C∗ algebra-valued generalized metric space and explore their associated prop-

erties. We then study some fixed point theorems of Chatterjea-type mappings from which we

deduce several known results as corollaries. Throughout the paper, we provide illustrative ex-

amples.

2. PRELIMINARIES

Throughout this paper, A is a unital by an unital (i.e ,unity element 1A) C∗-algebra with linear

involution ∗, such that for all u,v ∈ A,

(uv)∗ = v∗u∗ and u∗∗ = u.

We call an element a ∈A a positive element, denote it by 0A � a, if a ∈Ah = {u ∈ A : u = u∗}

and σ(a) ⊆ R+, where σ(a) is the spectrum of a. Using positive element, we can define a

partial ordering ”�” on Ah as follows:

u� v if and only if 0A � v−u,

where 0A means the zero element of A.

We denote the set {a∈A : 0A� a} by A+ and |a|=(a∗a)
1
2 . Set A′ = {a∈A : ab= ba for all b∈

A}.

Remark 2.1. [17] When A is an unital C∗-algebra, then for any a ∈ A+ we have

(a� 1A⇔‖a‖6 1).

Lemma 2.1. [18, 17] Let A is an unital C∗-algebra with unit 1A:

(1) If a,b ∈ A such that 0A � a� b, then ‖a‖6 ‖b‖.

(2) Suppose that a,b ∈ A with 0A � a,b and ab = ba, then 0� ab.

(3) If 0� a� b and c ∈ A, then 0� c∗ac� c∗bc.

(4) If a is an element of a C∗-algebra A, then ‖a‖= ‖a∗‖= ‖aa∗‖ 1
2 .

Proposition 2.1. [19] A+ is closed in a C∗-algebra A.
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Definition 2.1. Let X be a nonempty set and D : X ×X →A be a given mapping. Let x∈X

and (xn)n>0 a sequence in X . We say (xn)n>0 is D-convergent to x (with respect to A) and we

write lim
n→+∞

‖D(xn,x)‖= 0A, if and only if for given ε > 0, there exists n0 ∈ N such that, for all

intger n ∈ N,

(n> n0⇒‖D(x,xn)‖< ε).

For every x ∈X , let us define the set

C(D ,X ,x) = {(xn)n∈N ⊆X : lim
n→+∞

‖D(xn,x)‖= 0}.

We now introduce the notion of C∗-algebra-valued generalized metric, extending the classical

metric type spaces.

Definition 2.2. Let X be a nonempty set. Suppose that the mapping D : X ×X → A is

defined, with the following properties:

(D1) 0A �D(x,y), for all x and y in X ;

(D2) D(x,y) = 0A implies that x = y;

(D3) D(x,y) = D(y,x), for all x and y in X ;

(D4) there exists c � 0A, such that, for all (x,y) ∈X ×X and (xn)n∈N ∈ C (D ,X ,x), we

have 
limsup
n→+∞

‖D(xn,y)‖)< ∞ and

D(x,y)� (limsup
n→+∞

‖D(xn,y)‖) · c

In this case, D is said to be a C∗-algebra-valued generalized metric on X , and (X ,A,D) is

said to be a C∗-algebra-valued generalized metric space.

Remark 2.2. Let (X ,A,D) be a C∗-algebra-valued generalized metric space and (xn)n∈N be

a sequence of X . If (xn)n∈N is D-convergent to x, then this limit is unique.

Proof. Suppose the sequence (xn)n∈N is D-converges to x and y with respect to A. By the

property (D4), we have.

D(x,y)�
(

limsup
n→+∞

‖D(xn,y)‖
)
.c = 0A.
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So D(x,y) = 0A. Which shows that x = y.

�

Remark 2.3. Note that the set C(D ,X ,x) can empty for all x ∈X , in this case we consider

by convention that (X ,A,D) is a C∗-algebra-valued generalized metric space if and only if the

three axioms (D1),(D2) and (D3) are verified.

Example 2.1. Let X = [0,1] and A = M2(R) with ‖M‖2 =

(
4

∑
i=1
|αi|2

) 1
2

, where αi are the

coefficients of the matrix M ∈ A. Then A is a C∗-algebra.

M ∈A+⇔ (tM = M and spec(M)⊆ R+).

Consider the mapping D defined by

D(x,y) =



2(x+ y) 0

0 2(x+ y)

 if x = 0 or y = 0x+ y
2

0

0
x+ y

2

 otherwise

We verify the axioms of the C∗-algebra-valued generalized metric space.

(D1) Obvious.

(D2) D(x,y) = 0A, then x+ y = 0 and x = y = 0.

(D3) Symmetry is clearly verified D(x,y) = D(y,x), for all x and y in X .

(D4) We distinguish two cases

Case 1: x 6= 0, then the set C(D ,X ,x) is empty. Otherwise, there exists a sequence (xn)n>0 of

X such that lim
n→∞
‖D(xn,x)‖2 = 0.

• If the sequence admits an infinite of zero, there exists a subsequence (xφ(n))n>0 of

(xn)n>0 such that xφ(n) = 0, for all n ∈ N, so lim
n→+∞

‖D(xφ(n),x)‖2 = 2
√

2x is different

from 0, which is impossible, since x 6= 0.

• If the sequence (xn)n>0 does not admit an infinity of zero, then there exists n0 ∈N such

that xn 6= 0, for any integer n> n0. We have D(xn,x) =

xn + x
2

0

0
xn + x

2

� 0A. As a
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result

lim
n→+∞

‖D(xn,x)‖2 = lim
n→+∞

√
2(

xn + x
2

)>

√
2x
2

,

which is absurd, since
√

2x
2 > 0.

Case 2: x = 0. In this case C (D ,X ,x) 6= /0. Let (un)n>0 ∈ C (D ,X ,0) and y ∈ R+ \{0}.

• If the sequence (un)n>0 admits an infinity of zero, there exists a subsequence

(uψ(n))n>0 of (un)n>0 such that uψ(n) = 0 for all n ∈ N. We have

D(0,y) =

2y 0

0 2y

= D(uψ(n),y)

for all n ∈ N. So,
D(0,y)� ( lim

n→+∞
‖D(uψ(n),y)‖2).1A 6 (limsup

n→+∞

‖D(un,y)‖2).1A

and limsup
n→+∞

‖D(un,y)‖2 6 2
√

2 < ∞, since un,y ∈ [0,1]
.

• If the sequence (un)n>0 does not admit an infinity of zero, then there exists n0 ∈N such

that un 6= 0, for any integer n> n0. We have

D(0,y)�D(0,un)+4D(un,y)

� (‖D(0,un)‖2 +4‖D(un,y)‖2) .1A

As a result

D(0,y)� (limsup
n→+∞

‖D(un,y)‖2).(4.1A).

For y = 0, D(x,0) = 0A ≺ limsup
n→+∞

‖D(un,0)‖2.1A.

Hence, for all y ∈ X,

D(x,y)�
(

limsup
n→∞

‖D(un,y)‖
)
.c, where c = 4.1A and limsup

n→+∞

‖D(un,y)‖2 < ∞.

Therefore (X ,A,D) is a C∗-algebra-valued generalized metric space.

Remark 2.4. C∗-algebra-valued metric spaces and C∗-algebra-valued b-metric spaces are C∗-

algebra-valued generalized metric spaces. Indeed, let b be a real number such that b > 1 and

(X ,A,D) a C∗-algebra-valued b-metric space. Then D satisfies the conditions (D1), (D2) and
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(D3). For the condition (D4), let (x,y) ∈X ×X and (xn)n∈N ∈ C (D ,X ,x). We have, for all

n ∈ N,

‖D(xn,y)‖6 ‖b‖(‖D(xn,x)‖+‖D(x,y)‖),

so limsup
n→+∞

‖D(xn,y)‖6 ‖b‖(limsup
n→+∞

‖D(xn,x)‖+‖D(x,y)‖) = ‖D(x,y)‖<+∞.

We also have

D(x,y)� b(D(x,xn)+D(xn,y))

� (‖D(x,xn)+D(xn,y)‖).(‖b‖.1A),

so ‖D(x,y)‖6 (‖D(x,xn)‖+‖D(xn,y)‖)‖b‖,

which implies that ‖D(x,y)‖6 ( lim
n→+∞

‖D(x,xn)‖+ limsup
n→+∞

‖D(xn,y)‖)‖b‖. Hence,

D(x,y)� ‖D(x,y)‖.1A � (limsup
n→+∞

‖D(xn,y)‖).(‖b‖.1A)

Definition 2.3. Let (X ,A,D) is a C∗-algebra-valued metric space and (xn)n∈N be a sequence

in X .

(i) A sequence (xn)n∈N is said to be a D-Cauchy sequence (with respect to A) whenever,

for every ε > 0, there is a natural number N ∈ N, such that

‖D(xn,xm)‖< ε, for all n,m> N,

(ii) The space (X ,A,D) is said to be D-complete if every D-Cauchy sequence is D-

convergent to some element in X (with respect to A).

Example 2.2. We return to Example 1.7. We show that (X ,A,D) is D-Complete. Let (un)n∈N

be a D-Cauchy sequence of X (with respect to A).

Let ε > 0, there exists n0 ∈ N such that
(
n,m> n0⇒‖D(un,um)‖2 <

ε

4

)
, then(

n,m> n0⇒‖D(un,0)‖2 = 2
√

2un 6 4‖D(un,um)‖2 < ε

)
.

Which shows that lim
n→+∞

‖D(un,0)‖2 = 0. Hence, the sequence (un)n∈N is D-converges to 0 in

X (with respect to A), finally (X ,A,D) is D-complete (with respect to A).

Definition 2.4. Let A be a C∗-algebra. A linear mapping ψ : A→ A is said to be positive if

ψ(A+)⊆ A+.
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Proposition 2.2. Let A be a C∗-algebra with unit 1A, then the linear positive function ψ :A→A

is bounded, continuous, contractive and ψA(1A) = ‖ψA‖.1A.

Definition 2.5. Let (X ,A,D) is a C∗-algebra-valued generalized metric space and A mapping

T : X →X . We say that T is ψ-Chatterjea contraction if for every (x,y) ∈X 2,

(2.1) D(T x,T y)� ψ

(
D(T x,y)+D(x,T y)

)
,

where ψ the linear positive mapping on A, with 0 < ‖ψ‖< 1
2 .

3. MAIN RESULTS

The following notation will be used in the sequel

δ (D ,T ,x0) := sup
{
‖D(T ix0,x0)‖ : i ∈ N\{0}

}
, where x0 ∈X .

The forthcoming lemma will stand as the cornerstone of what ensues. Let (xn)n>0 be the Picard-

sequence defined by xn+1 = T xn, for all n ∈ N.

Lemma 3.1. Let (X ,A,D) be a complete C∗-algebra-valued generalized metric space and

T : X →X be a ψ-Chatterjea contraction. Then, for any (m,n) ∈ (N\{0})2,

D(xn,xm)� δ0.

(
n+m−1

∑
m

(
j−1

m−1

)
.ψ j(1A)+

n+m−1

∑
n

(
j−1
n−1

)
ψ

j(1A)

)
,(3.1)

where δ0 = δ (D ,T ,x0).

Proof. (By induction). Let p be an integer greater than or equal to 2 and (n,m) ∈ N2 such that

p = n+m. Since

D(x1,x1)� ψ(D(x1,x0)+D(x0,x1))

= 2ψ(D(x1,x0))

� 2ψ(‖D(T x0,x0)‖.1A)

� 2ψ(δ0.1A)

� 2δ0.ψ(1A).



FIXED POINT THEOREMS IN C∗-ALGEBRA-VALUED GENERALIZED METRIC SPACES 9

It is clear that the inequality (3.1) holds for p = 2 with (m,n) = (1,1).

Assume next that inequality (3.1) holds for any (m′,n′) ∈ (N \ {0})2 be chosen in such a way

that n′+m′ = p; let (m,n) ∈ (N\{0})2 with n+m = p+1. By hypothesis,

D(xn,xm)� ψ
(
D(xn,xm−1)+D(xn−1,xm

)
.

Since n+(m−1) = p and (n−1)+m = p, the inductive hypothesis yields

D(xn,xm)� δ0.

(
n+m−2

∑
j=m

(
j−1

m−1

)
.ψ j(1A)+

n+m−2

∑
j=n−1

(
j−1
n−2

)
.ψ j(1A)

+
n+m−2

∑
j=m−1

(
j−1

m−2

)
.ψ j(1A)+

n+m−2

∑
j=n

(
j−1
n−1

)
.ψ j(1A)

)

D(xn,xm)� δ0

(
n+m−2

∑
j=m

((
j−1

m−1

)
.ψ j(1A)+

(
j−1

m−2

)
.ψ j(1A)

)
+ψ

m−1(1A)

+
n+m−2

∑
j=n

((
j−1
n−1

)
.ψ j(1A)+

(
j−1
n−2

)
.ψ j(1A)

)
+ψ

n−1(1A)

)

� δ0.

(
n+m−2

∑
j=m

(
j

m−1

)
.ψ j(1A)+

n+m−2

∑
j=n

(
j

n−1

)
.ψ j(1A)

+ψ
n−1(1A)+ψ

m−1(1A)

)

� δ0.

(
n+m−2

∑
j=m−1

(
j

m−1

)
.ψ j(1A)+

n+m−2

∑
j=n−1

(
j

n−1

)
.ψ j(1A)

)

� δ0.

(
n+m−1

∑
j=m

(
j−1

m−1

)
.ψ j(1A)+

n+m−1

∑
j=n

(
j−1
n−1

)
.ψ j(1A)

)
,

Finally the inequality (3.1) holds for (n,m) ∈ (N∗)2 such that n+m = p+1. �

Lemma 3.2. Let (X ,A,D) be a complete C∗-algebra-valued generalized metric space and

T : X →X is a ψ-Chatterjea contraction. Then, for every (m,n)∈N\{0}2 such that m6 n,

we have

(3.2) D(xn,xm)� 2m
δ0‖ψ‖m(1−2‖ψ‖)−1.1A,
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where δ0 = δ (D ,T ,x0).

Proof. Let n,m ∈ N\{0}; assume that m6 n.

Since
( j−1

m−1

)
6 2 j−1 for any j ∈ Jm,n+m−1K and

( j−1
n−1

)
6 2 j−1 for any j ∈ Jn,n+m−1K,

it follows that

n+m−1

∑
j=m

(
j−1

m−1

)
ψ

j(1A)�
1
2

n+m−1

∑
j=m

2 j
ψ

j(1A)

� 1
2

n+m−1

∑
j=m
‖2 j

ψ
j(1A)‖.1A

� 1
2

n+m−1

∑
j=m

2 j‖ψ‖ j.1A

� 1
2
(2m‖ψ‖m)

(1−2‖ψ‖)
.1A,

and that
n+m−1

∑
j=n

(
j−1
n−1

)
ψ

j(1A)�
1
2

2n‖ψ‖n

(1−2‖ψ‖)
.1A �

1
2

2m‖ψ‖m

(1−2‖ψ‖)
.1A.

It follows from inequality (3.1) of Lemma 3.1 that

D(xn,xm)� 2m
δ0‖ψ‖m(1−2‖ψ‖)−1.1A

�

Theorem 3.1. Let (X ,A,D) be a complete C∗-algebra-valued generalized metric space and

T : X → X be a ψ-Chatterjea contraction. Suppose that there exists x0 ∈ X such that

δ (D ,T ,x0) < ∞. Then, T has unique fixed point ω of X and the sequence (T nx0)n∈N con-

verges to ω .

Proof. Select (m,n) ∈ (N\{0})2 such that m6 n.

According to the Lemma 3.2,

D(xn,xm) = D(T nx0,T
mx0)� 2m

δ0‖ψ‖m(1−2‖ψ‖)−1.1A

Thus (xn)n∈N is a D-Cauchy sequence. Since (X ,D) is complete, the sequence (xn)n∈N is

D-converges to some ω ∈X .



FIXED POINT THEOREMS IN C∗-ALGEBRA-VALUED GENERALIZED METRIC SPACES 11

Step 1: We show by induction that for all n ∈ N\{0}

(3.3) ‖D(T ω,xn)‖6 ‖ψ‖n‖D(T ω,x0)‖+
n

∑
k=1
‖ψ‖k‖D(xn−k+1,ω)‖,

For n = 1, we have

‖D(T ω,x1)‖6 ‖ψ (D(T ω,x0)+D(ω,T x0))‖

6 ‖ψ‖‖D(T ω,x0)‖+‖ψ‖‖D(ω,T x0)‖.

For n = 2, we have

‖D(T ω,x2)‖6 ‖ψ (D(T ω,x1)+D(ω,T x1))‖

6 ‖ψ‖2‖D(T ω,x0)‖+‖ψ‖2‖D(ω,x1)‖+‖ψ‖‖D(ω,x2)‖.

Suppose that inequality (3.3) holds for some n> 2. We show that

‖D(T ω,xn+1)‖6 ‖ψ‖n+1‖D(T ω,x0)‖+
n+1

∑
k=1
‖ψ‖k‖D(xn−k+2,ω)‖.

We have

‖D(T ω,xn+1)‖6 ‖ψ‖(‖D(T ω,xn)‖+‖D(ω,xn+1))‖

6 ‖ψ‖n+1‖D(T ω,x0)‖+‖ψ‖
n

∑
k=1
‖ψ‖k‖D(xn−k+1,ω)‖+‖ψ‖‖D(ω,xn+1))‖

6 ‖ψ‖n+1‖D(T ω,x0)‖+
n

∑
k=1
‖ψ‖k+1‖D(xn−k+1,ω)‖+‖ψ‖‖D(ω,xn+1))‖

6 ‖ψ‖n+1‖D(T ω,x0)‖+
n

∑
k=0
‖ψ‖k+1‖D(xn−k+1,ω)‖

6 ‖ψ‖n+1‖D(T ω,x0)‖+
n+1

∑
k=1
‖ψ‖k‖D(xn−k+2,ω)‖

Hence, for any positive integer n> 2,

‖D(T ω,xn)‖6 ‖ψ‖n‖D(T ω,x0)‖+
n

∑
k=1
‖ψ‖k‖D(xn−k+1,ω)‖.

Step 2: Let ε > 0. Since (‖D(ω,xn)‖)n>0 and (‖ψ‖n)n∈N converges to 0, there exists N ∈ N

such that (
n> N +1 =⇒ ‖D(ω,xn)‖6 ε

′
and ‖ψ‖n 6 ε

′
)
,
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where ε =
ε
′

1−‖ψ‖

(
1+ max

n−N+16k6n
‖D(xn−k+1,ω)‖ ‖ψ‖1−N

)
. We have

n

∑
k=1
‖ψ‖k‖D(xn−k+1,ω)‖=

n−N

∑
k=1
‖ψ‖k‖D(xn−k+1,ω)‖+

n

∑
k=n−N+1

‖ψ‖k‖D(xn−k+1,ω)‖

6 ε
′

(
n−N

∑
k=1
‖ψ‖k

)
+

n

∑
k=n−N+1

‖ψ‖k‖D(xn−k+1,ω)‖

6 ε
′

(
n−N

∑
k=1
‖ψ‖k

)
+ max

n−N+16k6n
‖D(xn−k+1,ω)‖

(
n

∑
k=n−N+1

‖ψ‖k

)

6

(
ε
′

1−‖ψ‖
+ max

n−N+16k6n
‖D(xn−k+1,ω)‖

(
N−1

∑
k=0
‖ψ‖k+n−N+1

))

6
ε
′

1−‖ψ‖
+ max

n−N+16k6n
‖D(xn−k+1,ω)‖‖ψ‖n−N+1

(
+∞

∑
k=0
‖ψ‖k

)

6
ε
′

1−‖ψ‖

(
1+ max

n−N+16k6n
‖D(xn−k+1,ω)‖‖ψ‖1−N

)
6 ε.

Which shows that lim
n→+∞

n

∑
k=1
‖ψ‖k‖D(xn−k+1,ω)‖= 0. Hence, lim

n→+∞
D(T ω,xn) = 0.

According to the condition (D4), we have D(T ω,ω)� limsup
n→+∞

‖D(ω,xn)‖.c = 0A. Thus,

T ω = ω .

Uniqueness: Suppose that u,v ∈X are two fixed points of T . Since T is a ψ-Chatterjea

contraction, we have

D(u,v) = D(T u,T v)� ψ
(
D(T u,v)+D(u,T v)

)
,

which implies that

D(u,v)� 2ψ(D(u,v)).

‖D(u,v)‖6 2‖ψ‖ ‖D(u,v)‖.

Hence

(1−2‖ψ‖)‖D(u,v)‖6 0.

Therefore D(u,v) = 0, i.e., u = v. �

The following example illustrates the above Theorem.
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Example 3.1. Let X = R+ and A= M2(R).

A is a C∗-algebra endowed with the Euclidean norm ‖.‖2. Let D : X ×X −→ A be given by

D(x,y) =

2(max{x,y})p 0

0 3(min{x,y})p.


where x,y ∈X and p ∈ N\{0}.

• It is easy to verify the axioms (D1), (D2) and (D3) of the C∗-algebra-valued generalized

metric space.

Let’s show the condition (D4). Let (xn)n>0 ∈C(D ,X ,x), then

lim
n→+∞

‖D(xn,x)‖2 = lim
n→+∞

√
4(max{xn,x})2p +9(min{xn,x})2p = 0.

As

06 x2p 6 2(max{xn,x})2p 6 ‖D(xn,x)‖2 and lim
n→+∞

D(xn,x)‖2 = 0,

we obtain x = 0 and C(D ,X ,x) 6= /0.

Let y ∈ X, we have

D(0,y) =

2yp 0

0 0

�2(max{xn,0})p 0

0 3(min{xn,0})p

+

2(max{xn,y})p 0

0 3(min{xn,y})p

 ,

so D(0,y)�D(xn,0)+D(xn,y). We have also D(xn,y)�D(xn,0)+D(y,y). Hence,

D(0,y)� limsup
n→+∞

(‖D(xn,y)‖2).1A and limsup
n→+∞

‖D(xn,y)‖2 6 ‖D(y,y)‖2 <+∞.

• Now we prove that (X ,A,D) is D-complete (with respect to A). Let (xn)n∈N be a D-Cauchy

sequence of X (with respect to A).

Let ε > 0, there exists n0 ∈ N such that, for all n,m ∈ N,

(n,m> n0 =⇒ ‖D(xn,xm)‖2 < ε),

so, for all integers n,m> n0,

06 2xp
n 6 2(max{xn,xm})p 6

√
4(max{xn,xm})2p +9(min{xn,xm})2p < ε,
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which implies 06 xn <
p

√
ε

2
, for all integer n> n0. Hence,

n> n0 =⇒ ‖D(xn,0)‖2 =

∥∥∥∥∥∥
2xp

n 0

0 0

∥∥∥∥∥∥
2

= 2xp
n < ε

 .

Which shows that (xn)n∈N is D-converge to 0 in X (with respect to A).

• Let T (resp. ψ) be the function defined on X (resp. A) by T (x) =
x
2

(resp.

ψ(M) =
k

1− k
.1A, with k ∈

]
1
4
,
1
3

[
fixed). We have

1
3
<

k
1− k

<
1
2

and ‖ψ‖= k
1− k

< 1
2 .

Let x,y ∈ R+.

• If x>
x
2
> y>

y
2

, then

D(T x,T y) = D
(x

2
,

y
2

)
=

2
(x

2

)p
0

0 3
(y

2

)p
.



and ψ(D(T x,y)+D(x,T y)) =
k

1− k

2
((x

2

)p
+ xp

)
0

0 3
(

yp +
(y

2

)p)
 .

Since,

k
1− k

×2
(( x

2

)p
+ xp

)
=

k
1− k

(1+2p)×2
( x

2

)p

>
1+2p

3
×2
( x

2

)p

> 2
( x

2

)p
.

then

(3.4) D(T x,T y)� ψ

(
D(T x,y)+D(x,T y)

)
,

• If x> y>
x
2
>

y
2

, then

D(T x,T y) = D
(x

2
,

y
2

)
=

2
(x

2

)p
0

0 3
(y

2

)p
.
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and ψ(D(T x,y)+D(x,T y)) =
k

1− k

2(yp + xp) 0

0 3
(
(

x
2
)p +(

y
2
)p
)
.


We have also

k
1− k

×2(yp + xp)>
k

1− k
×2
(
(

x
2
)p + xp

)
>

k
1− k

(2p +1)×2
( x

2

)p

>
1
3
(2p +1)×2

( x
2

)p
> 2
( x

2

)p
.

We obtain,

(3.5) D(T x,T y)� ψ

(
D(T x,y)+D(x,T y)

)
,

• Similary for cases y>
y
2
> x>

x
2

and y> x>
y
2
>

x
2

.

Hence, T be a ψ-Chatterjea contraction, δ (D ,T ,0)< ∞ and T has unique fixed point 0.

Corollary 3.1. Let (X ,A,D) be a C∗-algebra-valued generalized metric space and T : X →

X a D-Chatterjea contraction i.e. for every (x,y) ∈X 2,

(3.6) D(T x,T y)� a
(
D(T x,y)+D(x,T y)

)
.

where a ∈ A′+, with 0 < ‖a‖< 1
2 .

Moreover, if there exists x0 ∈X such that δ (D ,T ,x0) < ∞, then T has unique fixed point ω

and the sequence (T nx0)n∈N converges to ω .

Proof. Lemma 2.1-2 justifies that the linear map ψ : u 7→ au defined on A is positive. Moreover

T is ψ-Chatterjea contraction and ‖ψ‖= ‖a‖< 1
2 . According to Theorem 3.1, T has unique

fixed point of X . �

Corollary 3.2. Let (X ,A,D) be a C∗-algebra-valued generalized metric space and a map

T : X →X satisfies for every (x,y) ∈X 2,

(3.7) D(T x,T y)� a
(
D(T x,y)+D(x,T y)

)
a∗.
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where a ∈ A, with 0 < ‖a‖<
√

2
2 .

Suppose that there exists x0 ∈X such that δ (D ,T ,x0) < ∞. Then, T has unique fixed point

ω and the sequence (T nx0)n∈N converges to ω .

Proof. Lemma 2.1-3 justifies that the linear map ψ : u 7→ aua∗ defined on A is positive. More-

over T is ψ-Chatterjea contraction and ‖ψ‖ = ‖a‖2 < 1
2 . According to Theorem 3.1, T has

unique fixed point of X . �

Corollary 3.3. Let (X ,A,D) be a C∗-algebra-valued generalized metric space and T : X →

X a ‖ψ‖-Chatterjea contraction i.e. for every (x,y) ∈X 2,

(3.8) ‖D(T x,T y)‖6 ‖ψ‖
(
‖D(T x,y)+D(x,T y)‖

)
.

with 0 < ‖ψ‖< 1
2

.

Suppose that there exists x0 ∈X such that δ (D ,T ,x0) < ∞. Then, T has unique fixed point

ω and the sequence (T nx0)n∈N converges to ω .

Proof. We define D as follow

D(x,y) = ‖D(x,y)‖, for all x,y ∈X .

We know that (X ,D) is generalized metric space, so (X ,R,D) is C∗-algebra-valued general-

ized metric space. For each x,y ∈ X ,

(3.9) D(T x,T y)6 ‖ψ‖(‖D(T x,y)+D(x,T y)‖)6 ‖ψ‖(D(T x,y)+D(x,T y)),

and δ (D ,T ,x0) = δ (D ,T ,x0)< ∞. According to Theorem 3.1, T has unique fixed point of

X . �

Definition 3.1. Let (X ,4) be a partially ordered set.

(i) A mapping T : X →X is said to be nondecreasing or order preserving if T x4 T y

whenever x4 y.

(ii) We say that a partially ordered C∗-algebra valued generalized metric space (X ,A,D)

satisfies the (P)-property, if for every nondecreasing sequence (xn)n>0 that converges

to x in X (with respect to A), implies that xn 4 x, for all n ∈ N.



FIXED POINT THEOREMS IN C∗-ALGEBRA-VALUED GENERALIZED METRIC SPACES 17

Theorem 3.2. Let (X ,A,D ,4) be a partially ordered complete C∗-algebra valued generalized

metric space with the (P)-property.

Let T : X →X be an order preserving mapping such that

(x4 y⇒D(T x,T y)� ψ (D(T x,T y)+D(x,T y)+D(T x,y))) , (11)

for all (x,y) ∈X 2, where ψ : A→ A is a linear positive function with ‖ψ‖< 1
3 .

Suppose that there exists x0 ∈X such that δ (D ,T ,x0)< ∞, x0 4 T x0 and the set F of fixed

points of T is totally ordered. Then, T has unique fixed point ω of X and the sequence

(T nx0)n∈N converges to ω .

Proof. We define the sequence (xn)n∈N in X by

x0 ∈X and xn+1 = T xn, for all n ∈ N.

As x0 4T x0 and T is order preserving, then xn 4 xn+1 for all n ∈ N.

Let n,m ∈ N∗, assume that n < m. According to inequality (11), we have

(Id−ψ)[D(xn,xm)]� ψ (D(xn−1,xm)+D(xn,xm−1)).

Since ‖ψ‖< 1, then Id−ψ is invertible in the normalized algebra Lc(A) of continuous endo-

morphisms of A, so D(xn,xm)�Ψ(D(xn−1,xm)+D(xn,xm−1)), where Ψ = (Id−ψ)−1 ◦ψ .

We have Ψ is continuous linear from A into A and

‖Ψ‖6 ‖Id−ψ‖−1‖ψ‖< 1
3
‖(Id−ψ)−1‖.

As (Id−ψ)−1 =
+∞

∑
k=0

ψ
k, then ‖Ψ‖6 1

3

+∞

∑
k=0
‖ψ‖k <

1
3

+∞

∑
k=0

(1
3
)k

=
1
3
× 3

2
=

1
2

.

Let u ∈ A+, we have Ψ(u) = (Id−ψ)−1(ψ(u)) =
+∞

∑
k=0

ψ
k+1(u) = lim

n→+∞

n

∑
k=0

ψ
k+1(u).

Since φ is positive , then
n

∑
k=0

φ
k+1(u)� 0, for all n ∈ N. Taking into account Proposition2.1

of [19], A+ is closed in a C∗-algebra A, so Φ(u)� 0. Hence, Φ is positive.

According to lemma 3.2 and Theorem 3.1, (xn)n∈N is D-Cauchy sequence in the D-

complete space X , there exists x ∈X such that lim
n→+∞

‖D(xn,x)‖= 0, and since (xn)n∈N is
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nondecreasing, and (X ,A,D) satisfies the (P)-property, then xn � x, for all n ∈ N. Thus, for

each n ∈ N,

(Id−ψ)[D(T (xn),T (x))]�D(xn,T (x))+D(x,T (xn)).

And consequently,

D(xn+1,T (x))�Ψ(D(xn,T (x))+D(x,T (xn))) .

We have

‖D(xn+1,T (x))‖6 ‖Ψ‖‖D(xn,T (x))+D(x,T (xn))‖

6 ‖Ψ‖(‖D(xn,T (x))‖+‖D(x,T (xn))‖) ,

Thus, limsup
n→+∞

‖D(xn,T (x))‖6 ‖Ψ‖ limsup
n→+∞

‖D(xn,T (x))‖ i.e.

limsup
n→+∞

‖D(xn,T (x))‖(1−‖Ψ‖)6 0, and since ‖Ψ‖< 1
2
,

we get

limsup
n→+∞

‖D(xn,T (x))‖= 0.

According to condition (D4), we obtain

0�D(x,T (x))� limsup
n→+∞

‖D(xn,T (x))‖.c = 0

Hence, x = T (x).

Uniqueness: Let y ∈ X such that T (y) = y, since F is totally ordered, we can assume

that x� y.

Then

(Id−ψ)[D(T (x),T (y)]�D(T (x),y)+D(T (y),x)

in other words D(x,y)� 3ψ (D(x,y)). Then ‖D(x,y)‖6 3‖ψ‖‖D(x,y)‖. Therefore

‖D(x,y)‖(1−3‖ψ‖)6 0. Since ‖ψ‖< 1
3
, then D(x,y) = 0. Hence, x = y.

�



FIXED POINT THEOREMS IN C∗-ALGEBRA-VALUED GENERALIZED METRIC SPACES 19

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund.
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